
INF5390-08 Agents That Plan 1

INF5390 - Kunstig intelligens

Agents That Plan

Roar Fjellheim

INF5390-08 Agents That Plan 2

Outline

 Planning agents

 Plan representation

 State-space search

 Planning graphs

 GRAPHPLAN algorithm

 Partial-order planning

 Summary

AIMA Chapter 10: Classical Planning

INF5390-08 Agents That Plan 3

What is planning?

Planning is a type of problem solving

in which the agent uses

beliefs about actions and their consequences

to find a solution plan,

where a plan is

a sequence of actions

that leads

from an initial state

to a goal state

Previously described approaches

 Planning by search (INF5390-03)

 Atomic representations of states

 Very large number of possible actions

 Needs good domain heuristics to bound search space

 Planning by logical reasoning (INF5390-04)

 Hybrid agent can use domain-independent heuristics

 But relies on propositional inference (no variables)

 Model size rises sharply with problem complexity

 Neither of these approaches scale directly to
industrially significant problems

INF5390-08 Agents That Plan 4

INF5390-08 Agents That Plan 5

Factored plan representation

 Factored representation of:
 Initial state

 Available actions in a state

 Results of applying actions

 Goal tests

 Representation language PDDL
 Planning Domain Definition Language

 Developed from early AI planners, e.g. STRIPS,
pioneering robot work at Stanford in early 1970ies

 Used for classical planning
 Environment is observable, deterministic, finite,

static, and discrete

INF5390-08 Agents That Plan 6

Representation of states and goals

 States are represented by conjunctions of
function-free ground literals in first-order logic

 Example: At(Plane1, Melbourne)  At(Plane2, Sydney)

 Closed-world assumption: Any condition not
mentioned in a state is assumed to be false

 Goal state - a partially specified state,
satisfied by any state that contains the goal
conditions

 Example goal: At(Plane2, Tahiti)

INF5390-08 Agents That Plan 7

Representation of actions

 An action schema has three components
 Action description: Name and parameters

(universally quantified variables)

 Precondition: Conjunction of positive literals stating
what must be true before action application

 Effect: Conjunction of positive or negative literals
stating how situation changes with operator
application

 Example
 Action(Fly(p, from, to),

 PRECOND: At(p, from)  Plane(p) 
 Airport(from)  Airport(to),
 EFFECT:  At(p, from)  At(p, to))

INF5390-08 Agents That Plan 8

How are planning actions applied?

 Actions are applicable in states that satisfy its
preconditions (by binding variables)

 State: At(P1, JFK)  At(P2, SFO)  Plane(P1) 
Plane(P2)  Airport(JFK)  Airport(SFO)

 Precondition: At(p, from)  Plane(p)  Airport(from)
 Airport(to)

 Binding: {p/P1, from/JFK, to/SFO}

 State after executing action is same as before,
except positive effects added (add list) and
negative deleted (delete list)

 New state: At(P1, SFO)  At(P2, SFO)  Plane(P1) 
Plane(P2)  Airport(JFK)  Airport(SFO)

INF5390-08 Agents That Plan 9

Planning solution

 The planned actions that will take the agent
from the initial state to the goal state

 Simple version:

 An action sequence, such that when executed from
the initial state, results in a final state that satisfies
the goal

 More complex cases:

 Partially ordered set of actions, such that every
action sequence that respects the partial order is a
solution

INF5390-08 Agents That Plan 10

Example - Air cargo planning in PDDL

 Init(At(C1, SFO)  At(C2, JFK)  At(P1, SFO)  At(P2, JFK) 

Cargo(C1)  Cargo(C2)  Plane(P1)  Plane(P2)  Airport(JFK) 

Airport(SFO))

 Goal(At(C1, JFK)  At(C2, SFO))

 Action(Load(c, p, a),
 PRECOND: At(c, a)  At(p, a)  Cargo(c)  Plane(p)  Airport(a),
 EFFECT:  At(c, a)  In(c, p))

 Action(Unload(c, p, a),
 PRECOND: In(c, p)  At(p, a)  Cargo(c)  Plane(p)  Airport(a),
 EFFECT: At(c, a)   In(c, p))

 Action(Fly(p, from, to),
 PRECOND: At(p, from)  Plane(p)  Airport(from)  Airport(to),
 EFFECT:  At(p, from)  At(p, to))

INF5390-08 Agents That Plan 11

Example – Air cargo solution

 From initial state

 Init(At(C1, SFO)  At(C2, JFK)  At(P1, SFO) 

At(P2, JFK)  Cargo(C1)  Cargo(C2)  Plane(P1) 

Plane(P2)  Airport(JFK)  Airport(SFO))

 To goal state:

 Goal(At(C1, JFK)  At(C2, SFO))

 Solution – a sequence of actions:

 [Load(C1, P1, SFO), Fly(P1, SFO, JFK),
 Unload(C1, P1, JFK), Load(C2, P2, JFK),
 Fly(P2, JFK, SFO), Unload(C2, P2, SFO)]

 How can the planner generate the plan?

