INF5390 - Kunstig intelligens
Reinforcement Learning

Roar Fjellheim

INF5390-13 Reinforcement Learning

Outline

= Reinforcement learning

= Sequential decision processes
= Passive learning

= Active learning

= RL applications

= Summary

AIMA Chapter 17: Making Complex Decisions
AIMA Chapter 21: Reinforcement Learning

INF5390-13 Reinforcement Learning

Reinforcement learning

= Reinforcement learning (RL) is unsupervised
learning: The agent receives no examples, and
starts with no model or utility information

= The agent must use trial-and-error, and receives
rewards, or reinforcement, to guide learning

= Examples:

J Learning a game by making moves until lose or win:
Reward only at the end

J Learning to ride a bicycle without any assistance:
Rewards received more frequently
= RL can be seen to encompass all of AI: An agent
must learn to behave in an unknown environment

INF5390-13 Reinforcement Learning 3

Variations of RL

=« Accessible environment (agent can use percepts)
VS. inaccessible (must have some model)

= Agent may have some initial knowledge, or not
have any domain model

= Rewards can be received only in terminal states,
or in any state

= Rewards can be part of the actual utility, or just
hint at the actual utility

= The agent can be a passive (watching) or an
active (exploring) learner

= RL uses results from sequential decision processes

INF5390-13 Reinforcement Learning 4

Sequential decision processes

= In a sequential decision process, the agent’s
utility depends on a sequence of decisions

= Such problems involve utility (of states) and
uncertainty (of action outcomes)

= The agent needs a policy that tells it what to
do in any state it might reach: a = #(s)

= An optimal policy 7z*(s) is a policy that gives
the highest expected utility

INF5390-13 Reinforcement Learning

Example sequential decision process

3 0.8
4x3 environment —

Agent starts 2 = o ‘ N \ o

in (1,1)

Probabilistic
transition model 1 2 3 4

Vv Sequence [Up, Up ,Right, Right, Right] only has a
probability of 0.8> = 0.33 of reaching +1 (4,3)

Terminal rewards are +1 (4,3) and -1 (4,2)
Other state rewards are -0.04

1 START

INF5390-13 Reinforcement Learning 6

Markov Decision Processes (MDP)

= An MDP is a sequential decision process with the
following characteristics

= Fully observable environment (agent knows where
it is at any time)

« State transitions are Markovian, i.e. P(s’|s,a) -
probability of reaching s’ from s by action a
depends only on s and a, not earlier state history

= Agent receives a reward R(s) in each state s

= The total utility U(s) of s is the sum of the rewards
received, from s until a terminal state is reached

INF5390-13 Reinforcement Learning 7

Optimal policy and utility of states

= The utility of a state s depends on rewards
received but also on the policy r followed

(0]

> R(S,)
t=0

= Of all the possible policies the agent could follow,
one gives the highest expected utility

UT(s) =E

n*, = argmax U™ (s)
T

= This is the optimal policy. Under certain
assumptions, it is independent of starting state

INF5390-13 Reinforcement Learning 8

Utility of states (cont.)

« For an MDP with known transition model, reward
function and assuming the optimal policy, we
can calculate the utility U(s) of each state s

« For the 4x3

example, 3 | 0812 | 0.868 | 0.918 +1
the utilities are:

2 0.762 0.660 —1

1 0.705 0.655 0.611 0.388

INF5390-13 Reinforcement Learning 9

Optimal policy

= Knowing U(s) allows the agent to select the

optimal action: n*(s)=ar§\maXZP(s,|s,a)U(s’)
a€EA(S)

Y4

= Optimal policy depends on non-final reward R(s)
e I B | |
—) e))
- >| |4 A=) |-
5 f f] R(s)<—16284 —04278 <R(s) < —0.0850
1 =|=|=|@] |4~ |
1 - | -— | -) - + -

1 2 3 4 4_..4...' +++*

R(s) =-0.04
—0.0221 < R(s) <0 R(s)>0

INF5390-13 Reinforcement Learning 10

Bellman equations

= We need to be able to calculate utilities U(s) in
order to define optimal policy

= Can exploit dependence between states: The
utility of a state s is the reward R(s) plus the
maximum expected utility of the next state

U(s) = R(s) + arg/?()s()g P(s'|s,a)U(s")

