INF5490 RF MEMS

L10: RF MEMS resonators II

S2008, Oddvar Søråsen

Department of Informatics, UoO

Today's lecture

- Lateral vibrating resonator: Comb resonator
- Working principle
- Detailed modeling
- A) "phasor"-modeling
- B) modeling by converting between mechanical and electrical energy domains

Lateral and vertical movement

- Lateral movement in the resonator
- Parallel to substrate
- Folded beam comb structure
- Vertical movement (next lecture)
- Vertical to substrate
- Clamped-clamped beam (c-c beam)
- free-free beam (f-f beam)

Comb resonator

- Fixed comb + movable, suspended comb
- Suspended by folded springs, compact layout
- Total capacitance between the combs can be varied
- Applied bias (+ or -) generates an electrostatic force between left anchor-comb and "shuttle"-comb. Shuttle pulled to the left in the plane

Figure 7.9 Illustration of a micromachined folded-beam comb-drive resonator. The left comb drive actuates the device at a variable frequency ω. The right capacitive-sense-comb structure measures the corresponding displacement by turning the varying capacitance into a current, which generates a voltage across the output resistor. There is a peak in displacement, current, and output voltage at the resonant frequency.

Detailed modeling

- Modeling of lateral comb structure
- "Phasor"-modeling ala UoC, Berkeley
- Detailed calculations included
- Conversion between energy domains
- Material from UCLA
- In lecture L11 the c-c beam will be modeled with reference to the book
- T. Itoh et al: RF Technologies for Low Power Wireless Communications", chap. 12: "Transceiver Front-End Architectures Using Vibrating Micromechanical Signal Processors", by Clark T.-C. Nguyen

The Lateral Resonator as a "Two-Port"

C. T.-C. Nguyen, Ph.D. Thesis,

EE C245 - ME C218 Fall 2003 Lecture 26 EECS Dept., UC Berkeley, 1994

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-R-circuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

A. Model the comb is a two-port. Analyze first the input port

$$
\begin{aligned}
& q_{1}=C_{1} v_{D} \\
& \dot{q}_{1}(t)=i_{1}(t)=C_{1} \frac{d v_{D}}{d t}+v_{D} \frac{d C_{1}}{d t} \\
& v_{D}(t)=V_{1}+v_{1}(t)-V_{P}=-V_{P 1}+v_{1} \cos \omega t \\
& V_{P 1}=V_{P}-V_{1}
\end{aligned}
$$

The Lateral Resonator as a "Two-Port"

C. T.-C. Nguyen, Ph.D. Thesis, EECS Dept., UC Berkeley, 1994
$\mathrm{V}_{\mathrm{P} 1}=$ positive when $\mathrm{V}_{\mathrm{P}}>\mathrm{V}_{1}$

B. When the comb moves the input capacitance will have a static and variable component

$C_{1}(t)=C_{01}+C_{m 1}(t)$
$C_{1}=\frac{\varepsilon_{0} A}{g}=\frac{\varepsilon_{0} \cdot x \cdot 2 H \cdot n}{g}$
$C_{1}(t)=C_{01}($ fixed $)+C_{m 1}\left(\right.$ prop_ with_ $\left._{-}(t)\right)$
$C_{1}(t)=C_{01}+\frac{\partial C_{1}}{\partial x} \cdot x(t)$
$f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots \quad \leftarrow$ general formula

