
INF5390-13 Reinforcement Learning 1

INF5390 - Kunstig intelligens

Reinforcement Learning

Roar Fjellheim

INF5390-13 Reinforcement Learning 2

Outline

 Reinforcement learning

 Sequential decision processes

 Passive learning

 Active learning

 RL applications

 Summary

AIMA Chapter 17: Making Complex Decisions
AIMA Chapter 21: Reinforcement Learning

INF5390-13 Reinforcement Learning 3

Reinforcement learning

 Reinforcement learning (RL) is unsupervised
learning: The agent receives no examples, and
starts with no model or utility information

 The agent must use trial-and-error, and receives
rewards, or reinforcement, to guide learning

 Examples:

 Learning a game by making moves until lose or win:
Reward only at the end

 Learning to ride a bicycle without any assistance:
Rewards received more frequently

 RL can be seen to encompass all of AI: An agent
must learn to behave in an unknown environment

INF5390-13 Reinforcement Learning 4

Variations of RL

 Accessible environment (agent can use percepts)
vs. inaccessible (must have some model)

 Agent may have some initial knowledge, or not
have any domain model

 Rewards can be received only in terminal states,
or in any state

 Rewards can be part of the actual utility, or just
hint at the actual utility

 The agent can be a passive (watching) or an
active (exploring) learner

 RL uses results from sequential decision processes

Sequential decision processes

 In a sequential decision process, the agent’s
utility depends on a sequence of decisions

 Such problems involve utility (of states) and
uncertainty (of action outcomes)

 The agent needs a policy that tells it what to
do in any state it might reach: a = (s)

 An optimal policy *(s) is a policy that gives
the highest expected utility

INF5390-13 Reinforcement Learning 5

Example sequential decision process

 4x3 environment

 Agent starts
in (1,1)

 Probabilistic
transition model

 Sequence [Up, Up ,Right, Right, Right] only has a
probability of 0.85 = 0.33 of reaching +1 (4,3)

 Terminal rewards are +1 (4,3) and -1 (4,2)

 Other state rewards are -0.04

INF5390-13 Reinforcement Learning 6

Markov Decision Processes (MDP)

 An MDP is a sequential decision process with the
following characteristics

 Fully observable environment (agent knows where
it is at any time)

 State transitions are Markovian, i.e. P(s’|s,a) -
probability of reaching s’ from s by action a
depends only on s and a, not earlier state history

 Agent receives a reward R(s) in each state s

 The total utility U(s) of s is the sum of the rewards
received, from s until a terminal state is reached

INF5390-13 Reinforcement Learning 7

Optimal policy and utility of states

 The utility of a state s depends on rewards
received but also on the policy  followed

𝑈(𝑠) = 𝐸 𝑅(𝑆𝑡)

∞

𝑡=0

 Of all the possible policies the agent could follow,
one gives the highest expected utility

∗
𝑠 = argmax


𝑈(𝑠)

 This is the optimal policy. Under certain
assumptions, it is independent of starting state

INF5390-13 Reinforcement Learning 8

Utility of states (cont.)

 For an MDP with known transition model, reward
function and assuming the optimal policy, we
can calculate the utility U(s) of each state s

 For the 4x3
example,
the utilities are:

INF5390-13 Reinforcement Learning 9

Optimal policy

 Knowing U(s) allows the agent to select the
optimal action:

 Optimal policy depends on non-final reward R(s)

INF5390-13 Reinforcement Learning 10

∗(s) = argmax
 a∈A s

 P s′ s,a U s′

𝑠′

R(s) = -0.04

Bellman equations

 We need to be able to calculate utilities U(s) in
order to define optimal policy

 Can exploit dependence between states: The
utility of a state s is the reward R(s) plus the
maximum expected utility of the next state

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 This is the Bellman equation. There are n
equations for n states, containing utilities U(s)
as n unknowns

 Solving the equations yields the utilities U(s)

INF5390-13 Reinforcement Learning 11

Value iteration

 The Bellman equations are nonlinear (due to the
max opr.) and cannot be solved by linear
algebra. Can use an iterative approach instead

