INF5490 RF MEMS

F11: RF MEMS kapasitanser

V2007, Oddvar Søråsen Institutt for informatikk, UiO

Dagens forelesning

- Passive komponenter i RF kretser
 - Kapasitanser, C
 - Induktanser, L
- Tunbare RF MEMS kapasitanser
 - Vertikalt tunbare kapasitanser
 - Lateralt tunbare kapasitanser
 - Termisk tunbare MEMS kapasitans
 - Piezoelektrisk aktuator tunbare kapasitanser
 - Tuning ved endring av dielektrisk materiale
- RF MEMS kapasitans banker

Passive komponenter i RF-kretser

- \rightarrow MEMS kondensatorer og spoler
- Aktuelle som erstatninger for tradisjonelle "offchip" passive komponenter
- Tunbarhet og programmerbarhet er ønskelig
 - MEMS kapasitanser
 - Enkle, tunbare kapasitanser
 - = varactor ("variable reactor")
 - Programmerbare kapasitans-banker med faste C
 - MEMS induktanser (F12)
 - Enkle, faste induktanser
 - Programmerbare induktans-banker med faste L

Bruk av tunbare kapasitanser

- VCO = "Voltage controlled oscillator"
 - Verdien av C bestemmer frekvensen
 - Tunes med spenning
 - VCO har høye krav til
 - Stabilitet
 - Lav fase-støy
 - Bredt frekvensområde
- Tunbare filtre
- Tunbare nettverk
- Impedans-tilpasning
- Faseskiftere

MEMS konkurrerer med dagens halvleder-løsninger

- Mange diskrete Si og GaAs varaktorer eksisterer
 - $\rightarrow 30 \text{ GHz}$
 - Eks. Q = 30-60 for 0.5-5 GHz (SiGe)
 - Ennå en tid før MEMS varaktorer kan erstatte GaAs varaktorer, spesielt i området under 5 GHz
- MEMS varaktorer har ikke hatt en like stor utvikling som MEMS svitsjer
 - Likevel: den RF MEMS komponent som er nærmest anvendelser i markedet
 - Forholdsvis moden teknologi
 - Det finnes allerede mange demonstrasjoner av MEMS erstatnings-komponenter, DC \rightarrow 100 GHz

MEMS varaktorer

- + Har potensial for høye Q-verdier
 - Høy Q-verdi (>100) over et bredt frekvensbånd
 - Q = 100 400 for mm-frekvenser
- + Enkelhet, sammenlignet med konkurrerende teknologier
- + Kan tåle store RF spennings-sving
- + Kan produseres billig på glass, keramikk, høyresistivitets Si-substrat
 - For eksempel for "lav-kost" 3 60 GHz tunbare nettverk og filtre
- + Mer pålitelig
- + Enkel og billig pakking

Hvorfor etterstrebes høy Q-verdi?

- Q-faktor karakteriserer tap pga. effekt-dissipering i elementet
- Q bør være størst mulig for å redusere Insertion loss
 - Quality factor fundamentals (definition)

Characterize power loss due to dissipation mechanisms in reactive elements.

Korrelasjon mellom Q-faktor og oscillator-stabilitet

• Q-faktoren er helt sentral når det gjelder RF krets-ytelse!

Ekvivalentkrets for kapasitans

- Ved høye frekvenser → induktans
 - har en karakteristisk selvresonansfrekvens
 - Induktansen bør holdes så lav som mulig slik at selvresonans ligger mye høyere enn bruksområdet

Figure 11.1. (a) Capacitor models. (b) Calculated reactance and Q of a 1-pF capacitor with $L_s = 0.4$ nH and $R_s = 0.83 \Omega$ ($f_s = 8$ GHz).

