INF5390 - Kunstig intelligens
Learning from Examples

Roar Fjellheim

INF5390-12 Learning from Examples

Outline

= General model

= Types of learning

= Learning decision trees
= Neural networks

= Perceptrons

= Summary

AIMA Chapter 18: Learning From Examples

INF5390-12 Learning from Examples

Why should agents learn?

Agents in previous lectures have assumed "built-
in” knowledge, provided by designers

In order to handle incomplete knowledge and
changing knowledge requirements, agents must
learn

Learning is a way of achieving agent autonomy
and the ability to improve performance over time

The field in Al that deals with learning is called
machine learning, and is very active

INF5390-12 Learning from Examples 3

General model of learning agents

Performance standard

Y
Critic = Sensors
Feedback
¥ Changes ¥
Learning > Performance
element |< element
Knowledge
Learning
goals
Y
Problem .
generator Actuators
Agent

INF5390-12 Learning from Examples 4

Elements of the general model

« Performance element

v Carries out the task of the agent, i.e. processes
percepts and decides on actions

= Learning element

J Proposes improvements of the performance element,
based on previous knowledge and feedback

= Critic
v Evaluates performance element by comparing results
of its actions with imposed performance standards

= Problem generator
J Proposes exploratory actions to increase knowledge

INF5390-12 Learning from Examples 5

Aspects of the learning element

Which components of the performance element
are to be improved
v Which parts of the agent’s knowledge base is targeted

What feedback is available

J Supervised, unsupervised or reinforcement learning
differ in type of feedback agent receives

What representation is used for the
components

v E.g. logic sentences, belief networks, utility functions,
etc.

What prior information (knowledge) is available

INF5390-12 Learning from Examples 6

Performance element components

=« Possible components that can be improved

\/
\/

\/
\/

Direct mapping from states to actions

Means to infer world properties from percept
sequences

Information about how the world evolves
Information about the results of possible actions

Utility information about the desirability of world
states

Desirability of specific actions in specific states
Goals describing states that maximize utility

= In each case, learning can be sees as learning
an unknown function y = f(x)

INF5390-12 Learning from Examples

Hypothesis space H

« H: the set of hypothesis functions h to be
considered in searching for f(x)

= Consistent hypothesis: Fits with all data

v If several consistent hypotheses — choose simplest
one! (Occam’s razor)

= Realizability of learning problem:
J Realizable if H contains the “true” function
v Unrealizable if not
v We do normally know what the true function is

= Why not choose H as large as possible?
Vv May be very inefficient in learning and in applying

INF5390-12 Learning from Examples

Types of learning - Knowledge

= Inductive learning
v Given a collection of examples (x, f(x))
v Return a function h that approximates f
v Does not rely on prior knowledge (“just data”)

= Deductive (or analytical) learning

v Going from known general fto a new f that is
logically entailed

v Based on prior knowledge (“data+knowledge”)
v Resemble more human learning

INF5390-12 Learning from Examples

Types of learning - Feedback

= Unsupervised learning

v Agent learns patterns in data even though no
feedback is given, e.g. via clustering

= Reinforcement learning

v Agent gets reward or punishment at the end, but is
not told which particular action led to the result

= Supervised learning

J Agent receives learning examples and is explicitly
told what the correct answer is for each case

= Mixed modes, e.g. semi-supervised learning
v Correct answers for some but not all examples

INF5390-12 Learning from Examples 10

Learning decision trees

« A decision situation can be described by
v A number of attributes, each with a set of possible values
J A decision which may be Boolean (yes/no) or multivalued

A decision tree is a tree structure where

v Each internal node represents a test of the value of an
attribute, with one branch for each possible attribute

value
v Each leaf node represents the value of the decision if that

node is reached
= Decision tree learning is one of simplest and most
successful forms of machine learning

= An example of inductive and supervised learning

INF5390-12 Learning from Examples 11

Example: Wait for restaurant table

= Goal predicate: WillWait (for restaurant table)

« Domain attributes
e Alternate (other restaurants nearby)
e Bar (to wait in)
e Fri/Sat (day of week)
e Hungry (yes/no)
e Patrons (none, some, full)
e Price (range)
e Raining (outside)
e Reservation (made before)
e Type (French, Italian, ..)
e WaitEstimate (minutes)

INF5390-12 Learning from Examples 12

One decision tree for the example

Patrons?
None Sor\ne Full
No Yes WaitEstimate?
>6 30-60/ 10-30 -10
No Alternate? Hungry? Yes
NNS No Yes
Reservation? Fri/Sat? Yes | | Alternate?
/\ N/\(es No Yes
Bar? Yes | | No Yes Yes Raining?
N/\(es N/\(es
No Yes No Yes

INF5390-12 Learning from Examples 13

Expressiveness of decision trees

The tree is equivalent to a conjunction of
implications
vrPatrons(r, Full) AWaitEstimate(r,10 —30) A Hungry(r, No) = WillWait(r)

Cannot represent tests on two or more objects,
restricted to testing attributes of one object

