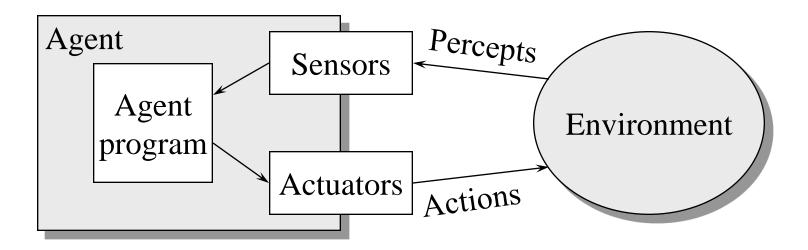
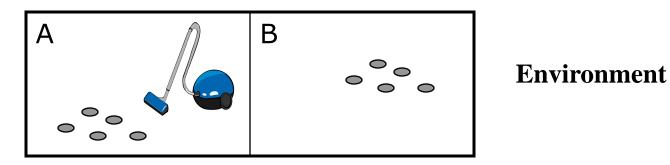
INF5390 – Kunstig intelligens **Intelligent Agents**

Roar Fjellheim

Outline


- Intelligent agents
- Environments
- Agent programs
- State representation
- Summary

AIMA Chapter 2: Intelligent Agents


What is an agent?

- An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators
- A rational agent is an agent that for each situation selects the action that maximizes its performance based on its perception and builtin knowledge
- The task of AI is to build rational agents

Generic agent architecture

Example: Vacuum-cleaner agent

Action:
Move?/Suck?
Right
Suck
Left
Right
Suck

Definition of rationality

• A *rational* agent:

 For each possible percept sequence, a rational agent selects an action that maximizes its expected performance measure, given its current knowledge

Definition depends on:

- V Performance measure (success criterion)
- Agent's percept sequence to date
- Actions that the agent can perform
- Agent's knowledge of the environment
- "The best performance under the circumstances .."

Is the vacuum cleaner agent rational?

Under assumptions:

- V Performance measure: 1 point for each clean square
- A priori known environment (squares A and B)
- Only possible actions are Left, Right, Suck
- Perceptions are always correct (location, dirt or not)
- Then agent's performance is rational
- But not rational with other assumptions, e.g.:
 - Penalty for oscillating between clean squares
 - If clean squares can become dirty, it needs to check
 - If unknown environment, it needs to explore
 - √ Etc.

Tasks and environments

- We build agents to solve *tasks*, i.e. to carry out specific *functions* in specific *task environments*
- PEAS task environment characterization:
 - P Performance measure
 - E Environment
 - A Actuators
 - S Sensors
- The agent *program* implements the function and must take the task environment into account

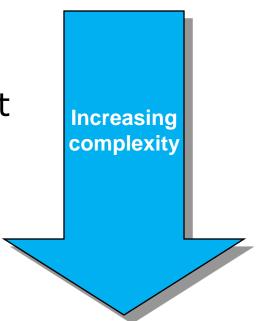
Examples of agent PEAS descriptions

Agent Type	Performance measure	Environment	Actuators	Sensors	
Medical	Healthy	Patient,	Questions,	Symptoms,	
diagnosis	patient,	hospital, staff	tests,	findings,	
system	minimize cost		treatments	patient answers	
Satellite image	Correct image	Images from	Display	Color pixel	
analysis	categorization	orbiting	categorization	arrays	
system		satellite	of a scene		
Part picking	Percentage	Conveyor belt	Jointed arm	Camera, joint	
robot	parts in correct	with parts, bins	and hand	angle sensors	
	bins				
Refinery	Maximize	Refinery,	Valves, pumps,	Temperature,	
controller	purity, yield,	operators	heaters,	pressure,	
	safety		displays	chemical	
Interactive	Maximize	Set of students	Exercises,	Typed words	
English tutor	student's score		suggestions,		
	on test		corrections		

Properties of environments

- Fully observable vs. partially observable
 - Sensors detect all aspects relevant for selecting action?
- Single agent vs. multi agent
 - ✓ Does the environment include other agents?
- Deterministic vs. stochastic
 - Next state determined by current state and action?
- Episodic vs. sequential
 - Agent's experience divided into independent episodes?
- Static vs. dynamic
 - Can the environment change while agent deliberates?
- Discrete vs. continuous
 - Limited number of distinct percepts and action?
- Known vs. unknown
 - Outcomes of all actions (or probabilities) known to agent?

