
INF5390-12 Learning from Examples 1

INF5390 – Kunstig intelligens

Learning from Examples

Roar Fjellheim

INF5390-12 Learning from Examples 2

Outline

 General model

 Types of learning

 Learning decision trees

 Neural networks

 Perceptrons

 Summary

AIMA Chapter 18: Learning From Examples

INF5390-12 Learning from Examples 3

Why should agents learn?

 Agents in previous lectures have assumed “built-
in” knowledge, provided by designers

 In order to handle incomplete knowledge and
changing knowledge requirements, agents must
learn

 Learning is a way of achieving agent autonomy
and the ability to improve performance over time

 The field in AI that deals with learning is called
machine learning, and is very active

INF5390-12 Learning from Examples 4

General model of learning agents

Learning
element

Performance
element

Problem
generator

Critic

Feedback

Learning
goals

Changes

Knowledge

Performance standard

Agent

E
n
v
iro

n
m

e
n
t

Sensors

Actuators

INF5390-12 Learning from Examples 5

Elements of the general model

 Performance element

 Carries out the task of the agent, i.e. processes
percepts and decides on actions

 Learning element

 Proposes improvements of the performance element,
based on previous knowledge and feedback

 Critic

 Evaluates performance element by comparing results
of its actions with imposed performance standards

 Problem generator

 Proposes exploratory actions to increase knowledge

INF5390-12 Learning from Examples 6

Aspects of the learning element

 Which components of the performance element
are to be improved
 Which parts of the agent’s knowledge base is targeted

 What feedback is available
 Supervised, unsupervised or reinforcement learning

differ in type of feedback agent receives

 What representation is used for the
components
 E.g. logic sentences, belief networks, utility functions,

etc.

 What prior information (knowledge) is available

INF5390-12 Learning from Examples 7

Performance element components

 Possible components that can be improved
 Direct mapping from states to actions

 Means to infer world properties from percept
sequences

 Information about how the world evolves

 Information about the results of possible actions

 Utility information about the desirability of world
states

 Desirability of specific actions in specific states

 Goals describing states that maximize utility

 In each case, learning can be sees as learning
an unknown function y = f(x)

Hypothesis space H

 H: the set of hypothesis functions h to be
considered in searching for f(x)

 Consistent hypothesis: Fits with all data

 If several consistent hypotheses – choose simplest
one! (Occam’s razor)

 Realizability of learning problem:

 Realizable if H contains the ”true” function

 Unrealizable if not

 We do normally know what the true function is

 Why not choose H as large as possible?

 May be very inefficient in learning and in applying

INF5390-12 Learning from Examples 8

Types of learning - Knowledge

 Inductive learning

 Given a collection of examples (x, f(x))

 Return a function h that approximates f

 Does not rely on prior knowledge (“just data”)

 Deductive (or analytical) learning

 Going from known general f to a new f’ that is
logically entailed

 Based on prior knowledge (“data+knowledge”)

 Resemble more human learning

INF5390-12 Learning from Examples 9

Types of learning - Feedback

 Unsupervised learning

 Agent learns patterns in data even though no
feedback is given, e.g. via clustering

 Reinforcement learning

 Agent gets reward or punishment at the end, but is
not told which particular action led to the result

 Supervised learning

 Agent receives learning examples and is explicitly
told what the correct answer is for each case

 Mixed modes, e.g. semi-supervised learning

 Correct answers for some but not all examples

 INF5390-12 Learning from Examples 10

INF5390-12 Learning from Examples 11

Learning decision trees

 A decision situation can be described by
 A number of attributes, each with a set of possible values

 A decision which may be Boolean (yes/no) or multivalued

 A decision tree is a tree structure where
 Each internal node represents a test of the value of an

attribute, with one branch for each possible attribute
value

 Each leaf node represents the value of the decision if that
node is reached

 Decision tree learning is one of simplest and most
successful forms of machine learning

 An example of inductive and supervised learning

INF5390-12 Learning from Examples 12

Example: Wait for restaurant table

 Goal predicate: WillWait (for restaurant table)

 Domain attributes
• Alternate (other restaurants nearby)

• Bar (to wait in)

• Fri/Sat (day of week)

• Hungry (yes/no)

• Patrons (none, some, full)

• Price (range)

• Raining (outside)

• Reservation (made before)

• Type (French, Italian, ..)

• WaitEstimate (minutes)

INF5390-12 Learning from Examples 13

One decision tree for the example

Patrons?

WaitEstimate?

Alternate? Hungry?

Bar? Raining?

Reservation? Alternate? Fri/Sat?

