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Reinforcement learning 

 Reinforcement learning (RL) is unsupervised 
learning: The agent receives no examples, and 
starts with no model or utility information 

 The agent must use trial-and-error, and receives 
rewards, or reinforcement, to guide learning 

 Examples: 

 Learning a game by making moves until lose or win: 
Reward only at the end 

 Learning to ride a bicycle without any assistance: 
Rewards received more frequently 

 RL can be seen to encompass all of AI: An agent 
must learn to behave in an unknown environment 
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Variations of RL 

 Accessible environment (agent can use percepts) 
vs. inaccessible (must have some model)  

 Agent may have some initial knowledge, or not 
have any domain model 

 Rewards can be received only in terminal states, 
or in any state 

 Rewards can be part of the actual utility, or just 
hint at the actual utility 

 The agent can be a passive (watching) or an 
active (exploring) learner 

 RL uses results from sequential decision processes 



Sequential decision processes 

 In a sequential decision process, the agent’s 
utility depends on a sequence of decisions 

 Such problems involve utility (of states) and 
uncertainty (of action outcomes) 

 The agent needs a policy that tells it what to 
do in any state it might reach: a = (s) 

 An optimal policy *(s) is a policy that gives 
the highest expected utility 
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Example sequential decision process 

 4x3 environment 

 Agent starts  
in (1,1) 

 Probabilistic  
transition model 

 Sequence [Up, Up ,Right, Right, Right] only has a 
probability of 0.85 = 0.33 of reaching +1 (4,3) 

 Terminal rewards are +1 (4,3) and -1 (4,2) 

 Other state rewards are -0.04  
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Markov Decision Processes (MDP) 

 An MDP is a sequential decision process with the 
following characteristics 

 Fully observable environment (agent knows where 
it is at any time) 

 State transitions are Markovian, i.e. P(s’|s,a) -  
probability of reaching s’ from s by action a 
depends only on s and a, not earlier state history 

 Agent receives a reward R(s) in each state s 

 The total utility U(s) of s is the sum of the rewards 
received, from s until a terminal state is reached 
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Optimal policy and utility of states 

 The utility of a state s depends on rewards 
received but also on the policy  followed  

𝑈(𝑠) = 𝐸  𝑅(𝑆𝑡)

∞

𝑡=0

 

 Of all the possible policies the agent could follow, 
one gives the highest expected utility 

∗
𝑠 = argmax


𝑈(𝑠) 

 This is the optimal policy. Under certain 
assumptions, it is independent of starting state 

INF5390-13 Reinforcement Learning 8 



Utility of states (cont.) 

 For an MDP with known transition model, reward 
function and assuming the optimal policy, we 
can calculate the utility U(s) of each state s  

 For the 4x3  
example,  
the utilities are: 
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Optimal policy 

 Knowing U(s) allows the agent to select the 
optimal action: 

 

 Optimal policy depends on non-final reward R(s)  
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∗(s) = argmax
                a∈A s

 P s′ s,a U s′

𝑠′

 

R(s) = -0.04 



Bellman equations 

 We need to be able to calculate utilities U(s) in 
order to define optimal policy 

 Can exploit dependence between states: The 
utility of a state s is the reward R(s) plus the 
maximum expected utility of the next state 

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 

 This is the Bellman equation. There are n 
equations for n states, containing utilities U(s) 
as n unknowns 

 Solving the equations yields the utilities U(s)  

 
INF5390-13 Reinforcement Learning 11 



Value iteration 

 The Bellman equations are nonlinear (due to the 
max opr.) and cannot be solved by linear 
algebra. Can use an iterative approach instead 
 

 Start with arbitrary initial values 

 Calculate right hand side 

 Plug the value into left-hand sides U(s) 

 Iterate until the values stabilize (within a margin) 

 

 This VALUE-ITERATION algorithm is guaranteed 
to converge and to produce unique solutions 
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Policy iteration 

 Instead of iterating to find U(s) and derive an 
optimal policy, we can iterate directly in policies 

 We can iterate the policy to get an optimal one: 

 

 Policy evaluation: Given a policy i, calculate Ui, the utility 
of each state if i is followed 

 Policy improvement: Calculate new policy i+1 that selects 
the action that maximizes successor state value (MEU) 

 Repeat until values no longer change 

 

 This POLICY-ITERATION algorithm is guaranteed 
to converge and to produce an optimal policy 
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Reinforcement learning of MDP 

 We could find an optimal policy for an MDP if we 
know the transition model P(s’|s,a) 

 However, an agent in an unknown environment 
does not know the transition model nor in 
advance what rewards it will get in new states 

 We want the agent to learn to behave rationally 
in an unsupervised process 

 

 The purpose of RL is to learn the optimal 
policy based only on received rewards 
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Different RL agent designs 

 Utility-based agents learn a utility function on 
states and uses it to select actions that 
maximize expected utility 

 Requires also a model of where actions lead 

 Q-learning agents learn an action-utility 
function (Q-function), giving expected utility of 
taking a given action in a given state 

 Can select actions without knowing where they lead, at 
the expense not being able to look ahead 

 Reflex agents learn a policy that maps directly 
from states to actions, i.e. * 
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Direct utility estimation 

 In passive learning, the agent’s policy  is 
fixed, it only needs to how good it is 

 Agent runs a number of trials, starting in (1,1) 
and continuing until it reaches a terminal state 

 The utility of a state is the expected total 
remaining reward (reward-to-go) 

 Each trial provides a sample of the reward-to-
go for each visited state 

 The agent keeps a running average for each 
state, which will converge to the true value 

 This is a direct utility estimation method 
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Example: Direct utility estimation 

 Training trials for (4,3) matrix 

 

 

 

 Sample U(s) in first trial 

 (1,1) 0.72 

 (1,2) 0.76 and 0.84 

 (1,3) 0.80 and 0.88 

 Etc. 