= This is the Bellman equation. There are n
equations for n states, containing utilities U(s)
as n unknowns

= Solving the equations yields the utilities U(s)

INF5390-13 Reinforcement Learning 11

Value iteration

= The Bellman equations are nonlinear (due to the
max opr.) and cannot be solved by linear
algebra. Can use an jterative approach instead

y Start with arbitrary initial values

J Calculate right hand side

J Plug the value into left-hand sides U(s)

v Iterate until the values stabilize (within a margin)

= This VALUE-ITERATION algorithm is guaranteed
to converge and to produce unique solutions

INF5390-13 Reinforcement Learning 12

Policy iteration

= Instead of iterating to find U(s) and derive an
optimal policy, we can iterate directly in policies

= We can iterate the policy to get an optimal one:

v Policy evaluation: Given a policy z, calculate U,, the utility
of each state if 7 is followed

v Policy improvement: Calculate new policy 7, that selects
the action that maximizes successor state value (MEU)

v Repeat until values no longer change

= This POLICY-ITERATION algorithm is guaranteed
to converge and to produce an optimal policy

INF5390-13 Reinforcement Learning 13

Reinforcement learning of MDP

= We could find an optimal policy for an MDP if we
know the transition model P(s’|s,a)

= However, an agent in an unknown environment
does not know the transition model nor in
advance what rewards it will get in new states

= We want the agent to learn to behave rationally
in @an unsupervised process

= The purpose of RL is to learn the optimal
policy based only on received rewards

INF5390-13 Reinforcement Learning 14

Different RL agent designs

« Utility-based agents learn a utility function on
states and uses it to select actions that
maximize expected utility
v Requires also a model of where actions lead

= Q-learning agents learn an action-utility
function (Q-function), giving expected utility of
taking a given action in a given state
v Can select actions without knowing where they lead, at
the expense not being able to look ahead
= Reflex agents learn a policy that maps directly
from states to actions, i.e. 7*

INF5390-13 Reinforcement Learning 15

Direct utility estimation

In passive learning, the agent’s policy n is
fixed, it only needs to how good it is

Agent runs a number of trials, starting in (1,1)
and continuing until it reaches a terminal state

The utility of a state is the expected total
remaining reward (reward-to-go)

Each trial provides a sample of the reward-to-
go for each visited state

The agent keeps a running average for each
state, which will converge to the true value

This is a direct utility estimation method

INF5390-13 Reinforcement Learning 16

Example: Direct utility estimation

= Training trials for (4,3) matrix

(1) - 00t > (1,2) - 004 = (L,3) - 0.0t = (1,2) - 006 = (1,3) - 0.00 = (2,3) - 006 > (3,3) - 0.0 = (3,2) - 004 > (4,3) +1
(L1) -00s > (2,1) - 004 > (3.)) - 0.0 > (3,2) - 004 > (4,2) -1

Etc.
« Sample U(s) in first trial s | —«— | — | —
¢ (1,1) 0.72
v (1,2) 0.76 and 0.84 9 1* T (=]
v (1,3) 0.80 and 0.88
J Etc. ; 1 - | - | —=
« Direct utility estimation
converges slowly 1 2 3 4

INF5390-13 Reinforcement Learning 17

Exploiting state dependencies

= Direct utility fails to exploit the fact that states
are dependent as shown by Bellman equations
U(s) = R(s) + max ZP(S’IS, a)U(s")
acA(s)
S/
= Learning can be speeded up by using these
dependencies

= Direct utility estimation can be seen to search
a too large hypothesis space that contains
many hypotheses violating Bellman equations

INF5390-13 Reinforcement Learning 18

Adaptive Dynamic Programming (ADP)

= An ADP agent uses dependencies between
states to speed up value estimation

= It follows a policy 7 and can use observed
transitions to incrementally build the transition
model P(s’|s, 7n(s))

= It can then plug the learned transition model
and observed rewards R(s) into the Bellman
equations to get U(s)
v The equations are linear because there is no max
operator, and therefore easier to solve

= The result is U(s) for the given policy «

INF5390-13 Reinforcement Learning 19

Temporal Difference (TD) learning

= 1D is another passive utility value learning
algorithm using Bellman equations

= Instead of solving the equations, TD uses the
observed transitions to adjust the utilities of
the observed states to agree with Bellman