Yes No

None Some Full

No Yes

>60 30-60 10-30 0-10

No Yes

Yes

No Yes

Yes No

No Yes

Yes

No Yes

Yes No

No Yes

Yes

No Yes

Yes No

No Yes

INF5390-12 Learning from Examples 14

Expressiveness of decision trees

 The tree is equivalent to a conjunction of
implications

 Cannot represent tests on two or more objects,
restricted to testing attributes of one object

 Fully expressive as propositional language, e.g.
any Boolean function can be written as a
decision tree

 For some functions, exponentially large decision
trees are required

 E.g. decision trees are good for some functions
and bad for others

)(),()3010,(),(rWillWaitNorHungryrteWaitEstimaFullrPatronsr

INF5390-12 Learning from Examples 15

Inducing decision trees from examples

 Terminology

 Example - Specific values for all attributes, plus goal
predicate

 Classification - Value of goal predicate of the example

 Positive/negative example - Goal predicate is true/false

 Training set - Complete set of examples

 The task of inducing a decision tree from a
training set is to find the simplest tree that
agrees with the examples

 The resulting tree should be more compact and
general than the training set itself

INF5390-12 Learning from Examples 16

A training set for the restaurant example

Example Attributes Will

Alt Bar Fri Hun Pat Price Rain Res Type Est wait

X1 Yes No No Yes Some $$$ No Yes French 0-10 Yes

X2 Yes No No Yes Full $ No No Thai 30-60 No

X3 No Yes No No Some $ No No Burger 0-10 Yes

X4 Yes No Yes Yes Full $ No No Thai 10-30 Yes

X5

X6

X7

X8 ETC.

X9

X10

X11

X12

INF5390-12 Learning from Examples 17

General idea of induction algorithm

 Test the most important attribute first, i.e. the
one that makes the most difference to the
classification

 Patrons? is a good
choice for the
first attribute,
because it allows
early decisions

 Apply same
principle
recursively

Patrons?

None Some Full

+: X1,X3,X4,X6,X8,X12

- : X2,X5,X7,X9,X10,X11

+:
- : X7,X11

+: X1,X3,X6,X8

- :

Yes No

+: X4,X12

- : X2,X5,X9,X10

INF5390-12 Learning from Examples 18

Recursive step of induction algorithm

 The attribute test splits the tree into smaller
decision trees, with fewer examples and one
attribute less

 Four cases to consider for the smaller trees

 If some positive and some negative examples, choose
best attribute to split them

 If examples are all positive (negative), answer Yes (No)

 If no examples left, return a default value (no example
observed for this case)

 If no attributes left, but both positive and negative
examples: Problem! (same description, different
classifications - noise)

INF5390-12 Learning from Examples 19

Induced tree for the example set

 The induced
tree is simpler
than the
original
“manual” tree

 It captures
some
regularities that
the original
creator was
unaware of

Patrons?

Yes No

None Some Full

Hungry?

Type? No

No Yes

No Yes

French Italian Thai Burger

Fri/Sat? Yes

Yes No

No Yes

Broaden applicability of decision trees

 Missing data

 How to handle training samples with partially missing
attribute values

 Multi/many-valued attributes

 How to treat attributes with many possible values

 Continuous or integer-valued input attributes

 How to branch the decision tree when attribute has a
continuous value range

 Continuous-valued output attributes

 Requires regression tree rather than a decision tree,
i.e. output value is a linear function of input
variables rather than a point value

INF5390-12 Learning from Examples 20

INF5390-12 Learning from Examples 21

Assessing learning performance

 Collect large set of examples

 Divide into two disjoint sets,
training set and test set

 Use learning algorithm on
training set to generate
hypothesis h

 Measure percentage of
examples in test set that
are correctly classified by h

 Repeat steps above for
differently sized training sets Training set size

%
 c

o
rr

e
c
t

o
n
 t

e
s
t

s
e
t

INF5390-12 Learning from Examples 22

Neural networks in AI

 The human brain is a huge
 network of neurons

 A neuron is a basic processing
unit that collects, processes and
disseminates electrical signals

 Early AI tried to imitate the
brain by building artificial neural networks (ANN)

 Met with theoretical limits and ”disappeared”

 In the 1980-90’es, interest in ANNs resurfaced

 New theoretical development

 Massive industrial interest&applications

INF5390-12 Learning from Examples 23

The basic unit of neural networks

 The network consists of units (nodes,
“neurons”) connected by links

 Carries an activation ai from unit i to unit j

 The link from unit i to unit j has a weight Wi,j

 Bias weight W0,j to fixed input a0 = 1

 Activation of a unit j

 Calculate input
inj = W i,j ai (i=0..n)

