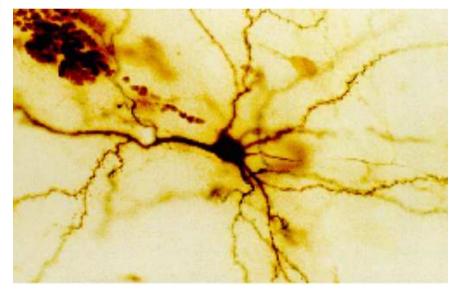

Neuromorphic Electronics Introduction


hafliger@ifi.uio.no

Brain Research

Brain Parts

Philipp Häfliger

hafliger@ifi.uio.no

The biggest mystery

The human brain is maybe the biggest mystery left to explore. 10^{11} neurons with about 10^4 connections to other neurons each: The combiatorial possibilities for the network connections alone are stagering. An infinite number of electrical and chemical processes going on. How to know, which ones are important for the functioning?

How does the damned thing work?

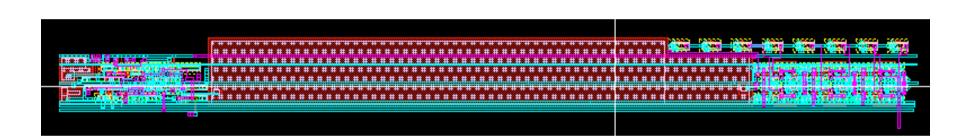
Methods

Two approaches to understand the nervous system

- top down, describe the black-box (psychology, AI)
- bottom up, take it appart and start with its components (Neuroanatomy, Neurophysiology)

Conclusion

We are no way near to an understanding of the system good enough to copy it. AI does not exist.


Some subsystems of the nervous system, however, are thoroughly explored and described and in part understood.

Philipp Häfliger

Neuromorphic Engineering

Neuromorphic Engineering

A Definition of 'Understanding'

One understands something if one is able to build that thing.

Neuromorphic engineering uses the organizing principles of the nervous system to construct electronic devices. The profit is twofold:

- A better understanding of the operation of parts of the nervous system
- Efficient computational devices that are completely differently organized than computers

Neuromorphic Engineering

Computer vs. Brain

Computer	Brain

Computer vs. Brain

Computer	Brain
Serial	Parallel
One powerful central CPU,	10 ¹¹ simple distributed compu-
memory	tational and memory units
Busses shared by several compo-	Dedicated local point to point
nents	connections
Not very power efficient (needs	Very power efficient (hair to
cooling)	keep it warm ;-))
Digital, time-discrete	Analog, continuous time
Programmed	Learning
Sensitive to errors	Robust to errors (using redun-
	dancy)

Teaching 15 lectures, lecture script (chapters handed out in lecture), selected papers

Course

Exercises 4 projects (coding, I&F neuron, photocell, cochlea), workgroups with up to 2-3 students

Tools Matlab, solder iron, lab equipment

Skills electronics, maths (Dynamic Systems), programming, biology, physics, psychology

Exam Oral, early in December (to be discussed)

Philipp Häfliger