Fully expressive as propositional language, e.q.
any Boolean function can be written as a
decision tree

For some functions, exponentially large decision
trees are required

E.g. decision trees are good for some functions
and bad for others

INF5390-12 Learning from Examples 14

Inducing decision trees from examples

= Terminology

Vv Example - Specific values for all attributes, plus goal
predicate

J Classification - Value of goal predicate of the example
J Positive/negative example - Goal predicate is true/false
J Training set - Complete set of examples

= The task of inducing a decision tree from a
training set is to find the simplest tree that
agrees with the examples

= The resulting tree should be more compact and
general than the training set itself

INF5390-12 Learning from Examples 15

A training set for the restaurant example

Example Attributes Will
Alt Bar Fri | Hun | Pat |Price | Rain | Res | Type | Est | wait

X1 Yes | No No | Yes [Some| $$$% | No | Yes French| 0-10 | Yes

X2 Yes | No No | Yes | Full $ No No | Thai |30-60| No

X3 No | Yes | No No |Some| $ No No |[Burger| 0-10 || Yes

X4 Yes | No | Yes | Yes | Full $ No No | Thai |10-30| Yes

X5

X6

X7

X8 ETC.

X9

X10

X11

X12

INF5390-12 Learning from Examples

16

General idea of induction algorithm

= Test the most important attribute first, i.e. the
one that makes the most difference to the
classification

= Patrons? is a good +1 X1,X3,X4,X6,X8,X12
choice for the - 1 X2,X5,X7,X9,X10,X11
first attribute, Patrons?
because it allows
early decisions NO”%N"

= Apply same — B)>(<g’,>><<§xg,x1o
principle

recursively b LGS VRN

INF5390-12 Learning from Examples 17

Recursive step of induction algorithm

= The attribute test splits the tree into smaller
decision trees, with fewer examples and one
attribute less

=« Four cases to consider for the smaller trees

J If some positive and some negative examples, choose
best attribute to split them

v If examples are all positive (negative), answer Yes (No)

v If no examples left, return a default value (no example
observed for this case)

v If no attributes left, but both positive and negative
examples: Problem! (same description, different
classifications - noise)

INF5390-12 Learning from Examples 18

Induced tree for the example set

The induced
tree is simpler
than the
original
“manual” tree
It captures
some
regularities that
the original
creator was
unaware of

III

None

No

Patrons?
Sor\ne Full
Yes Hungry?
No Yes
Type? No

Frenc alian al urger

Yes

No

Fri/Sat?

N/\(es

Yes

No

Yes

INF5390-12 Learning from Examples

19

Broaden applicability of decision trees

Missing data

v How to handle training samples with partially missing
attribute values

= Multi/many-valued attributes
v How to treat attributes with many possible values

= Continuous or integer-valued input attributes
J How to branch the decision tree when attribute has a
continuous value range
= Continuous-valued output attributes

v Requires regression tree rather than a decision tree,
i.e. output value is a linear function of input
variables rather than a point value

INF5390-12 Learning from Examples 20

Assessing learning performance

Collect large set of examples

Divide into two disjoint sets,
training set and test set

Use learning algorithm on
training set to generate
hypothesis h

Measure percentage of
examples in test set that
are correctly classified by h

Repeat steps above for
differently sized training sets

% correct on test set

Training set size

INF5390-12 Learning from Examples

21

Neural networks in Al

= The human brain is a huge
network of neurons

v A neuron is a basic processing oewn.
unit that collects, processes an
disseminates electrical signals

= Early AI tried to imitate the

Axon from another cell

Cell body or Soma

brain by building artificial neural networks (ANN)
J Met with theoretical limits and “disappeared”
= In the 1980-90’es, interest in ANNs resurfaced

Vv New theoretical development
J Massive industrial interest&applications

INF5390-12 Learning from Examples 22

The basic unit of neural networks

= The network consists of units (nodes,
“neurons”) connected by links
v Carries an activation a; from unit / to unit j
« The link from unit 7 to unit j has a weight W, ;
|\ Bias weight W, ; to fixed input a, = 1
= Activation of a unit j e AR
v Calculate input

InJ = ZWI',_]' a,- (I=0..n) W\~ m;/
v Derive output j——— 2
a; = g(in;) v_vhelje "
g is the activation
1 Input Input Activati Output
function Liks Functin Function OVPH Links

INF5390-12 Learning from Examples 23

Activation functions

= Activation function should separate well
v "Active” (near 1) for desired input
v "Inactive” (near 0) otherwise

« It should be non-linear

« Most used functions
J Threshold function 1 i -
v Sigmoid function

INF5390-12 Learning from Examples 24

Neural networks as logical gates

= With proper use of bias weight W, to set
thresholds, neural networks can compute
standard logical gate functions

=15 Wy =0.5 Wy =-05

AN J.L

W, =1 W, =1

AND OR HOT

INF5390-12 Learning from Examples 25

Neural network structures

= WO main structures

J Feed-forward (acyclic) networks
e Represents a function of its inputs
e No internal state