Impedans og Q-faktor til en diskret kondensator

Q-faktor angis for $\omega L << 1/\omega C$

$$Z = R_s + j \left(\omega L_s - \frac{1}{\omega C} \right) \qquad \text{for a series model}$$
$$\simeq \frac{1}{\omega^2 C^2 R_p} + j \left(\omega L_s - \frac{1}{\omega C} \right) \qquad \text{for a parallel model} \qquad (11.2)$$

The capacitor quality factor, Q, is derived to be

$$Q = \frac{|\text{Im}(Z)|}{\text{Re}(Z)} = \frac{1}{\omega CR_s} \quad \text{for a series model}$$
$$= \omega CR_p \quad \text{for a parallel model} \quad (11.3)$$

Rebeiz

$$\frac{SERIE}{C \ L \ R}$$

$$Z = R + j(wL - \frac{1}{wc})$$

$$Selvnesonans :: im(z) = 0 \qquad w_0 = \frac{1}{VLc^{-1}}$$

$$Under \ selvnesonans \qquad w_{-}^2 << \frac{1}{Lc}$$

$$wL << \frac{1}{Lc}$$

$$wL << \frac{1}{wc}$$

$$Q = \frac{l im(z)l}{Re(z)} \approx \frac{-1}{wc} = \frac{1}{wcR}$$

$$\frac{PARALLELL}{L}$$

$$Z = SL + (C//R) = SL + \frac{\frac{1}{s_{c}} \cdot R}{\frac{1}{s_{c}} + R} = SL + \frac{1}{s_{c}} + \frac{1}{R}$$

$$Z = SL + \frac{1}{s_{c}} + \frac{1}{t}$$

$$t = \frac{1}{s_{c} + \frac{1}{R}} - \frac{1}{s_{c}} = \frac{-\frac{1}{R}}{\frac{1}{s^{2}c^{2} + sc} \frac{1}{R}} = \frac{-1}{s^{2}c^{2}R + sc}$$

$$t = \frac{1}{\frac{1}{\omega^{2}c^{2}R} - j\omega c} \approx \frac{1}{\omega^{2}c^{2}R}$$

$$t = \frac{1}{\frac{1}{\omega^{2}c^{2}R} - j\omega c} \approx \frac{1}{\omega^{2}c^{2}R}$$

$$t = \frac{1}{\frac{1}{\omega^{2}c^{2}R} + t} = j(\omega L - \frac{1}{\omega c}) + \frac{1}{\omega^{2}c^{2}R}$$

$$Q = \frac{1}{\frac{1}{R}(2)} = \frac{\frac{1}{\omega c}}{\frac{1}{\omega^{2}c^{2}R}} = \frac{\omega^{2}c^{2}R}{\omega c} \approx \omega CR$$

Utfordringer for RF MEMS kapasitanser

- ÷ Tunbarhetsområdet for MEMS varaktorer er lite
 - 1.2 2.5
 - Tilsvarende for halvleder-varaktorer 4 6
 - − → Oppnå tilstrekkelig Tuning Range (TR)
 - Definisjon TR: $C_{\rm max}/C_{\rm min}$
 - Bør være > 2
- + MEMS er følsom for ulike støyeffekter som gjør seg gjeldende ved lav fjærkonstant, k
 - Lav k er ønskelig for 3 5 V anvendelser
 - Er problematisk pga.
 - Aksellerasjon, RF power selv-aktivering, støy-effekter

Parallell plate kondensator

Grunnleggende ligninger

$$-Q = V C, I = C dV/dt$$

$$-C = \varepsilon A / g$$

- NB! C kan generelt tunes ved hjelp av 3 parametre
 - <mark>g</mark>, gap
 - A, areal
 - ε, dielektrisitetskonstant

Tunbare RF MEMS kapasitanser

- Elektrostatisk aktivering er en dominerende mekanisme for tuning
 - Lavt effektforbruk, enkelhet
- Vertikal elektrostatisk forskyvning
 - Tuning av gapet (ikke-lineær endring) i parallell plate kondensator
 - 2-plate kapasitans
 - 3-plate kapasitans
 - Dobbelt luft-gap kapasitans
 - Andre eksempler
- Horisontal (lateral) forskyvning
 - Tuning av arealet (lineær endring)
- Termisk tunbare MEMS kapasitans
- Piezoelektrisk aktuator tunbare kapasitanser
- Tuning ved endring av **dielektrisk** materiale

