
INF5390-13 Reinforcement Learning 1

INF5390 - Kunstig intelligens

Reinforcement Learning

Roar Fjellheim

INF5390-13 Reinforcement Learning 2

Outline

 Reinforcement learning

 Sequential decision processes

 Passive learning

 Active learning

 RL applications

 Summary

AIMA Chapter 17: Making Complex Decisions
AIMA Chapter 21: Reinforcement Learning

INF5390-13 Reinforcement Learning 3

Reinforcement learning

 Reinforcement learning (RL) is unsupervised
learning: The agent receives no examples, and
starts with no model or utility information

 The agent must use trial-and-error, and receives
rewards, or reinforcement, to guide learning

 Examples:

 Learning a game by making moves until lose or win:
Reward only at the end

 Learning to ride a bicycle without any assistance:
Rewards received more frequently

 RL can be seen to encompass all of AI: An agent
must learn to behave in an unknown environment

INF5390-13 Reinforcement Learning 4

Variations of RL

 Accessible environment (agent can use percepts)
vs. inaccessible (must have some model)

 Agent may have some initial knowledge, or not
have any domain model

 Rewards can be received only in terminal states,
or in any state

 Rewards can be part of the actual utility, or just
hint at the actual utility

 The agent can be a passive (watching) or an
active (exploring) learner

 RL uses results from sequential decision processes

Sequential decision processes

 In a sequential decision process, the agent’s
utility depends on a sequence of decisions

 Such problems involve utility (of states) and
uncertainty (of action outcomes)

 The agent needs a policy that tells it what to
do in any state it might reach: a = (s)

 An optimal policy *(s) is a policy that gives
the highest expected utility

INF5390-13 Reinforcement Learning 5

Example sequential decision process

 4x3 environment

 Agent starts
in (1,1)

 Probabilistic
transition model

 Sequence [Up, Up ,Right, Right, Right] only has a
probability of 0.85 = 0.33 of reaching +1 (4,3)

 Terminal rewards are +1 (4,3) and -1 (4,2)

 Other state rewards are -0.04

INF5390-13 Reinforcement Learning 6

Markov Decision Processes (MDP)

 An MDP is a sequential decision process with the
following characteristics

 Fully observable environment (agent knows where
it is at any time)

 State transitions are Markovian, i.e. P(s’|s,a) -
probability of reaching s’ from s by action a
depends only on s and a, not earlier state history

 Agent receives a reward R(s) in each state s

 The total utility U(s) of s is the sum of the rewards
received, from s until a terminal state is reached

INF5390-13 Reinforcement Learning 7

Optimal policy and utility of states

 The utility of a state s depends on rewards
received but also on the policy followed

𝑈(𝑠) = 𝐸 𝑅(𝑆𝑡)

∞

𝑡=0

 Of all the possible policies the agent could follow,
one gives the highest expected utility

∗
𝑠 = argmax

𝑈(𝑠)

 This is the optimal policy. Under certain
assumptions, it is independent of starting state

INF5390-13 Reinforcement Learning 8

Utility of states (cont.)

 For an MDP with known transition model, reward
function and assuming the optimal policy, we
can calculate the utility U(s) of each state s

 For the 4x3
example,
the utilities are:

INF5390-13 Reinforcement Learning 9

Optimal policy

 Knowing U(s) allows the agent to select the
optimal action:

 Optimal policy depends on non-final reward R(s)

INF5390-13 Reinforcement Learning 10

∗(s) = argmax
 a∈A s

 P s′ s,a U s′

𝑠′

R(s) = -0.04

Bellman equations

 We need to be able to calculate utilities U(s) in
order to define optimal policy

 Can exploit dependence between states: The
utility of a state s is the reward R(s) plus the
maximum expected utility of the next state

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 This is the Bellman equation. There are n
equations for n states, containing utilities U(s)
as n unknowns

 Solving the equations yields the utilities U(s)

INF5390-13 Reinforcement Learning 11

Value iteration

 The Bellman equations are nonlinear (due to the
max opr.) and cannot be solved by linear
algebra. Can use an iterative approach instead