Current popular planning approaches

 Forward state-space search with strong heuristics

 Planning graphs and GRAPHPLAN algorithm

 Partial order planning in plan space

 Planning as Boolean satisfiability (SAT)

 Planning as first-order deduction

 Planning as constraint-satisfaction

 We will consider the three first ones

INF5390-08 Agents That Plan 12

INF5390-08 Agents That Plan 13

Forward and backward state search

INF5390-08 Agents That Plan 14

Forward state-space search

 Progression planning:

 Start in initial state

 Apply actions whose preconditions are satisfied

 Generate successor states by adding/deleting literals

 Check if successor state satisfies goal test

 Can be highly inefficient

 All actions are applied, even when irrelevant

 Large branching factor (many possible actions)

 Heuristics to guide search are required!

INF5390-08 Agents That Plan 15

Backward state-space search

 Regression planning:

 Start in goal state

 Apply actions that are relevant and consistent

• Relevant: The action can lead to the goal (adds goal
literal)

• Consistent: The action does not undo (delete) a goal
literal

 Create predecessor states

 Continue until initial state is satisfied

 More efficient, but still requires heuristics

 State-space searches can only produce linear plans

Heuristics for planning

 Neither forward nor backward search is efficient
without a good heuristic, which has to be
admissible (i.e. optimistic)

 Possible heuristics include:

 Adding more edges to the search graph, thereby
making it easier to find a solution path, e.g. ignore pre-
conditions or ignore delete lists

 Create state abstractions, many-to-one mapping from
ground states to abstract ones, solve problem in the
abstract space, and map down to ground again

 Heuristics generate estimates h(s) for remaining
cost of a state that can be used by e.g. A*

INF5390-08 Agents That Plan 16

INF5390-08 Agents That Plan 17

Planning graphs

 A planning graph is a special data structure that
can be used as a heuristic in search algorithms
or directly in an algorithm that generates a
solution plan

 Directed graph organized into one level for each
time step of plan, where a level contains all
literals that may be true at that step. Literals
may be mutually exclusive (mutex links)

 Works only for propositional planning problems
(no variables), but action schemas with
variables may be converted to this form

Example planning problem

 Goal: “Have cake and eat cake too”

 Init(Have(Cake))

 Goal(Have(Cake)  Eaten(Cake))

 Action(Eat(Cake)
 PRECOND: Have(Cake)
 EFFECT:  Have(Cake)  Eaten(Cake))

 Action(Bake(Cake)
 PRECOND:  Have(Cake)
 EFFECT: Have(Cake))

INF5390-08 Agents That Plan 18

Planning graph for the example

 Alternating state and action layers

 Real and «persistence» actions (small rectangles)

 Mutex links (grey arcs) btw. incompatible states

 Graph levels off at S2 (states repeat themselves)

INF5390-08 Agents That Plan 19

Mutex links (mutual exclusion)

 Between two actions:

 Inconsistent effects – one action negates an effect of
the other (e.g. Eat(Cake) and persistent Have(Cake))

 Interference – an effect of one action negates a pre-
condition of the other (e.g. Eat(Cake) and Have(Cake))

 Competing needs – a pre-condition of one action
negates a pre-condition of the other (e.g. Eat(Cake)
and Bake(Cake))

 Between two states (literals):

 One literal is the negation of the other

 Each possible pair of actions that could achieve the two
literals is mutually exclusive

INF5390-08 Agents That Plan 20

INF5390-08 Agents That Plan 21

The GRAPHPLAN algorithm

 Uses a planning graph to extract a solution to
a planning problem

 Repeatedly

 Extend planning graph by one level

 If all goal literals are included non-mutex in level

• Try to extract solution that does not violate any
mutex links, by following links backward in graph

• Return solution if successful extraction

 If the graph has leveled off then report failure

 Creating planning graph is only of polynomial
complexity, but plan extraction is exponential

Extracting a solution

 The goal is Have(Cake)  Eaten(Cake)

 Both goal literals non-mutex in S2

 Bake(Cake) and Eaten(Cake) non-mutex in A1

  Have(Cake) and Eaten(Cake) non-mutex in S1

 Eat(Cake) non-mutex in A0

 Have(Cake) in S0 is initial state

INF5390-08 Agents That Plan 22

INF5390-08 Agents That Plan 23

Partial order planning in plan space

 Each node in the search space corresponds to a
(partial) plan

 Search starts with empty plan that is expanded
progressively until complete plan is found

 Search operators work in plan space, e.g. add
step, add ordering, etc.