To-plate tunbar MEMS kapasitans

- Young & Boser, Berkeley
- Gap-tuning
- Den ene platen kan beveges ved elektrostatisk aktivering
- Opererer under likevekt mellom elastiske og elektriske krefter

Beregning av TR for 2-plate kapasitans

$$g \left\{ \frac{1}{2} - \frac{1}{2} \frac{3}{3} \frac{9}{3} \right\}$$

$$C_{min} = \epsilon \frac{A}{g} \qquad C_{max} = \epsilon \frac{A}{\frac{2}{3}} \frac{1.5 C_{min}}{\frac{2}{3}} \frac{1.5 C_$$

Teoretisk TR = 150%. Begrenset av pull-in effekten

Young & Bover, Berkeley

- Etsing av hull i kapasitansplaten
 - For mindre demping (squeezed-film damping)
 - Positivt for "release"-trinnet i en prosess

 Theoretical tuning range: 50% (limited by pull-in effect)
 Practical tuning range (demonstrated): TR=16%, C_{max}=2.46pF, C_{min}=2.11pF, V_A=5V
 RF performance: Q=62 @ 1GHz

Figure 4.33 Top view of a micromachined variable capacitor. Reproduced from D.J. Young and B.E. Bover, 1996, 'A micromachined variable capacitor for monolithic low-noise VCOs', in *Proceedings of the International Conference on Solid-state sensors and Actuators*, IEEE, Washington, DC: 86–89, by permission of IEEE, © 1996 IEEE

Implementasjon

- Typiske trekk fra implementasjoner ved Berkeley
- Overflate
 mikromaskinering
 - 2 metall-lag + Al jordplan

3-plate tunbar MEMS kapasitans

- TR kan utvides ved å introdusere en 3dje plate
 - A. Dec & K. Suyama: "Micromachined Electro-Mechanically Tunable Capacitors and Their Applications to RF IC's" 1998.
 Columbia University

Beregning av TR for 3-plate

TR = 200%, dvs.: kan tunes 100%

Figure 4.35 Top and cross-sectional views of three-plate varactor. Reproduced from A. Dec and K. Suyama, 1998b, 'Micromachined electromechanically tunable capacitors and their applications to RF IC's', *IEEE Transactions on Microwave Theory and Techniques* **46**(12): 2587–2596, by permission of IEEE, © 1998 IEEE

Demonstrerte verdier, Dec & Suyama: Theoretical tuning range: 100%
Practical tuning range: TR=87%, C_{min}=3.4pF, C_{max}=6.4pF, V~4V
RF performance: Q = 15.4 @ 1GHz, 7.1 @ 2GHz

Figure 11.6. Top (a) and cross-sectional (b) view of the three-plate polysilicon MEMS varactor, and measured capacitance versus tuning voltage (c) [2] (Copyright IEEE).

Dec & Suyama, forts.

Prosess

- Standard 3-lags poly overflate mikromaskinering (MUMP's) med HF etsing og "supercritical drying"
- Poly brukes ofte som parallell plate selv om den har mindre konduktivitet enn Al pga. overlegne mekaniske egenskaper

TABLE I SUMMARY OF SELECTED MUMP'S PROCESS PARAMETERS

Layer	Thickness	Sheet Resistance
Poly0	0.5 μm	$30 \ \Omega/sq$
Poly1	2.0 µm	10 Ω/sq
Poly2	1.5 µm	20 Ω/sq
Gold	0.5 μm	0.06 Ω/sq

Dec & Suyama, eks2

Figure 11.5. Top (a) and cross-sectional (b) views of the two-plate polysilicon MEMS varactor, and measured capacitance versus tuning voltage (c) [3] (Copyright IEEE).

Rebeiz

Dobbelt luft-gap kapasitans

- J. Zou et al, 2000, Univ of Illinois
- Hensikt med dobbelt luft-gap
 - Øke TR
 - Eliminere virkningen av pull-ineffekten
 - Kan trekke ned til 1/3 d2 før pull-in inntrer
 - TR kan økes betraktelig hvis
 1/3 *d2 > d1
 - Dvs. midtelektroden kan trekkes helt ned uten å erfare pull-in!