Example environments


Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete	Known
Crossworld puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete	Fully
Chess with clock	Fully	Multi	Stochastic	Sequential	Semi	Discrete	Fully
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete	Fully
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous	Partially
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous	Partially
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous	Partially
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous	Partially
Interactive English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete	Partially

BigDog: A real-world autonomous agent

- BigDog is a rough-terrain robot that walks, runs, climbs and carries heavy loads
- The size of a large dog: about 1 m long,
 0.8 m tall and weighs approx. 100 kg.
- Powered by an engine that drives a hydraulic actuation system, with four legs like an animal
- BigDog set a world's record for legged vehicles by traveling 20 km without stopping or refueling
- The ultimate goal is to develop a robot that can go anywhere people and animals can go

Agent program types

- Table driven agent
- Simple reflex agent
- Model-based reflex agent
- Goal-based agent
- Utility-based agent
- Learning agents

Table driven agent program

function TABLE-DRIVEN-AGENT(percept) returns action
persistent: percepts, a sequence, initially empty
 table, a table, indexed by percept sequences,
 initially fully specified
append percept to the end of percepts
action <= LOOKUP(percepts, table)
return action</pre>

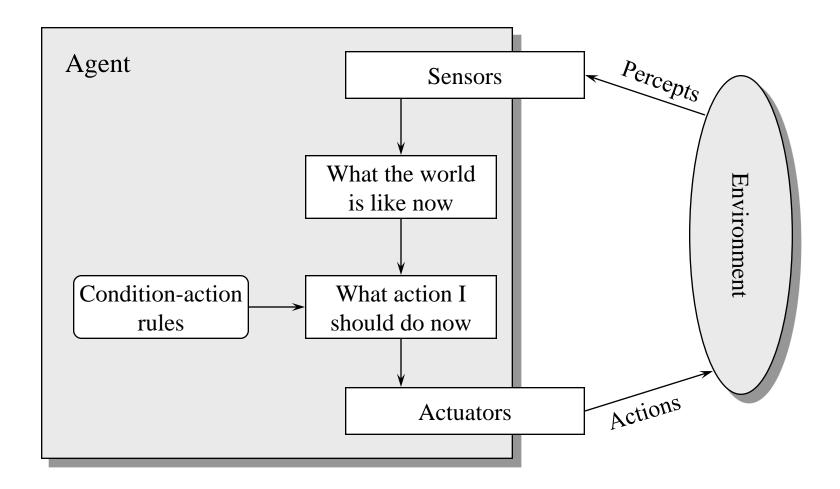
E.g. The vacuum-cleaner agent

The table driven agent is not viable

Very large tables needed

- \checkmark Table of 10¹⁵⁰ entries required to play chess
- Very time consuming table construction
- But portions of the table can be summarized in common input/output associations (rules)
 - E.g. preprocessing of sensory input for taxi driver agent
 - if car-in-front-is-braking then initiate-braking

A very simple reflex agent

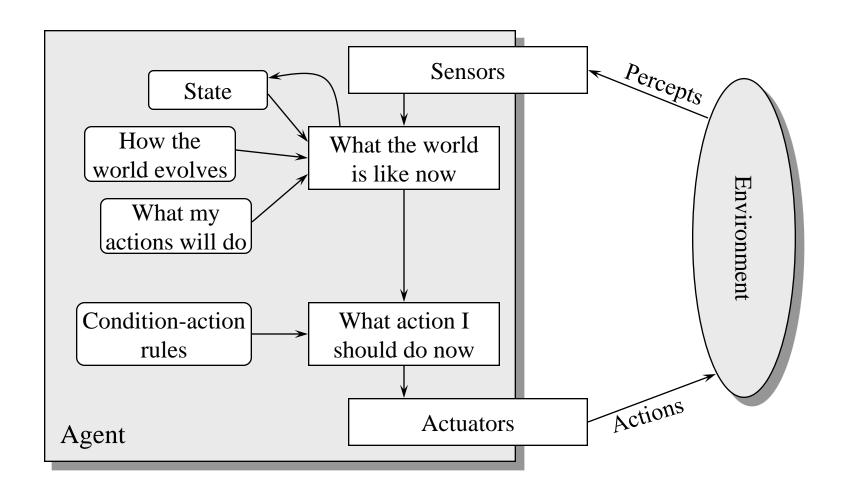

function REFLEX-VACUUM-AGENT([location, status])
 returns an action

if *status* = *Dirty* **then return** *Suck*

else if *location* = A **then return** *Right*

else if *location* = *B* **then return** *Left*

Simple reflex agent (generalized)