 Start with arbitrary initial values

 Calculate right hand side

 Plug the value into left-hand sides U(s)

 Iterate until the values stabilize (within a margin)

 This VALUE-ITERATION algorithm is guaranteed
to converge and to produce unique solutions

INF5390-13 Reinforcement Learning 12

Policy iteration

 Instead of iterating to find U(s) and derive an
optimal policy, we can iterate directly in policies

 We can iterate the policy to get an optimal one:

 Policy evaluation: Given a policy i, calculate Ui, the utility
of each state if i is followed

 Policy improvement: Calculate new policy i+1 that selects
the action that maximizes successor state value (MEU)

 Repeat until values no longer change

 This POLICY-ITERATION algorithm is guaranteed
to converge and to produce an optimal policy

INF5390-13 Reinforcement Learning 13

Reinforcement learning of MDP

 We could find an optimal policy for an MDP if we
know the transition model P(s’|s,a)

 However, an agent in an unknown environment
does not know the transition model nor in
advance what rewards it will get in new states

 We want the agent to learn to behave rationally
in an unsupervised process

 The purpose of RL is to learn the optimal
policy based only on received rewards

INF5390-13 Reinforcement Learning 14

Different RL agent designs

 Utility-based agents learn a utility function on
states and uses it to select actions that
maximize expected utility

 Requires also a model of where actions lead

 Q-learning agents learn an action-utility
function (Q-function), giving expected utility of
taking a given action in a given state

 Can select actions without knowing where they lead, at
the expense not being able to look ahead

 Reflex agents learn a policy that maps directly
from states to actions, i.e. *

INF5390-13 Reinforcement Learning 15

Direct utility estimation

 In passive learning, the agent’s policy is
fixed, it only needs to how good it is

 Agent runs a number of trials, starting in (1,1)
and continuing until it reaches a terminal state

 The utility of a state is the expected total
remaining reward (reward-to-go)

 Each trial provides a sample of the reward-to-
go for each visited state

 The agent keeps a running average for each
state, which will converge to the true value

 This is a direct utility estimation method

 INF5390-13 Reinforcement Learning 16

Example: Direct utility estimation

 Training trials for (4,3) matrix

 Sample U(s) in first trial

 (1,1) 0.72

 (1,2) 0.76 and 0.84

 (1,3) 0.80 and 0.88

 Etc.

 Direct utility estimation
converges slowly

INF5390-13 Reinforcement Learning 17

 Etc.

104.004.004.004.0

104.004.004.004.004.004.004.004.0

)2,4()2,3()1,3()1,2()1,1(

)3,4()2,3()3,3()3,2()3,1()2,1()3,1()2,1()1,1(

Exploiting state dependencies

 Direct utility fails to exploit the fact that states
are dependent as shown by Bellman equations

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 Learning can be speeded up by using these
dependencies

 Direct utility estimation can be seen to search
a too large hypothesis space that contains
many hypotheses violating Bellman equations

INF5390-13 Reinforcement Learning 18

Adaptive Dynamic Programming (ADP)

 An ADP agent uses dependencies between
states to speed up value estimation

 It follows a policy and can use observed
transitions to incrementally build the transition
model P(s’|s,(s))

 It can then plug the learned transition model
and observed rewards R(s) into the Bellman
equations to get U(s)

 The equations are linear because there is no max
operator, and therefore easier to solve

 The result is U(s) for the given policy

INF5390-13 Reinforcement Learning 19

Temporal Difference (TD) learning

 TD is another passive utility value learning
algorithm using Bellman equations

 Instead of solving the equations, TD uses the
observed transitions to adjust the utilities of
the observed states to agree with Bellman

 TD uses a learning rate parameter α to select

the rate of change of utility adjustment

 TD does not need a transition model to perform
its updates, only the observed transitions

INF5390-13 Reinforcement Learning 20

Active reinforcement learning

 While a passive RL agent executes a fixed
policy , an active RL agent has to decide
which actions to take