Univ of Illinois, forts.

Figure 11.12. Cross-sectional (a) and top (b) view of the University of Illinois widetuning-range varactor [11] (Copyright Wiley).

Univ of Illinois, forts.

Forenklet fabrikasjonsprosess

- Kobber som offer-lag
- Metaller: gull & permaloy (Ni-Fe)
- Luft-gap: d1 = 2 μ m, d3 = 3 μ m

Figure 11.13. Fabrication process of the University of Illinois wide-tuning-range varactor [11] (Copyright Wiley).

Eks fra Univ of Michigan

Figure 11.14. Top view of the University of Michigan wide-tuning-range varactor [12] (Copyright IEEE).

Rebeiz

Eks fra Univ of Michigan, forts.

- Realisert på kvarts-substrat
- SiO2 offerlag etses delvis \rightarrow 2-trinns Au membran
- Q = 120 @ 34 GHz

Univ of Michigan, diskret 2-verdi

Figure 11.29. Cross section (a), top view (b), and measured capacitance (c) of the Michigan discrete two-value MEMS varactor [12] (Copyright IEEE).

Multi-state MEMS kapasitanser med multi luft-gap

- Eks fra Nokia → Nieminen
 Ulike segmenter med multi-gap
- Kan tunes i trinn
 - 2 eller 3 trinns
- Kretsen oppviser hysterese-egenskaper

Prinsipp-skisse:

"Glidelås"-kapasitans

- Eks. på glidelås cantilever kapasitans
- Design og fabrikasjon ved Columbia University
 - Lang, tynn bjelke legger seg ned fra enden
 - Små kapasitans-bidrag legges til i parallell

Performance:

- TR: 46% with voltage~35V
- Q=6.5 @1.5GHz
- a CMOS VCO with this capacitor exhibited TR of 4.8% with center frequency of 1.5GHz and phase noise of -131dBc/Hz @ 600kHZ offset

Eks fra MIT

Mykest nær endepunktet

Rebeiz

Univ of Colorado, Boulder

- Digitalt kontrollerte enkelt-kapasitanser
- Har individuelle plater som kan trekkes ned etterhvert

Figure 4.38 Schematic diagram of the capacitor plate arrangement. Reproduced from N, Hoivik, M.A. Michalicek, Y.C. Lee, K.C. Gupta and V.M. Bright, 2001, 'Digitally controllable variable high-*Q* MEMS capacitor for RF applications', in *Proceedings of IEEE MTT-S Symposium, May 2001, Volume 3*, IEEE, Washington, DC: 2115–2118, by permission of IEEE, © 2001 IEEE

Varadan

Univ of Colorado, Boulder

Hver "plate" koblet med forskjellig bredde på bjelken, dvs.ulik fjærkonstant for hver del

Standard MUMP's prosess (poly-SI og gull), alumina-substrat

Elektrostatisk aktivering V= 30 V TR = 4 : 1 Q = 140 @ 750 MHz

Figure 11.30. Cross section (a) and top view (b) of the Colorado RF MEMS varactor. The variable capacitors are the dark rectangles on both sides of the center conductor [23] (Copyright IEEE).

Elevert plattform kapasitans

- L. Fan et al, 1998
 - En av elektrodene kan heves opp til flere hundre mikrometer over substratet
 - 250 µm elevasjon, TR 2400%
- SCRATCH DRIVE ACTUATOR
- + Vanskelig å oppnå fin-tuning
- Benytter aktuator som skyver strukturen sammen
 - "Scratch drive actuator"
 - Må realisere hengsler

Selvaktivering

- Må konstruere slik at parallell plate kapasitansene kan behandle RF power
 - AC spenning påtrykkes RF MEMS kapasitansen
 - RF frekvensen modulerer ikke C-verdien
 - MEN, RMS-verdien av RF-signalet vil influere C og kan indusere pull-in ved selvaktivering
- Kapasitanser for gap-tuning har begrenset RF power handlings-mulighet pga. lite elektrodegap
 - Reduksjon av avstand \rightarrow RF breakdown

