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Reinforcement learning 

 Reinforcement learning (RL) is unsupervised 
learning: The agent receives no examples, and 
starts with no model or utility information 

 The agent must use trial-and-error, and receives 
rewards, or reinforcement, to guide learning 

 Examples: 

 Learning a game by making moves until lose or win: 
Reward only at the end 

 Learning to ride a bicycle without any assistance: 
Rewards received more frequently 

 RL can be seen to encompass all of AI: An agent 
must learn to behave in an unknown environment 
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Variations of RL 

 Accessible environment (agent can use percepts) 
vs. inaccessible (must have some model)  

 Agent may have some initial knowledge, or not 
have any domain model 

 Rewards can be received only in terminal states, 
or in any state 

 Rewards can be part of the actual utility, or just 
hint at the actual utility 

 The agent can be a passive (watching) or an 
active (exploring) learner 

 RL uses results from sequential decision processes 



Sequential decision processes 

 In a sequential decision process, the agent’s 
utility depends on a sequence of decisions 

 Such problems involve utility (of states) and 
uncertainty (of action outcomes) 

 The agent needs a policy that tells it what to 
do in any state it might reach: a = (s) 

 An optimal policy *(s) is a policy that gives 
the highest expected utility 
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Example sequential decision process 

 4x3 environment 

 Agent starts  
in (1,1) 

 Probabilistic  
transition model 

 Sequence [Up, Up ,Right, Right, Right] only has a 
probability of 0.85 = 0.33 of reaching +1 (4,3) 

 Terminal rewards are +1 (4,3) and -1 (4,2) 

 Other state rewards are -0.04  
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Markov Decision Processes (MDP) 

 An MDP is a sequential decision process with the 
following characteristics 

 Fully observable environment (agent knows where 
it is at any time) 

 State transitions are Markovian, i.e. P(s’|s,a) -  
probability of reaching s’ from s by action a 
depends only on s and a, not earlier state history 

 Agent receives a reward R(s) in each state s 

 The total utility U(s) of s is the sum of the rewards 
received, from s until a terminal state is reached 
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Optimal policy and utility of states 

 The utility of a state s depends on rewards 
received but also on the policy  followed  

𝑈(𝑠) = 𝐸  𝑅(𝑆𝑡)

∞

𝑡=0

 

 Of all the possible policies the agent could follow, 
one gives the highest expected utility 

∗
𝑠 = argmax


𝑈(𝑠) 

 This is the optimal policy. Under certain 
assumptions, it is independent of starting state 
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Utility of states (cont.) 

 For an MDP with known transition model, reward 
function and assuming the optimal policy, we 
can calculate the utility U(s) of each state s  

 For the 4x3  
example,  
the utilities are: 
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Optimal policy 

 Knowing U(s) allows the agent to select the 
optimal action: 

 

 Optimal policy depends on non-final reward R(s)  
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∗(s) = argmax
                a∈A s

 P s′ s,a U s′

𝑠′

 

R(s) = -0.04 



Bellman equations 

 We need to be able to calculate utilities U(s) in 
order to define optimal policy 

 Can exploit dependence between states: The 
utility of a state s is the reward R(s) plus the 
maximum expected utility of the next state 

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 

 This is the Bellman equation. There are n 
equations for n states, containing utilities U(s) 
as n unknowns 

 Solving the equations yields the utilities U(s)  
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Value iteration 

 The Bellman equations are nonlinear (due to the 
max opr.) and cannot be solved by linear 
algebra. Can use an iterative approach instead 
 

 Start with arbitrary initial values 

 Calculate right hand side 

 Plug the value into left-hand sides U(s) 

 Iterate until the values stabilize (within a margin) 

 

 This VALUE-ITERATION algorithm is guaranteed 
to converge and to produce unique solutions 

 
INF5390-13 Reinforcement Learning 12 



Policy iteration 

 Instead of iterating to find U(s) and derive an 
optimal policy, we can iterate directly in policies 

 We can iterate the policy to get an optimal one: 

 

 Policy evaluation: Given a policy i, calculate Ui, the utility 
of each state if i is followed 

 Policy improvement: Calculate new policy i+1 that selects 
the action that maximizes successor state value (MEU) 

 Repeat until values no longer change 

 

 This POLICY-ITERATION algorithm is guaranteed 
to converge and to produce an optimal policy 
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Reinforcement learning of MDP 

 We could find an optimal policy for an MDP if we 
know the transition model P(s’|s,a) 

 However, an agent in an unknown environment 
does not know the transition model nor in 
advance what rewards it will get in new states 

 We want the agent to learn to behave rationally 
in an unsupervised process 

 

 The purpose of RL is to learn the optimal 
policy based only on received rewards 
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Different RL agent designs 

 Utility-based agents learn a utility function on 
states and uses it to select actions that 
maximize expected utility 

 Requires also a model of where actions lead 

 Q-learning agents learn an action-utility 
function (Q-function), giving expected utility of 
taking a given action in a given state 

 Can select actions without knowing where they lead, at 
the expense not being able to look ahead 

 Reflex agents learn a policy that maps directly 
from states to actions, i.e. * 

 
INF5390-13 Reinforcement Learning 15 



Direct utility estimation 

 In passive learning, the agent’s policy  is 
fixed, it only needs to how good it is 

 Agent runs a number of trials, starting in (1,1) 
and continuing until it reaches a terminal state 

 The utility of a state is the expected total 
remaining reward (reward-to-go) 

 Each trial provides a sample of the reward-to-
go for each visited state 

 The agent keeps a running average for each 
state, which will converge to the true value 

 This is a direct utility estimation method 
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Example: Direct utility estimation 

 Training trials for (4,3) matrix 

 

 

 

 Sample U(s) in first trial 

 (1,1) 0.72 

 (1,2) 0.76 and 0.84 

 (1,3) 0.80 and 0.88 

 Etc. 