Simple reflex agent program

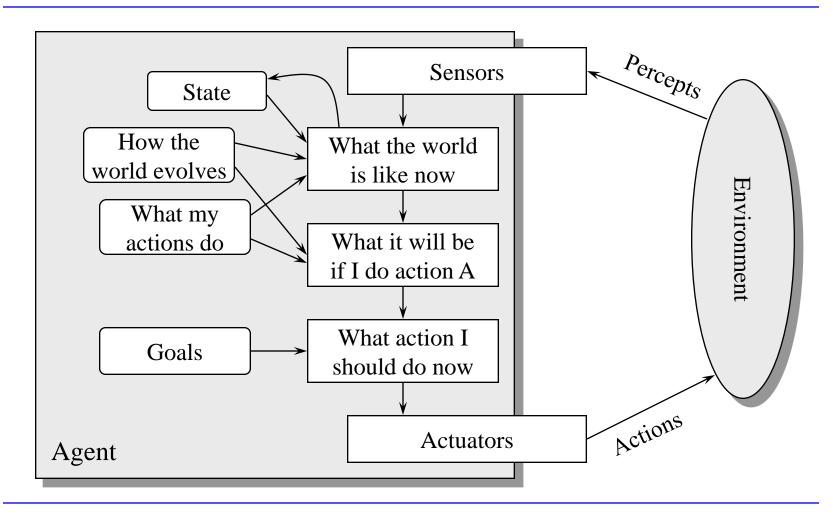
```
function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition-action rules
state <= INTERPRET-INPUT(percept)
rule <= RULE-MATCH(state, rules)
action <= rule.ACTION
return action</pre>
```

Acting on perception only is not enough

- Sensors do not always give all information required to act
- The agent may need to remember state information to distinguish otherwise seemingly identical situations
- The agent needs to know how the state evolves over time
- The agent also needs to know how its own actions affect the state

Model-based reflex agent

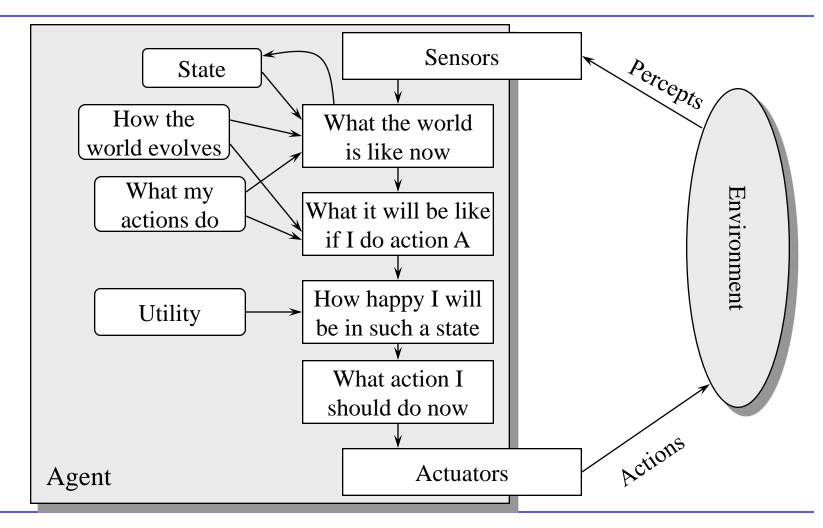
Model-based reflex agent program


```
function MODEL-BASED-REFLEX-AGENT(percept) returns an action
```

persistent: state, description of the current world state model, how next state depends on current state and action rules, a set of condition-action rules action, most recent action, initially none state <= UPDATE-STATE(state, action, percept, model) rule <= RULE-MATCH(state, rules) action <= rule.ACTION return action

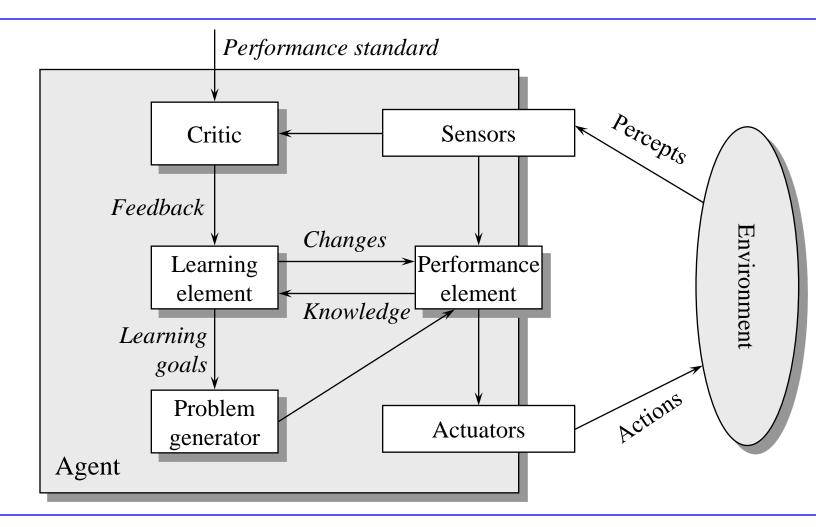
Why does an agent choose an action

- A rational agent chooses an action because it contributes to a desirable *goal*
- In reflex agents the goal is implicit in the condition-action rule (goals are "designed in")
- More flexible agents have an explicit representation of goal information
- Such agents may reason to select the best action to reach a goal
- The reasoning may involve searching and planning