 Start with arbitrary initial values

 Calculate right hand side

 Plug the value into left-hand sides U(s)

 Iterate until the values stabilize (within a margin)

 This VALUE-ITERATION algorithm is guaranteed
to converge and to produce unique solutions

INF5390-13 Reinforcement Learning 12

Policy iteration

 Instead of iterating to find U(s) and derive an
optimal policy, we can iterate directly in policies

 We can iterate the policy to get an optimal one:

 Policy evaluation: Given a policy i, calculate Ui, the utility
of each state if i is followed

 Policy improvement: Calculate new policy i+1 that selects
the action that maximizes successor state value (MEU)

 Repeat until values no longer change

 This POLICY-ITERATION algorithm is guaranteed
to converge and to produce an optimal policy

INF5390-13 Reinforcement Learning 13

Reinforcement learning of MDP

 We could find an optimal policy for an MDP if we
know the transition model P(s’|s,a)

 However, an agent in an unknown environment
does not know the transition model nor in
advance what rewards it will get in new states

 We want the agent to learn to behave rationally
in an unsupervised process

 The purpose of RL is to learn the optimal
policy based only on received rewards

INF5390-13 Reinforcement Learning 14

Different RL agent designs

 Utility-based agents learn a utility function on
states and uses it to select actions that
maximize expected utility

 Requires also a model of where actions lead

 Q-learning agents learn an action-utility
function (Q-function), giving expected utility of
taking a given action in a given state

 Can select actions without knowing where they lead, at
the expense not being able to look ahead

 Reflex agents learn a policy that maps directly
from states to actions, i.e. *

INF5390-13 Reinforcement Learning 15

Direct utility estimation

 In passive learning, the agent’s policy  is
fixed, it only needs to how good it is

 Agent runs a number of trials, starting in (1,1)
and continuing until it reaches a terminal state

 The utility of a state is the expected total
remaining reward (reward-to-go)

 Each trial provides a sample of the reward-to-
go for each visited state

 The agent keeps a running average for each
state, which will converge to the true value

 This is a direct utility estimation method

 INF5390-13 Reinforcement Learning 16

Example: Direct utility estimation

 Training trials for (4,3) matrix

 Sample U(s) in first trial

 (1,1) 0.72

 (1,2) 0.76 and 0.84

 (1,3) 0.80 and 0.88

 Etc.

 Direct utility estimation
converges slowly

INF5390-13 Reinforcement Learning 17

 Etc.

104.004.004.004.0

104.004.004.004.004.004.004.004.0

)2,4()2,3()1,3()1,2()1,1(

)3,4()2,3()3,3()3,2()3,1()2,1()3,1()2,1()1,1(









Exploiting state dependencies

 Direct utility fails to exploit the fact that states
are dependent as shown by Bellman equations

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 Learning can be speeded up by using these
dependencies

 Direct utility estimation can be seen to search
a too large hypothesis space that contains
many hypotheses violating Bellman equations

INF5390-13 Reinforcement Learning 18

Adaptive Dynamic Programming (ADP)

 An ADP agent uses dependencies between
states to speed up value estimation

 It follows a policy  and can use observed
transitions to incrementally build the transition
model P(s’|s,(s))

 It can then plug the learned transition model
and observed rewards R(s) into the Bellman
equations to get U(s)

 The equations are linear because there is no max
operator, and therefore easier to solve

 The result is U(s) for the given policy 

INF5390-13 Reinforcement Learning 19

Temporal Difference (TD) learning

 TD is another passive utility value learning
algorithm using Bellman equations

 Instead of solving the equations, TD uses the
observed transitions to adjust the utilities of
the observed states to agree with Bellman

 TD uses a learning rate parameter α to select

the rate of change of utility adjustment

 TD does not need a transition model to perform
its updates, only the observed transitions

INF5390-13 Reinforcement Learning 20

Active reinforcement learning

 While a passive RL agent executes a fixed
policy , an active RL agent has to decide
which actions to take

