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Outline 

 General model 

 Types of learning 

 Learning decision trees 

 Neural networks 

 Perceptrons 

 Summary 

AIMA Chapter 18: Learning From Examples 
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Why should agents learn? 

 Agents in previous lectures have assumed “built-
in” knowledge, provided by designers 

 In order to handle incomplete knowledge and 
changing knowledge requirements, agents must 
learn 

 Learning is a way of achieving agent autonomy 
and the ability to improve performance over time 

 The field in AI that deals with learning is called 
machine learning, and is very active 
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General model of learning agents 
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Elements of the general model 

 Performance element 

 Carries out the task of the agent, i.e. processes 
percepts and decides on actions 

 Learning element 

 Proposes improvements of the performance element, 
based on previous knowledge and feedback  

 Critic 

 Evaluates performance element by comparing results 
of its actions with imposed performance standards 

 Problem generator 

 Proposes exploratory actions to increase knowledge 
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Aspects of the learning element 

 Which components of the performance element 
are to be improved 
 Which parts of the agent’s knowledge base is targeted 

 What feedback is available 
 Supervised, unsupervised or reinforcement learning 

differ in type of feedback agent receives 

 What representation is used for the 
components 
 E.g. logic sentences, belief networks, utility functions, 

etc. 

 What prior information (knowledge) is available 
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Performance element components 

 Possible components that can be improved 
 Direct mapping from states to actions 

 Means to infer world properties from percept 
sequences 

 Information about how the world evolves 

 Information about the results of possible actions 

 Utility information about the desirability of world 
states 

 Desirability of specific actions in specific states 

 Goals describing states that maximize utility 

 In each case, learning can be sees as learning 
an unknown function y = f(x) 

 



Hypothesis space H 

 H: the set of hypothesis functions h to be 
considered in searching for f(x) 

 Consistent hypothesis: Fits with all data 

 If several consistent hypotheses – choose simplest 
one! (Occam’s razor) 

 Realizability of learning problem: 

 Realizable if H contains the ”true” function 

 Unrealizable if not 

 We do normally know what the true function is 

 Why not choose H as large as possible? 

 May be very inefficient in learning and in applying 
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Types of learning - Knowledge 

 Inductive learning  

 Given a collection of examples (x, f(x))  

 Return a function h that approximates f 

 Does not rely on prior knowledge (“just data”)  

 Deductive (or analytical) learning 

 Going from known general f to a new f’ that is 
logically entailed 

 Based on prior knowledge (“data+knowledge”) 

 Resemble more human learning 
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Types of learning - Feedback 

 Unsupervised learning 

 Agent learns patterns in data even though no 
feedback is given, e.g. via clustering 

 Reinforcement learning 

 Agent gets reward or punishment at the end, but is 
not told which particular action led to the result 

 Supervised learning 

 Agent receives learning examples and is explicitly 
told what the correct answer is for each case 

 Mixed modes, e.g. semi-supervised learning 

 Correct answers for some but not all examples 
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Learning decision trees 

 A decision situation can be described by  
 A number of attributes, each with a set of possible values 

 A decision which may be Boolean (yes/no) or multivalued 

 A decision tree is a tree structure where 
 Each internal node represents a test of the value of an 

attribute, with one branch for each possible attribute 
value 

 Each leaf node represents the value of the decision if that 
node is reached 

 Decision tree learning is one of simplest and most 
successful forms of machine learning 

 An example of inductive and supervised learning 
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Example: Wait for restaurant table 

 Goal predicate: WillWait (for restaurant table) 

 Domain attributes 
• Alternate (other restaurants nearby) 

• Bar (to wait in) 

• Fri/Sat (day of week) 

• Hungry (yes/no) 

• Patrons (none, some, full) 

• Price (range) 

• Raining (outside) 

• Reservation (made before)  

• Type (French, Italian, ..) 

• WaitEstimate (minutes) 
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One decision tree for the example 

Patrons? 

WaitEstimate? 

Alternate? Hungry? 

Bar? Raining? 