Goal-based agent

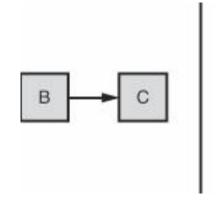
All goals and ways to goals are not equal

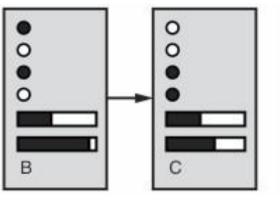
- Alternative goals may have different values to the agent
- Alternative ways to reach a goal may have widely different costs
- A rational agent ascribes a *utility* to a world state, enabling deliberate choices
- Utility can be used to rank goals, or to select the best path to a goal

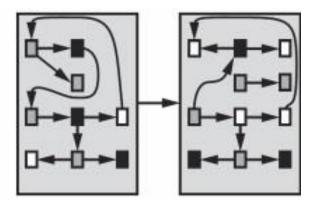

Utility-based agent

How to improve over time

- Previous agent types have assumed "built-in" knowledge, provided by designers
- In order to handle incomplete knowledge and changing requirements, agents must *learn*
- Learning is a way of achieving agent autonomy and the ability to improve performance over time
- The field in AI that deals with learning is called machine learning, and is very active


Learning agent



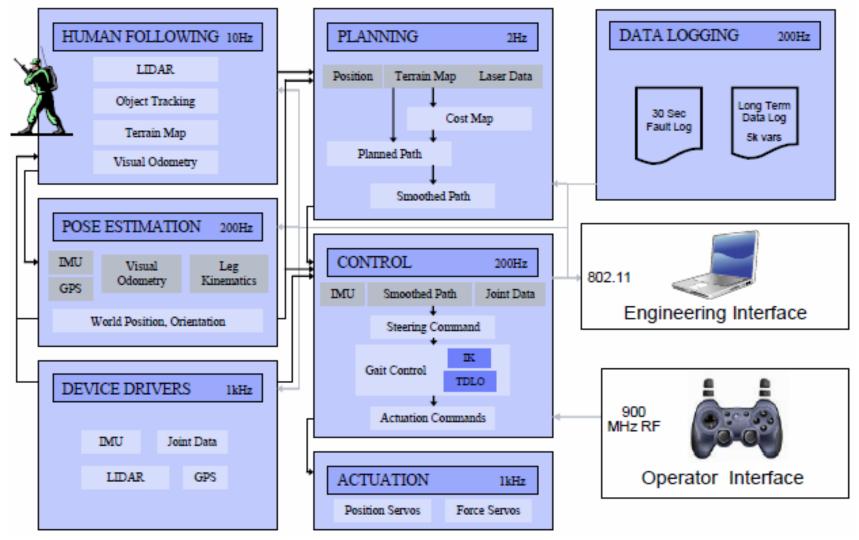

Representing state of the environment

- All agent types need some representation of the state of the environment in order to
 - Evaluate current state
 - ✓ Decide next action
 - Predict action result
- Increasingly complex representations
 - Atomic: Each state is an indivisible "black box"
 - *Factored*: Each state has attributes with values
 - Structured: State has entities related to each other

Examples of state representations

Atomic

- Search and games
- Markov models


Factored

- Propositional logic
- Planning
- Bayesian networks

Structured

- First-order logic
- Knowledge bases
- Natural language

BiigDog's software architecture

INF5390-02 Intelligent Agents

Summary

- An agent is something that perceives and acts in an environment
- A rational agent is one that always selects the action that maximizes its performance
- Environments have varying degrees of complexity and pose different challenges for agent design
- The appropriate design of the agent program depends on percepts, actions, goals, and environment

Summary (cont.)

- *Table lookup agents* only useful for tiny problems
- Simple reflex agents respond immediately to percepts
- Model-based reflex agents remember the state
- *Goal-based agents* act to achieve goals
- Utility-based agents maximize utility
- Learning agents improve their performance over time
- Agents need environment models of increasing complexity