 Direct utility estimation 
converges slowly 
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Exploiting state dependencies 

 Direct utility fails to exploit the fact that states 
are dependent as shown by Bellman equations 

𝑈 𝑠 = 𝑅 𝑠 + max
𝑎∈𝐴(𝑠)

 𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)

𝑠′

 

 Learning can be speeded up by using these 
dependencies 

 Direct utility estimation can be seen to search 
a too large hypothesis space that contains 
many hypotheses violating Bellman equations 
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Adaptive Dynamic Programming (ADP) 

 An ADP agent uses dependencies between 
states to speed up value estimation 

 It follows a policy  and can use observed 
transitions to incrementally build the transition 
model P(s’|s,(s)) 

 It can then plug the learned transition model 
and observed rewards R(s) into the Bellman 
equations to get U(s) 

 The equations are linear because there is no max 
operator, and therefore easier to solve 

 The result is U(s) for the given policy  
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Temporal Difference (TD) learning 

 TD is another passive utility value learning 
algorithm using Bellman equations 

 Instead of solving the equations, TD uses the 
observed transitions to adjust the utilities of 
the observed states to agree with Bellman 

 TD uses a learning rate parameter α to select 

the rate of change of utility adjustment 

 TD does not need a transition model to perform 
its updates, only the observed transitions 
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Active reinforcement learning 

 While a passive RL agent executes a fixed 
policy , an active RL agent has to decide 
which actions to take 

 An active RL agent is an extension of a passive 
one, e.g. the passive ADP agent, and adds 

 Needs to learn a complete transition model for all 
actions (not just ), using passive ADP learning 

 Utilities need to reflect the optimal policy *,  as 
expressed by the Bellman equations 

 Equations can be solved by the VALUE-ITERATION or 
POLICY-ITERATION methods described before 

 Action to be selected as the optimal/maximizing one 
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Exploration behavior 

 The active RL agent may select maximizing 
actions based on a faulty learned model, and fail 
to incorporate observations that might lead to a 
more correct model 

 To avoid this, the agent design could include 
selecting actions that lead to more correct 
models at the cost of reduced immediate rewards 

 This called exploitation vs. exploration tradeoff 

 The issue of optimal exploration policy is studied 
in a subfield of statistical decision theory dealing 
with so-called bandit problems 
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Q-learning 

 An action-utility function Q assigns an expected 
utility to taking a given action in a given state: 
Q(a,s) is the value of doing action a in state s 

 Q-values are related to utility values: 
𝑈 𝑠 = max

𝑎
𝑄(𝑎, 𝑠) 

 Q-values are sufficient for decision making 
without needing a transition model P(s’|s,a) 

 Can be learned directly from rewards using a TD-
method based on an update equation (s -> s’): 
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Generalization in RL 

 In simple domains, U and Q can be represented 
by tables, indexed by state s 

 However, for large state spaces the tables will be 
too large to be feasible, e.g. chess 1040 states 

 Instead functional approximation can sometimes 
be used, e.g. Ŭ(s) = ∑ parameteri x featurei(s) 

 Instead of e.g. 1040 table entries, U can be 
estimated by e.g. 20 parameterized features  

 Parameters can be found by supervised learning 

 Problem: Such a function  may not exist, and 
learning process may therefore fail to converge 
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Policy search 

 A policy  maps states to actions: a = (s), and 
policy search tries to derive  directly 

 Normally interested in parameterized policy in 
order to get a compact representation 

 E.g.,  can be represented by a collection of 

functional approximations 𝑄 (𝑠, 𝑎), one per action 
a, and policy will be to maximize over a 

𝜋 𝑠 =  max
𝑎

𝑄 (𝑠, 𝑎) 

 Policy search has been investigated in continuous/ 
discrete and deterministic/stochastic domains 

INF5390-13 Reinforcement Learning 25 



INF5390-13 Reinforcement Learning 26 

Some examples of reinforcement learning 

 Game playing 

 Famous program by Arthur Samuel (1959) to play 
checkers used linear evaluation function for board 
positions, updated by reinforcement learning 

 Backgammon system (Tesauro, 1992) used TD-
learning and self-play (200.000 games) to reach level 
comparable to top three human world masters  

 Robot control 

 Inverted pendulum problem used as test case for 
several successful reinforcement learning programs, 
e.g. BOXES (Michie, 1968) learned to balance pole 
after 30 trials 
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Summary 

 Reinforcement learning (RL) examines how the 
agent can learn to act in an unknown environment 
just based on percepts and rewards 

 Three RL designs are model-based, using a model 
P and utility function U, model-free, using action-
utility function Q, and reflex, using a policy 

 The utility of a state is the expected sum of 
rewards received up to the terminal state. Three 
methods are direct estimation, Adaptive dynamic 
programming (ADP), and Temporal-Difference (TD) 
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Summary (cont.) 

 Action-value function (Q-functions) can be learned 
by ADP or TD approaches 

 In passive learning the agent just observes the 
environment, while an active learner must select 
actions to trade off immediate reward vs. 
exploration for improved model precision 

 In domains with very large state spaces, utility 
tables U are replaced by approximate functions 

 Policy search work directly on a representation of 
the policy, improving it in an iterative cycle 

 Reinforcement learning is a very active research 
area, especially in robotics 