 An active RL agent is an extension of a passive
one, e.g. the passive ADP agent, and adds

 Needs to learn a complete transition model for all
actions (not just ), using passive ADP learning

 Utilities need to reflect the optimal policy *, as
expressed by the Bellman equations

 Equations can be solved by the VALUE-ITERATION or
POLICY-ITERATION methods described before

 Action to be selected as the optimal/maximizing one

INF5390-13 Reinforcement Learning 21

Exploration behavior

 The active RL agent may select maximizing
actions based on a faulty learned model, and fail
to incorporate observations that might lead to a
more correct model

 To avoid this, the agent design could include
selecting actions that lead to more correct
models at the cost of reduced immediate rewards

 This called exploitation vs. exploration tradeoff

 The issue of optimal exploration policy is studied
in a subfield of statistical decision theory dealing
with so-called bandit problems

INF5390-13 Reinforcement Learning 22

Q-learning

 An action-utility function Q assigns an expected
utility to taking a given action in a given state:
Q(a,s) is the value of doing action a in state s

 Q-values are related to utility values:
𝑈 𝑠 = max

𝑎
𝑄(𝑎, 𝑠)

 Q-values are sufficient for decision making
without needing a transition model P(s’|s,a)

 Can be learned directly from rewards using a TD-
method based on an update equation (s -> s’):

INF5390-13 Reinforcement Learning 23

)),()','(max)((),(),(
'

asQasQsRasQasQ
a

 

Generalization in RL

 In simple domains, U and Q can be represented
by tables, indexed by state s

 However, for large state spaces the tables will be
too large to be feasible, e.g. chess 1040 states

 Instead functional approximation can sometimes
be used, e.g. Ŭ(s) = ∑ parameteri x featurei(s)

 Instead of e.g. 1040 table entries, U can be
estimated by e.g. 20 parameterized features

 Parameters can be found by supervised learning

 Problem: Such a function may not exist, and
learning process may therefore fail to converge

INF5390-13 Reinforcement Learning 24

Policy search

 A policy  maps states to actions: a = (s), and
policy search tries to derive  directly

 Normally interested in parameterized policy in
order to get a compact representation

 E.g.,  can be represented by a collection of

functional approximations 𝑄 (𝑠, 𝑎), one per action
a, and policy will be to maximize over a

𝜋 𝑠 = max
𝑎

𝑄 (𝑠, 𝑎)

 Policy search has been investigated in continuous/
discrete and deterministic/stochastic domains

INF5390-13 Reinforcement Learning 25

INF5390-13 Reinforcement Learning 26

Some examples of reinforcement learning

 Game playing

 Famous program by Arthur Samuel (1959) to play
checkers used linear evaluation function for board
positions, updated by reinforcement learning

 Backgammon system (Tesauro, 1992) used TD-
learning and self-play (200.000 games) to reach level
comparable to top three human world masters

 Robot control

 Inverted pendulum problem used as test case for
several successful reinforcement learning programs,
e.g. BOXES (Michie, 1968) learned to balance pole
after 30 trials

INF5390-13 Reinforcement Learning 27

Summary

 Reinforcement learning (RL) examines how the
agent can learn to act in an unknown environment
just based on percepts and rewards

 Three RL designs are model-based, using a model
P and utility function U, model-free, using action-
utility function Q, and reflex, using a policy

 The utility of a state is the expected sum of
rewards received up to the terminal state. Three
methods are direct estimation, Adaptive dynamic
programming (ADP), and Temporal-Difference (TD)

INF5390-13 Reinforcement Learning 28

Summary (cont.)

 Action-value function (Q-functions) can be learned
by ADP or TD approaches

 In passive learning the agent just observes the
environment, while an active learner must select
actions to trade off immediate reward vs.
exploration for improved model precision

 In domains with very large state spaces, utility
tables U are replaced by approximate functions

 Policy search work directly on a representation of
the policy, improving it in an iterative cycle

 Reinforcement learning is a very active research
area, especially in robotics