 Direct utility estimation 
converges slowly 
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Exploiting state dependencies 

 Direct utility fails to exploit the fact that states 
are dependent as shown by Bellman equations 

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 

 Learning can be speeded up by using these 
dependencies 

 Direct utility estimation can be seen to search 
a too large hypothesis space that contains 
many hypotheses violating Bellman equations 
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Adaptive Dynamic Programming (ADP) 

 An ADP agent uses dependencies between 
states to speed up value estimation 

 It follows a policy  and can use observed 
transitions to incrementally build the transition 
model P(s’|s,(s)) 

 It can then plug the learned transition model 
and observed rewards R(s) into the Bellman 
equations to get U(s) 

 The equations are linear because there is no max 
operator, and therefore easier to solve 

 The result is U(s) for the given policy  
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Temporal Difference (TD) learning 

 TD is another passive utility value learning 
algorithm using Bellman equations 

 Instead of solving the equations, TD uses the 
observed transitions to adjust the utilities of 
the observed states to agree with Bellman 

 TD uses a learning rate parameter α to select 

the rate of change of utility adjustment 

 TD does not need a transition model to perform 
its updates, only the observed transitions 
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Active reinforcement learning 

 While a passive RL agent executes a fixed 
policy , an active RL agent has to decide 
which actions to take 

 An active RL agent is an extension of a passive 
one, e.g. the passive ADP agent, and adds 

 Needs to learn a complete transition model for all 
actions (not just ), using passive ADP learning 

 Utilities need to reflect the optimal policy *,  as 
expressed by the Bellman equations 

 Equations can be solved by the VALUE-ITERATION or 
POLICY-ITERATION methods described before 

 Action to be selected as the optimal/maximizing one 
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Exploration behavior 

 The active RL agent may select maximizing 
actions based on a faulty learned model, and fail 
to incorporate observations that might lead to a 
more correct model 

 To avoid this, the agent design could include 
selecting actions that lead to more correct 
models at the cost of reduced immediate rewards 

 This called exploitation vs. exploration tradeoff 

 The issue of optimal exploration policy is studied 
in a subfield of statistical decision theory dealing 
with so-called bandit problems 
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Q-learning 

 An action-utility function Q assigns an expected 
utility to taking a given action in a given state: 
Q(a,s) is the value of doing action a in state s 

 Q-values are related to utility values: 
𝑈 𝑠 = max

𝑎
𝑄(𝑎, 𝑠) 

 Q-values are sufficient for decision making 
without needing a transition model P(s’|s,a) 

 Can be learned directly from rewards using a TD-
method based on an update equation (s -> s’): 
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Generalization in RL 

 In simple domains, U and Q can be represented 
by tables, indexed by state s 

 However, for large state spaces the tables will be 
too large to be feasible, e.g. chess 1040 states 

 Instead functional approximation can sometimes 
be used, e.g. Ŭ(s) = ∑ parameteri x featurei(s) 

 Instead of e.g. 1040 table entries, U can be 
estimated by e.g. 20 parameterized features  

 Parameters can be found by supervised learning 

 Problem: Such a function  may not exist, and 
learning process may therefore fail to converge 

 

 

INF5390-13 Reinforcement Learning 24 



Policy search 

 A policy  maps states to actions: a = (s), and 
policy search tries to derive  directly 

 Normally interested in parameterized policy in 
order to get a compact representation 

 E.g.,  can be represented by a collection of 

functional approximations 𝑄 (𝑠, 𝑎), one per action 
a, and policy will be to maximize over a 

𝜋 𝑠 =  max
𝑎

𝑄 (𝑠, 𝑎) 

 Policy search has been investigated in continuous/ 
discrete and deterministic/stochastic domains 
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Some examples of reinforcement learning 

 Game playing 

 Famous program by Arthur Samuel (1959) to play 
checkers used linear evaluation function for board 
positions, updated by reinforcement learning 

 Backgammon system (Tesauro, 1992) used TD-
learning and self-play (200.000 games) to reach level 
comparable to top three human world masters  

 Robot control 

 Inverted pendulum problem used as test case for 
several successful reinforcement learning programs, 
e.g. BOXES (Michie, 1968) learned to balance pole 
after 30 trials 
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Summary 

 Reinforcement learning (RL) examines how the 
agent can learn to act in an unknown environment 
just based on percepts and rewards 

 Three RL designs are model-based, using a model 
P and utility function U, model-free, using action-
utility function Q, and reflex, using a policy 

 The utility of a state is the expected sum of 
rewards received up to the terminal state. Three 
methods are direct estimation, Adaptive dynamic 
programming (ADP), and Temporal-Difference (TD) 
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Summary (cont.) 

 Action-value function (Q-functions) can be learned 
by ADP or TD approaches 

 In passive learning the agent just observes the 
environment, while an active learner must select 
actions to trade off immediate reward vs. 
exploration for improved model precision 

 In domains with very large state spaces, utility 
tables U are replaced by approximate functions 

 Policy search work directly on a representation of 
the policy, improving it in an iterative cycle 

 Reinforcement learning is a very active research 
area, especially in robotics 