Reservation? Alternate? Fri/Sat? 
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Expressiveness of decision trees 

 The tree is equivalent to a conjunction of 
implications 
 

 Cannot represent tests on two or more objects, 
restricted to testing attributes of one object 

 Fully expressive as propositional language, e.g. 
any Boolean function can be written as a 
decision tree 

 For some functions, exponentially large decision 
trees are required 

 E.g. decision trees are good for some functions 
and bad for others 

)(),()3010,(),( rWillWaitNorHungryrteWaitEstimaFullrPatronsr 
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Inducing decision trees from examples 

 Terminology 

 Example - Specific values for all attributes, plus goal 
predicate 

 Classification - Value of goal predicate of the example 

 Positive/negative example - Goal predicate is true/false 

 Training set - Complete set of examples 

 The task of inducing a decision tree from a 
training set is to find the simplest tree that 
agrees with the examples 

 The resulting tree should be more compact and 
general than the training set itself 
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A training set for the restaurant example 

Example Attributes Will

Alt Bar Fri Hun Pat Price Rain Res Type Est wait

X1 Yes No No Yes Some $$$ No Yes French 0-10 Yes

X2 Yes No No Yes Full $ No No Thai 30-60 No

X3 No Yes No No Some $ No No Burger 0-10 Yes

X4 Yes No Yes Yes Full $ No No Thai  10-30 Yes

X5

X6

X7

X8 ETC.

X9

X10

X11

X12
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General idea of induction algorithm 

 Test the most important attribute first, i.e. the 
one that makes the most difference to the 
classification 

 Patrons? is a good 
choice for the 
first attribute,  
because it allows 
early decisions 

 Apply same 
principle 
recursively 

Patrons? 

None            Some            Full 

+: X1,X3,X4,X6,X8,X12 

- : X2,X5,X7,X9,X10,X11 

+: 
- : X7,X11 

+: X1,X3,X6,X8 

- : 

Yes No 

+: X4,X12 

- : X2,X5,X9,X10 
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Recursive step of induction algorithm 

 The attribute test splits the tree into smaller 
decision trees, with fewer examples and one 
attribute less 

 Four cases to consider for the smaller trees 

 If some positive and some negative examples, choose 
best attribute to split them 

 If examples are all positive (negative), answer Yes (No) 

 If no examples left, return a default value (no example 
observed for this case) 

 If no attributes left, but both positive and negative 
examples: Problem! (same description, different 
classifications - noise) 
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Induced tree for the example set 

 The induced 
tree is simpler 
than the 
original 
“manual” tree 

 It captures 
some 
regularities that 
the original 
creator was 
unaware of 

Patrons? 

Yes No 

None            Some            Full 

Hungry? 

Type? No 

No                Yes 

No Yes 

French      Italian     Thai       Burger 

Fri/Sat? Yes 

Yes No 

No               Yes 



Broaden applicability of decision trees 

 Missing data 

 How to handle training samples with partially missing 
attribute values 

 Multi/many-valued attributes 

 How to treat attributes with many possible values 

 Continuous or integer-valued input attributes 

 How to branch the decision tree when attribute has a 
continuous value range 

 Continuous-valued output attributes 

 Requires regression tree rather than a decision tree, 
i.e. output value is a linear function of input 
variables rather than a point value 
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Assessing learning performance 

 Collect large set of examples 

 Divide into two disjoint sets, 
training set and test set 

 Use learning algorithm on 
training set to generate 
hypothesis h 

 Measure percentage of 
examples in test set that  
are correctly classified by h 

 Repeat steps above for 
differently sized training sets Training set size 
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Neural networks in AI 

 The human brain is a huge 
 network of neurons  

 A neuron is a basic processing  
unit that collects, processes and  
disseminates electrical signals 

 Early AI tried to imitate the  
brain by building artificial neural networks (ANN) 

 Met with theoretical limits and ”disappeared” 

 In the 1980-90’es, interest in ANNs resurfaced 

 New theoretical development 

 Massive industrial interest&applications 



INF5390-12 Learning from Examples 23 

The basic unit of neural networks 

 The network consists of units (nodes, 
“neurons”) connected by links 

 Carries an activation ai from unit i to unit j 

 The link from unit i to unit j has a weight Wi,j 

 Bias weight W0,j to fixed input a0 = 1 

 Activation of a unit j 

 Calculate input  
inj = W i,j ai    (i=0..n) 

 Derive output 
aj = g(inj) where 
g is the activation 
function 
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Activation functions 

 Activation function should separate well 

 ”Active” (near 1) for desired input 

 ”Inactive” (near 0) otherwise 

 It should be non-linear 

 Most used functions 

 Threshold function 

 Sigmoid function 
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Neural networks as logical gates 

 With proper use of bias weight W0 to set 
thresholds, neural networks can compute 
standard logical gate functions 