Lateralt tunbare kapasitanser

Horisontal bevegelse

- -C kan tunes ved å variere arealet, C = ϵ A / g
- + Ingen teoretisk grense for TR
- + Unngår pull-in-effekten
- ÷ Fotolitografi bestemmer presisjon av avstander
- + Mer kompliserte opphengs-strukturer?
 - Må sikre at den bevegelige strukturen henger oppe
- Kamstruktur er vanlig

Comb-like (inter-digital) tunable MEMS capacitors

Deflection: $x = V^2 (dC/dx) / 2k$

FSRM

Design and fabrication

(Rockwell Science Center):

- Comb-like structure using single mask process
- Deep anisotropic silicon etching technique in ICP (inductively coupled plasma) reactor
- Very flexible design: large range of C and TR

Figures of merit:

- TR= 200% C_{max}=3.2pF, C_{min}=6.44pF, V=5V
- Recent results show: Q > 40-160 @ 400-1600MHz

J.J. Yao, S. Park and J. DeNatale, Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 1998, pp. 124-127.

Idea: area-tuning capacitor

Enkel kam-struktur

- Eks fra Rockwell Science Center →
 - Inter-digital tunbar MEMS kapasitans
 - Et sett kammer er stasjonære, det andre settet kan beveges
 - Gapet forblir uendret
 - Lengden av kammen begrenser tuning range
 - Tuning ved elektrostatisk mikromotor eller ulike akviverings-spenninger

Rockwell Science Center, forts.

Eks fra tuning

Figure 4.46 Series of images showing a MEMS tunable capacitor with a tuning voltage of 0 to 5-V. Reproduced from J.J. Yao, S. Park and J. DeNatale, 1998, 'High tuning ratio MEMS based tunable capacitors for RF communications applications' in *Proceedings of solid-state sensors and Actuators Workshop*, IEEE, Washington, DC: 124–127, by permission of IEEE, © 1998 IEEE

Varadan

Rockwell Science Center, forts.

Figure 11.19. Details of the fabrication process of the Rockwell Science Center interdigital capacitor on a glass substrate (see text). Notice that a single mask layer is used [17, 18] (Copyright IEEE).

Rebeiz

Rockwell Science Center, forts.

Figure 11.21. Measured capacitance versus voltage of Device '33' (a) and of two different interdigital Rockwell Scientific MEMS varactors (b). Notice that the capacitance can be designed to increase or decrease with the drive voltage (see text) [17, 18] (Copyright IEEE).

Rebeiz

Termisk tunbar parallell-plate MEMS kapasitans

- Benytter varme og kalde armer
 - En høy-resistivitets-arm vil bli varmere og vil deformeres mer
 - Differensiell termisk ekspansjon
- Ulempen med teknikken
 - Effekt-dissipasjon
 - Lav hastighet
 - Men fjerner pull-in-begrensningen

Z. Feng et al, Univ of Colorado

Design and Modeling of RF MEMS Tunable Capacitors Using Electro-thermal Actuators

Zhiping Feng, Wenge Zhang, Bingzhi Su, Kevin F. Harsh, K. C. Gupta, V. Bright, and Y. C. Lee C AMPmode University of Colorado at Boulder Boulder, CO 80309-0425

Univ of Colorado, forts.

Figure 11.16. Top view of the University of Colorado thermally actuated MEMS varactor in a CPW circuit [13] (Copyright IEEE).

Rebeiz

Temperaturdifferansen forårsaker en vertikal bevegelse

Ionescu, EPFL

Elektro-termisk tuning

Silicon is conductive and should be removed after flip-chip assembly to enhance *Q*

Figure 4.39 Flip-chip assembly of silicon-based MEMS. Reproduced from K.F. Harsh, B. Su, W. Zhang, V.M. Bright and Y.C. Lee, 2000, 'The realization and design considerations of flip-chip integrated MEMS tunable capacitor', *Sensors and Actuators A: Physical* **80**: 108–118, with permission from Elsevier Science, © 2000 Elsevier Science

Varadan

Piezoelektrisk tuning

- En bias spenning forårsaker vertikal bevegelse av kondensator-platen
- + Lav drive-spenning
- + Lineær tuning av kapasitans

Figure 11.17. Top view and fabrication process of the LG-Electronics piezoelectric varactor [15] (Copyright IEEE).

