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Overview

A definition

Learning is the search of a parameter space in order to optimize
performance.
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Overview

Terms (1/3)

w T he vector of parameters that defines the multi-dimensional
search space of the learning algorithm. In neural networks these
parameters are the synaptic weights and they are sometimes
also organized in a matrix W, instead of in a vector.

£ The (sensory) input to the system. Also organized as a matrix
sometimes, e.g. when the input is an image.

y(Z, W) The (behavioural) output of the system that changes with
learning.

Philipp Hafliger hafliger@ifi.uio.no



S #A8°% UNIVERSITY
VP 5 OF OSLO

Overview

Terms (2/3)

—

d(Z) The 'desired’ output of the system, a teacher or expert opin-
ion. It is normally not defined for the whole input space spanned
by Z. (Thus, the system needs to generalize what we learn from
a teacher and apply it to unknown situations &)

P(y) A performance evaluation function to judge the quality of the
learning state of the system. In general this function can be
stochastic. It can also have multiple extrema.
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Overview

Terms (3/3)

E(g’,cf) An error function, a special case of a performance evalua-
tion function, that evaluates system performance as compared
to the expert/teacher.

© T he learning rate. A parameter that is used by many learning
algorithms influencing the learning speed and quality.

Philipp Hafliger hafliger@ifi.uio.no



S #A8°% UNIVERSITY
VP 5 OF OSLO

Overview

Characterisation of Learning Rules

e Supervised
— supervised by expert (learning a target function)

— reinforcement, supervised by critic (optimizing performance)

e unsupervised (optimizing statistics, data reduction/compression)

— Correlation, Association, Hebbian Learning, Spike based learn-
ing

— Competitive Learning, LVQ, Competitive Hebbian Learning

— Optimizing data reduction, PCA, ICA
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Overview

Characterisation of Learning Supervised by
an Expert (1/2)
e continuous target functions

— gradient descent, Error Backpropagation (for space contin-
uous target functions, interpolation)

— temporal difference learning (TDA, for time continuous tar-
get functions)

— statistical methods, interpolation

— weight perturbation (can also be used in reinforcement)
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Overview

Characterisation of Learning Supervised by
an Expert (2/2)
e supervised classification
— supervised LVQ

— support vector machines
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Overview

Characterisation of Learning Supervised by
a Critic, reinforcement Learning

e associative reward-penalty
e evolutionary algorithms

e deduction, induction (predicate logic learning)
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Gradient Descent

E=|d- 4
di _ . dE
a — Hag
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Hebbian Learning

Y

L/ p— 2
T = XY

Example Associative Memory:

dw: 1
i = 7 (~wij+z5yi)
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Hebbian Learning and Associative Memory
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Learning Vector Quantisation (1/2)

y = ||w—Z|| 1
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Example
Algorithims

Learning Vector Quantisation (2/2)
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Competitive Hebbian Learning
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dw __

7 = y(po — pryw)
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Algorithms

MES

Mikro Elektroniske Systemer

Comparison Associative / Comp. Hebbian
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Spike Based Learning (1/2)
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Spike Based Learning (2/2)
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