 Derive output
aj = g(inj) where
g is the activation
function

INF5390-12 Learning from Examples 24

Activation functions

 Activation function should separate well

 ”Active” (near 1) for desired input

 ”Inactive” (near 0) otherwise

 It should be non-linear

 Most used functions

 Threshold function

 Sigmoid function

INF5390-12 Learning from Examples 25

Neural networks as logical gates

 With proper use of bias weight W0 to set
thresholds, neural networks can compute
standard logical gate functions

INF5390-12 Learning from Examples 26

Neural network structures

 Two main structures

 Feed-forward (acyclic) networks

• Represents a function of its inputs

• No internal state

 Recurrent network

• Feeds outputs back to inputs

• May be stable, oscillate or become chaotic

• Output depends on initial state

 Recurrent networks are the most interesting
and ”brain-like”, but also most difficult to
understand

INF5390-12 Learning from Examples 27

Feed-forward networks as functions

 A FF network calculates a function of its inputs

 The network may contain hidden units/layers

 By changing #layers/units and their weights,
different functions can be realized

 FF networks are often used for classification

INF5390-12 Learning from Examples 28

Perceptrons

 Single-layer feed-forward neural networks are
called perceptrons, and were the earliest
networks to be studied

 Perceptrons can only act as linear separators,
a small subset of all interesting functions
 This partly explains why neural network research was

discontinued for a long time

INF5390-12 Learning from Examples 29

Perceptron learning algorithm

 How to train the network to do a certain
function (e.g. classification) based on a training
set of input/output pairs?

 Basic idea

 Adjust network link weights to minimize some
measure of the error on the training set

 Adjust weights in direction that minimizes error

y

x1

x2

x3

x4

Wj

INF5390-12 Learning from Examples 30

Perceptron learning algorithm (cont.)

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

 inputs: examples, a set of examples, each with inputs x1, x2 ..
 and output y

 network, a perceptron with weights Wj and act. function g

repeat

 for each e in examples do

 in = Wj xj[e] j=0 .. n

 Err = y[e] – g(in)

 Wj = Wj + Err xj[e] - the learning rate

until some stopping criterion is satisfied

return NEURAL-NETWORK-HYPOTHESIS(network)

INF5390-12 Learning from Examples 31

Performance of perceptrons vs. decision trees

 Perceptrons better at learning separable problem

 Decision trees better at ”restaurant problem”

INF5390-12 Learning from Examples 32

Multi-layer feed-forward networks

 Adds hidden layers
 The most common is one extra layer

 The advantage is that more function can be realized, in
effect by combining several perceptron functions

 It can be shown that
 A feed-forward network with a single sufficiently large

hidden layer can represent any continuous function

 With two layers, even discontinuous functions can be
represented

 However
 Cannot easily tell which functions a particular network

is able to represent

 Not well understood how to choose structure/number of
layers for a particular problem

INF5390-12 Learning from Examples 33

Example network structure

 Feed-forward network with 10 inputs, one
output and one hidden layer – suitable for
”restaurant problem”

INF5390-12 Learning from Examples 34

More complex activation functions

 Multi-layer networks can combine simple
(linear separation) perceptron activation
functions into more complex functions

 (combine 2) (combine 2)

INF5390-12 Learning from Examples 35

Learning in multi-layer networks

 In principle as for perceptrons – adjusting
weights to minimize error

 The main difference is what ”error” at internal
nodes mean – nothing to compare to

 Solution: Propagate error at output nodes
back to hidden layers
 Successively propagate backwards if the network has

several hidden layers

 The resulting Back-propagation algorithm is
the standard learning method for neural
networks

INF5390-12 Learning from Examples 36

Learning neural network structure

 Need to learn network structure

 Learning algorithms have assumed fixed network
structure

 However, we do not know in advance what structure
will be necessary and sufficient

 Solution approach

 Try different configurations, keep the best

 Search space is very large (# layers and # nodes)

 ”Optimal brain damage”: Start with full network ,
remove nodes selectively (optimally)

 ”Tiling”: Start with minimal network that covers subset
of training set, expand incrementally

INF5390-12 Learning from Examples 37

Summary

 Learning agents have a performance element
and a learning element

 The learning element tries to improve various
parts of the performance element, generally
seen as functions y = f(x)

 Learning can be inductive (from examples) or
deductive (based on knowledge)

 Differ in types of feedback to the agent: un-
supervised, reinforcement or supervised learning

 Learning a function from examples of inputs and
outputs is inductive/supervised learning

 Learning decision trees is an important variant

INF5390-12 Learning from Examples 38

Summary (cont.)

 Neural networks (NN) are inspired by human
brains, and are complex nonlinear functions with
many parameters learned from noisy data

 A perceptron is a feed-forward network with no
hidden layers and can only represent linearly
separable functions

 Multi-layer feed-forward NN can represent
arbitrary functions, and be trained efficiently
using the back-propagation algorithm