= D uses a learning rate parameter a to select
the rate of change of utility adjustment

= 1D does not need a transition model to perform
its updates, only the observed transitions

INF5390-13 Reinforcement Learning 20

Active reinforcement learning

= While a passive RL agent executes a fixed
policy z, an active RL agent has to decide
which actions to take

= An active RL agent is an extension of a passive
one, e.qg. the passive ADP agent, and adds

J Needs to learn a complete transition model for all
actions (not just), using passive ADP learning

J Utilities need to reflect the optimal policy z*, as
expressed by the Bellman equations

v Equations can be solved by the VALUE-ITERATION or
POLICY-ITERATION methods described before

v Action to be selected as the optimal/maximizing one

INF5390-13 Reinforcement Learning 21

Exploration behavior

The active RL agent may select maximizing
actions based on a faulty learned model, and fail
to incorporate observations that might lead to a
more correct model

To avoid this, the agent design could include
selecting actions that lead to more correct
models at the cost of reduced immediate rewards

This called exploitation vs. exploration tradeoff

The issue of optimal exploration policy is studied
in @ subfield of statistical decision theory dealing
with so-called bandit problems

INF5390-13 Reinforcement Learning 22

Q-learning

= An action-utility function Q assigns an expected
utility to taking a given action in a given state:
Q(a,s) is the value of doing action a in state s

= Q-values are related to utility values:
U(s) = maxQ(a,s)
a
= Q-values are sufficient for decision making
without needing a transition model P(s’|s,a)

= Can be learned directly from rewards using a TD-
method based on an update equation (s -> s'):

Q(s,a) « Q(s,a) +a(R(s) + m;a}x Q(s',a')—Q(s,a))

INF5390-13 Reinforcement Learning 23

Generalization in RL

In simple domains, U and Q can be represented
by tables, indexed by state s

However, for large state spaces the tables will be
too large to be feasible, e.g. chess 1040 states

Instead functional approximation can sometimes
be used, e.g. U(s) = 2 parameter; x feature;(s)

Instead of e.g. 1040 table entries, U can be
estimated by e.qg. 20 parameterized features

Parameters can be found by supervised learning

Problem: Such a function may not exist, and
learning process may therefore fail to converge

INF5390-13 Reinforcement Learning 24

Policy search

= A policy =~ maps states to actions: a = #(s), and
policy search tries to derive r directly

= Normally interested in parameterized policy in
order to get a compact representation

« E.g., 7 can be represented by a collection of
functional approximations 0 (s,a), one per action
a, and policy will be to maximize over a

n(s) = mgx@ (s,a)

= Policy search has been investigated in continuous/
discrete and deterministic/stochastic domains

INF5390-13 Reinforcement Learning 25

Some examples of reinforcement learning

= Game playing
v Famous program by Arthur Samuel (1959) to play

checkers used linear evaluation function for board
positions, updated by reinforcement learning

Vv Backgammon system (Tesauro, 1992) used TD-
learning and self-play (200.000 games) to reach level
comparable to top three human world masters

« Robot control

v Inverted pendulum problem used as test case for
several successful reinforcement learning programs,
e.g. BOXES (Michie, 1968) learned to balance pole
after 30 trials

INF5390-13 Reinforcement Learning 26

Summary

= Reinforcement learning (RL) examines how the
agent can learn to act in an unknown environment
just based on percepts and rewards

= Three RL designs are model-based, using a model
P and utility function U, model-free, using action-
utility function Q, and reflex, using a policy

« The utility of a state is the expected sum of
rewards received up to the terminal state. Three
methods are direct estimation, Adaptive dynamic
programming (ADP), and Temporal-Difference (TD)

INF5390-13 Reinforcement Learning 27

Summary (cont.)

Action-value function (Q-functions) can be learned
by ADP or TD approaches

In passive learning the agent just observes the
environment, while an active learner must select
actions to trade off immediate reward vs.
exploration for improved model precision

In domains with very large state spaces, utility
tables U are replaced by approximate functions

Policy search work directly on a representation of
the policy, improving it in an iterative cycle

Reinforcement learning is a very active research
area, especially in robotics

INF5390-13 Reinforcement Learning 28