INF5390-12 Learning from Examples 26 

Neural network structures 

 Two main structures 

 Feed-forward (acyclic) networks 

• Represents a function of its inputs 

• No internal state 

 Recurrent network 

• Feeds outputs back to inputs 

• May be stable, oscillate or become chaotic 

• Output depends on initial state 

 Recurrent networks are the most interesting 
and ”brain-like”, but also most difficult to 
understand 
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Feed-forward networks as functions  

 A FF network calculates a function of its inputs 

 The network may contain hidden units/layers 

 

 

 

 

 

 By changing #layers/units and their weights, 
different functions can be realized 

 FF networks are often used for classification 
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Perceptrons 

 Single-layer feed-forward neural networks are 
called perceptrons, and were the earliest 
networks to be studied 

 Perceptrons can only act as linear separators, 
a small subset of all interesting functions 
 This partly explains why neural network research was 

discontinued for a long time 
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Perceptron learning algorithm 

 How to train the network to do a certain 
function (e.g. classification) based on a training 
set of input/output pairs? 

 

 

 

 Basic idea 

 Adjust network link weights to minimize some 
measure of the error on the training set  

 Adjust weights in direction that minimizes error 

y 

x1 

x2 

x3 

x4 

Wj 
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Perceptron learning algorithm (cont.) 

function PERCEPTRON-LEARNING(examples, network)  
returns a perceptron hypothesis 

 inputs: examples, a set of examples, each with inputs x1, x2 ..   
                            and output y 

         network, a perceptron with weights Wj and act. function g 

repeat 

 for each e in examples do 

   in =  Wj xj[e]                           j=0 .. n 

   Err = y[e] – g(in) 

   Wj = Wj +  Err xj[e]                  - the learning rate 

until some stopping criterion is satisfied 

return NEURAL-NETWORK-HYPOTHESIS(network) 
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Performance of perceptrons vs. decision trees 

 Perceptrons better at learning separable problem 

 Decision trees better at ”restaurant problem” 
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Multi-layer feed-forward networks 

 Adds hidden layers  
 The most common is one extra layer 

 The advantage is that more function can be realized, in 
effect by combining several perceptron functions 

 It can be shown that 
 A feed-forward network with a single sufficiently large 

hidden layer can  represent any continuous function 

 With two layers, even discontinuous functions can be 
represented 

 However  
 Cannot easily tell which functions a particular network 

is able to represent 

 Not well understood how to choose structure/number of 
layers for a particular problem 



INF5390-12 Learning from Examples 33 

Example network structure 

 Feed-forward network with 10 inputs, one 
output and one hidden layer – suitable for 
”restaurant problem” 
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More complex activation functions 

 Multi-layer networks can combine simple 
(linear separation) perceptron activation 
functions into more complex functions 
 

                  (combine 2)                        (combine 2) 
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Learning in multi-layer networks 

 In principle as for perceptrons – adjusting 
weights to minimize error 

 The main difference is what ”error” at internal 
nodes mean  – nothing to compare to 

 Solution: Propagate error at output nodes 
back to hidden layers 
 Successively propagate backwards if the network has 

several hidden layers 

 The resulting Back-propagation algorithm is 
the standard learning method for neural 
networks 
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Learning neural network structure 

 Need to learn network structure 

 Learning algorithms have assumed fixed network 
structure 

 However, we do not know in advance what structure 
will be necessary and sufficient 

 Solution approach 

 Try different configurations, keep the best 

 Search space is very large (# layers and # nodes) 

 ”Optimal brain damage”: Start with full network , 
remove nodes selectively (optimally) 

 ”Tiling”: Start with minimal network that covers subset 
of training set, expand incrementally 
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Summary 

 Learning agents have a performance element 
and a learning element 

 The learning element tries to improve various 
parts of the performance element, generally 
seen as functions y = f(x) 

 Learning can be inductive (from examples) or 
deductive (based on knowledge) 

 Differ in types of feedback to the agent: un-
supervised, reinforcement or supervised learning 

 Learning a function from examples of inputs and 
outputs is inductive/supervised learning 

 Learning decision trees is an important variant 
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Summary (cont.) 

 Neural networks (NN) are inspired by human 
brains, and are complex nonlinear functions with 
many parameters learned from noisy data 

 A perceptron is a feed-forward network with no 
hidden layers and can only represent linearly 
separable functions 

 Multi-layer feed-forward NN can represent 
arbitrary functions, and be trained efficiently 
using the back-propagation algorithm 