 An active RL agent is an extension of a passive
one, e.g. the passive ADP agent, and adds

 Needs to learn a complete transition model for all
actions (not just), using passive ADP learning

 Utilities need to reflect the optimal policy *, as
expressed by the Bellman equations

 Equations can be solved by the VALUE-ITERATION or
POLICY-ITERATION methods described before

 Action to be selected as the optimal/maximizing one

INF5390-13 Reinforcement Learning 21

Exploration behavior

 The active RL agent may select maximizing
actions based on a faulty learned model, and fail
to incorporate observations that might lead to a
more correct model

 To avoid this, the agent design could include
selecting actions that lead to more correct
models at the cost of reduced immediate rewards

 This called exploitation vs. exploration tradeoff

 The issue of optimal exploration policy is studied
in a subfield of statistical decision theory dealing
with so-called bandit problems

INF5390-13 Reinforcement Learning 22

Q-learning

 An action-utility function Q assigns an expected
utility to taking a given action in a given state:
Q(a,s) is the value of doing action a in state s

 Q-values are related to utility values:
𝑈 𝑠 = max

𝑎
𝑄(𝑎, 𝑠)

 Q-values are sufficient for decision making
without needing a transition model P(s’|s,a)

 Can be learned directly from rewards using a TD-
method based on an update equation (s -> s’):

INF5390-13 Reinforcement Learning 23

)),()','(max)((),(),(
'

asQasQsRasQasQ
a

Generalization in RL

 In simple domains, U and Q can be represented
by tables, indexed by state s

 However, for large state spaces the tables will be
too large to be feasible, e.g. chess 1040 states

 Instead functional approximation can sometimes
be used, e.g. Ŭ(s) = ∑ parameteri x featurei(s)

 Instead of e.g. 1040 table entries, U can be
estimated by e.g. 20 parameterized features

 Parameters can be found by supervised learning

 Problem: Such a function may not exist, and
learning process may therefore fail to converge

INF5390-13 Reinforcement Learning 24

Policy search

 A policy maps states to actions: a = (s), and
policy search tries to derive directly

 Normally interested in parameterized policy in
order to get a compact representation

 E.g., can be represented by a collection of

functional approximations 𝑄 (𝑠, 𝑎), one per action
a, and policy will be to maximize over a

𝜋 𝑠 = max
𝑎

𝑄 (𝑠, 𝑎)

 Policy search has been investigated in continuous/
discrete and deterministic/stochastic domains

INF5390-13 Reinforcement Learning 25

INF5390-13 Reinforcement Learning 26

Some examples of reinforcement learning

 Game playing

 Famous program by Arthur Samuel (1959) to play
checkers used linear evaluation function for board
positions, updated by reinforcement learning

 Backgammon system (Tesauro, 1992) used TD-
learning and self-play (200.000 games) to reach level
comparable to top three human world masters

 Robot control

 Inverted pendulum problem used as test case for
several successful reinforcement learning programs,
e.g. BOXES (Michie, 1968) learned to balance pole
after 30 trials

INF5390-13 Reinforcement Learning 27

Summary

 Reinforcement learning (RL) examines how the
agent can learn to act in an unknown environment
just based on percepts and rewards

 Three RL designs are model-based, using a model
P and utility function U, model-free, using action-
utility function Q, and reflex, using a policy

 The utility of a state is the expected sum of
rewards received up to the terminal state. Three
methods are direct estimation, Adaptive dynamic
programming (ADP), and Temporal-Difference (TD)

INF5390-13 Reinforcement Learning 28

Summary (cont.)

 Action-value function (Q-functions) can be learned
by ADP or TD approaches

 In passive learning the agent just observes the
environment, while an active learner must select
actions to trade off immediate reward vs.
exploration for improved model precision

 In domains with very large state spaces, utility
tables U are replaced by approximate functions

 Policy search work directly on a representation of
the policy, improving it in an iterative cycle

 Reinforcement learning is a very active research
area, especially in robotics