To av bjelkene forlenges

Rebeiz

Figure 11.18. Measured capacitance ratio of the LG-Electronics piezoelectric varactor [15] (Copyright IEEE).

Rebeiz

Dielektrisk tunbare kapasitanser

- Endring av materialegenskapene mellom platene
 - DC bias spenning kan endre de elektriske egenskapene
 - Dielektrisitets-laget
 - Dielektrisitetskonstanten, ε

– Ferro-elektriske tynn-filmer, Var fig. 4.48 \rightarrow

Figure 4.48 Schematic diagram and dimensions of the interdigital capacitor. Reproduced from S.W. Kirchoefer, J.M. Pond, A.C. Carter, W. Change, K.K. Agarwal, J.S. Horwitz and D.B. Chrisey, 1998, 'Microwave properties of $Sr_{0.5}Ba_{0.5}TiO_3$ thin film interdigitated capacitors', *Microwave and Optical Technology Letters* **18**(3): 168–171, by permission of IEEE, © 1998 IEEE

Varadan

University of Michigan

Figure 11.23. The UoM interdigital capacitor with a movable dielectric layer (a,b), and SEM picture of the fabricated device (c) [19] (Copyright IEEE).

Rebeiz

Univ of Micigan, forklaring

- Prinsipp: både topp og bunn er rigide
- Tuning oppnås ved en bevegelig dielektrisk membran (høy-k = ε) som er elektrostatisk drevet
- Ytelsesparametre
 - IC kompatibel teknologi (<200 ° C), post CMOS
 - Elektroplettert metall + overflate mikromaskinering
 - Bevegelig dielektrisk membran av Nitrid
 - Ingen pull-in effekt
 - Lav aktiveringsspenning < 10 V med k= 0.187 N/m</p>
 - TR = 40%
 - Q = 218 @ 1 GHz for C = 1.14 pF design (noe av det høyeste som er rapportert!)

Univ of Micigan, forts.

Figure 11.24. Fabrication process of the UoM interdigital capacitor [19] (Copyright IEEE).

RF MEMS kapasitans-banker

- Bruk av programmerbare kapasitans-banker
 - Har array av faste kapasitanser
 - Innkobling av ønsket C-verdi
 - MEMS svitsjer benyttes for innkobling
 - Kan programmeres ved et digitalt signal
 - Både serie- og shunt-konfigurasjoner er mulig

Eliminere virkning av termisk stress

- Et eksempel
 - H. Nieminen et al: "Design of a Temperature-Stable RF MEMS Capacitor, J MMSyst, vol 13, no 5, 2004:
 - Legge kapasitansen inn i en ramme-struktur \rightarrow
 - Bruke rammen for å kompensere for det termisk induserte stresset
 - Feste kapasitansen slik at når rammen blir deformert, så får en minimale stress-effekter på selve kapasitansen
 - f.eks. hjørnene beveger seg lite
 - feste kapasitansen i hjørnene!

Fig. 2. The steps to create geometrical compensation of a suspended structure against external stress for arbitrary geometry are as follows. (a) Create frame geometry. Designate anchoring points. The force (F_{anchor}) that simulates the effect of external stress is exerted on these anchoring points. The force is directed to the geometrical center of the frame. (b) The frame bends due to the force. However, if the anchoring points and the geometry of the frame are selected properly, there are points in the frame that do not move or move very slightly. These are points where the frame is connected to the suspended structure.

Fig. 3. FEM analysis of the temperature-compensated capacitor. Simulation is done with ANSYS. The temperature change is -50 °C. The substrate is silicon. The suspended electrode, the frame and the anchors are 4- μ m-thick gold. The scale at the bottom of the figure shows stress. Displacements in the figure are exaggerated.