 The solution is the final plan, the path to it is
irrelevant

 Can create partially ordered plans

INF5390-08 Agents That Plan 24

Example - Partial and total order plans

Start

Left
Sock

Finish

Right
Sock

Left
Shoe

Right
Shoe

LeftSockOn RightSockOn

LeftShoeOn  RightShoeOn

Ordering

Start

Right
Sock

Left
Sock

Right
Shoe

Left
Shoe

Finish

Start

Left
Sock

Left
Shoe

Right
Sock

Right
Shoe

Finish

In all six
different

total order
plans, or

linearizations
of the

partial plan

INF5390-08 Agents That Plan 25

Partial-order plan representation

 A set of steps, where each step is an action (taken
from action set of planning problem)

 Initial empty plan contains just Start (no precondition,
initial state as effect) and Finish (goal as precondition,
no effects)

 A set of step ordering constraints of the form
A < B (“A before B”): A must be executed before B

 A set of causal links A B, “A achieves c for B”:
the purpose of A is to achieve precondition c for B; no
action is allowed between A and B that negates c

 Set of open preconditions, not achieved by any action
yet. The planner must reduce this set to empty set

c
 

INF5390-08 Agents That Plan 26

Protected causal links

 Causal links in a partial plan are protected by
ensuring that threats (steps that might delete the
protected condition) are ordered to come before or
after the protected link

A

B

c

C

c

A

B

c

C

c

A

B

c

C

c

C threatens
A B

C ordered to
come before A

C ordered to
come after B

c
 

INF5390-08 Agents That Plan 27

POP – Partial Order Planning

 Start with initial plan
 Contains Start and Finish steps

 All preconditions of Finish (goals) as open preconditions

 The ordering constraint Start < Finish, no causal links

 Repeatedly
 Pick arbitrarily one open precondition c on an action B

 Generate a successor plan for every consistent way of
choosing an action A that achieves c

 Stop when a solution has been found, i.e. when there
are no open preconditions for any action

 Successful solution plan
 Complete and consistent plan the agent can execute

 May be partial, agent may choose arbitrary linearization

INF5390-08 Agents That Plan 28

Example – Change tire

 Init(At(Flat, Axle)  At(Spare, Trunk))

 Goal(At(Spare, Axle))

 Action(Remove(Spare, Trunk),
 PRECOND: At(Spare, Trunk),
 EFFECT: At(Spare, Trunk)  At(Spare, Ground))

 Action(Remove(Flat, Axle),
 PRECOND: At(Flat, Axle),
 EFFECT: At(Flat, Axle)  At(Flat, Ground))

 Action(PutOn(Spare, Axle),
 PRECOND: At(Spare, Ground)  At(Flat, Axle),
 EFFECT: At(Spare, Ground)  At(Spare, Axle))

Uses ADL language, extends STRIPS

INF5390-08 Agents That Plan 29

Tire (1) - Initial plan

 For each planning
iteration, one step will
be added. If this leads
to an inconsistent state,
the planner will
backtrack

 The planner will only
consider steps that
serve to achieve a
precondition that has
not yet been achieved

Start

Finish

 At(Spare, Axle)

 At(Spare, Trunk)  At(Flat Axle)

INF5390-08 Agents That Plan 30

Tire (2) - Achieving open preconditions

 Start by selecting PutOn action that achieves Finish

 Select At(Spare, Ground) precondition of PutOn, and
choose Remove(Spare, Trunk) action

 The planner will protect the causal links by not
inserting new steps that violate achievements

Causal link
(+Ordering)

INF5390-08 Agents That Plan 31

Tire (3) – Finishing the plan

 Planner selects to achieve At(Flat, Axle)
precondition of PutOn by Remove(Flat, Axle)

 Final two preconditions are satisfied by Start

INF5390-08 Agents That Plan 32

Summary

 Planning agents produce plans - sequences of
actions - that contribute to reaching goals

 Planning systems operate on explicit
representation of states, actions, goals, and
plans

 PDDL (Planning Domain Definition Language)
describes action schemas in terms of
precondition and effects

 State-space planning operates on situations,
searches in forward or backward direction, and
produces fully ordered plans

INF5390-08 Agents That Plan 33

Summary (cont.)

 A planning graph is a data structure that can
constructed efficiently and be used to extract
solution plans (GRAPHPLAN algorithm)

 Plan-space planning (POP algorithm) operates
on plans, starting with a minimal plan and
extending it until a solution is found, and can
create partially ordered plans

 Planning is a very active AI field, where
techniques are evolving rapidly, and no
consensus on best approach exists yet