Vv Recurrent network
e Feeds outputs back to inputs
e May be stable, oscillate or become chaotic
e Output depends on initial state

= Recurrent networks are the most interesting
and "brain-like”, but also most difficult to
understand

INF5390-12 Learning from Examples

26

Feed-forward networks as functions

= A FF network calculates a function of its inputs
= The network may contain hidden units/layers

L

Wi,

= By changing #layers/units and their weights,
different functions can be realized

« FF networks are often used for classification

INF5390-12 Learning from Examples

27

Perceptrons

« Single-layer feed-forward neural networks are

called perceptrons, and were the earliest
networks to be studied

= Perceptrons can only act as linear separators,
a small subset of all interesting functions

v This partly explains why neural network research was
discontinued for a long time

X1

(a) x; and x, (C) x; xor x,

INF5390-12 Learning from Examples 28

Perceptron learning algorithm

= How to train the network to do a certain
function (e.qg. classification) based on a training

set of input/output pairs?

X4 W,

=« Basic idea

v Adjust network link weights to minimize some
measure of the error on the training set

v Adjust weights in direction that minimizes error

INF5390-12 Learning from Examples 29

Perceptron learning algorithm (cont.)

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs: examples, a set of examples, each with inputs x;, x, ..
and output y

network, a perceptron with weights W; and act. function g

repeat
for each e in examples do
in =X W, x[e] j=0 .. n
Err = y[e] - g(in)
W, =W, + o Err x,[€] a - the learning rate

until some stopping criterion is satisfied
return NEURAL-NETWORK-HYPOTHESIS(network)

INF5390-12 Learning from Examples 30

Performance of perceptrons vs. decision trees

= Perceptrons better at learning separable problem
= Decision trees better at "restaurant problem”

1

P

0.9 | e

08 |

o e WL
07 } ‘{ _
A
e
06 | ./
yd

Percep
057

% correct on test set

Decision

0.4

O 10 20 30 40 50 60 70
Training set size

% correct on test set

1
S e ._...L.N;_._a.l.-'.?,-__ﬂ-'.I"‘,-.-
09 f \ fn GHE
08 & Percep
¥ Decision
07 |
. . _4.-___-'&.“‘_/
0.6 Pt - '
.:o,.-"':'".-
0.5 i
ﬂ_—"- I 1 1 1 1 1 1
O 10 20 30 40 50 60 70

Training set size

INF5390-12 Learning from Examples

31

Multi-layer feed-forward networks

= Adds hidden layers

v The most common is one extra layer
Jv The advantage is that more function can be realized, in
effect by combining several perceptron functions
= It can be shown that

v A feed-forward network with a single sufficiently large
hidden layer can represent any continuous function

v With two layers, even discontinuous functions can be
represented
= However

v Cannot easily tell which functions a particular network
is able to represent

Vv Not well understood how to choose structure/number of
layers for a particular problem

INF5390-12 Learning from Examples 32

Example network structure

« Feed-forward network with 10 inputs, one
output and one hidden layer - suitable for
"restaurant problem”

Qutput units o,
W,

Nl

Hidden units a,

W,

Input units 1,

INF5390-12 Learning from Examples 33

More complex activation functions

= Multi-layer networks can combine simple
(linear separation) perceptron activation
functions into more complex functions

(combine 2) (combine 2)

& x> 4 X

MNetwork output

Network output

INF5390-12 Learning from Examples

34

Learning in multi-layer networks

In principle as for perceptrons - adjusting
weights to minimize error

The main difference is what “error” at internal
nodes mean - nothing to compare to

Solution: Propagate error at output nodes

back to hidden layers

J Successively propagate backwards if the network has
several hidden layers

The resulting Back-propagation algorithm is

the standard learning method for neural

networks

INF5390-12 Learning from Examples 35

Learning neural network structure

= Need to learn network structure

v Learning algorithms have assumed fixed network
structure

Jy However, we do not know in advance what structure
will be necessary and sufficient

= Solution approach
v Try different configurations, keep the best

J Search space is very large (# layers and # nodes)

v "Optimal brain damage”: Start with full network ,
remove nodes selectively (optimally)

v "Tiling”: Start with minimal network that covers subset
of training set, expand incrementally

INF5390-12 Learning from Examples 36

Summary

Learning agents have a performance element
and a learning element

The learning element tries to improve various
parts of the performance element, generally
seen as functions y = f(x)

Learning can be inductive (from examples) or
deductive (based on knowledge)

Differ in types of feedback to the agent: un-
supervised, reinforcement or supervised learning

Learning a function from examples of inputs and
outputs is inductive/supervised learning

Learning decision trees is an important variant

INF5390-12 Learning from Examples 37

Summary (cont.)

= Neural networks (NN) are inspired by human
brains, and are complex nonlinear functions with
many parameters learned from noisy data

= A perceptron is a feed-forward network with no
hidden layers and can only represent linearly
separable functions

= Multi-layer feed-forward NN can represent
arbitrary functions, and be trained efficiently
using the back-propagation algorithm

INF5390-12 Learning from Examples 38