C. Find the input current versus displacement, X

$$
\begin{aligned}
& i_{1}(t)=C_{1} \frac{d v_{D}}{d t}+v_{D} \frac{d C_{1}}{d t} \\
& =C_{1} \frac{d v_{1}(t)}{d t}+\left(-V_{P 1}+v_{1}(t)\right) \frac{\partial C_{1}}{\partial x} \frac{\partial x}{\partial t}=\left[C_{01}+\frac{\partial C_{1}}{\partial x} \cdot x(t)\right] \frac{d v_{1}(t)}{d t}+\ldots \\
& =C_{01} \frac{d v_{1}(t)}{d t}+\frac{\partial C_{1}}{\partial x} \cdot x(t) \cdot \frac{\partial v_{1}(t)}{\partial t}-V_{P 1} \frac{\partial C_{1}}{\partial x} \frac{\partial x}{\partial t}+v_{1}(t) \frac{\partial C_{1}}{\partial x} \frac{\partial x}{\partial t} \\
& =C_{01} \frac{d v_{1}(t)}{d t}+\frac{\partial C_{1}}{\partial x}(x \cdot \underbrace{\left.\frac{\partial v_{1}}{\partial t}+v_{1} \frac{\partial x}{\partial t}\right)}-V_{P 1} \frac{\partial C_{1}}{\partial x} \frac{\partial x}{\partial t} \\
& \\
& \frac{\partial}{\partial t}\left(x \cdot v_{1}\right), w_{-} \text {where } v_{-}=v_{0} \cos \omega t, t_{-}=x_{0} \cos \omega t \\
& \\
& \left(x \cdot v_{1}\right) \cong \cos ^{2} \omega t=\frac{1}{2}(1+\cos 2 \omega t)
\end{aligned}
$$

$$
i_{1}(t) \approx C_{01} \frac{\partial v_{1}(t)}{\partial t}-V_{P 1} \frac{\partial C_{1}}{\partial x} \frac{\partial x(t)}{\partial t}
$$

Current into the DC-capacitance "motional current"

$$
\begin{aligned}
& i_{1 x}(t)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \frac{\partial x(t)}{\partial t}=\left(-V_{P 1} \frac{\partial C_{1}}{\partial t}\right) \quad \text { "emotional current" } \\
& I_{1 x}(j \omega)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot X(j \omega) \\
& \text { phasor-form of "emotional current" } \\
& \text { = current as function of movement ("displacement") }
\end{aligned}
$$

D. Calculate the input admittance, Y ("motional admittance")

- D1. Find Y versus X

$$
Y_{1 x}(j \omega)=\frac{I_{1 x}(j \omega)}{V_{1}(j \omega)}=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot \frac{X(j \omega)}{V_{1}(j \omega)} \longleftarrow \text { voltage }
$$

- D2. X depends on the electrostatic force, F , and m, b and k

$$
Y_{1 x}(j \omega)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot \frac{X(j \omega)}{F_{d}(j \omega)} \cdot \frac{F_{d}(j \omega)}{V_{1}(j \omega)}
$$

Fd depends of m, b og k voltage V_{1} creates an electrostatic force F_{d}

D3. F depends on the applied bias, V

Relationship between force and voltage can be found from:

$$
\begin{array}{lr}
U=\frac{1}{2} C_{1} v_{D}^{2}(t) & \text { Potential energy, } V_{D} \text { is independent of } \mathrm{x} \\
F=\frac{\partial U}{\partial x}=\frac{1}{2} v_{D}^{2}(t) \cdot \frac{\partial C_{1}}{\partial x} & \text { non-linear relation }
\end{array}
$$

$$
\begin{gathered}
F=F_{0}+f \cos \omega t, v_{D}=-V_{P 1}+v_{1} \cos \omega t \quad \text { Linearizing around a DC-point } \\
F_{0}+f \cos \omega t=\frac{1}{2}\left(-V_{P 1}+v_{1} \cos \omega t\right)^{2} \cdot \frac{\partial C_{1}}{\partial x} \quad \text { Substitute } \\
=\frac{1}{2}(V_{P 1}^{2}-2 \cdot V_{P 1} \cdot v_{1} \cos \omega t+v_{1}^{2} \underbrace{\cos ^{2} \omega t} \cdot \underbrace{\cos 2 \omega t-\text { term }} \frac{\partial C_{1}}{\partial x} \\
f \cos \omega t=-V_{P 1} \cdot v_{1} \cos \omega t \cdot \frac{\partial C_{1}}{\partial x} \quad \text { Comparing AC-terms } \\
f_{d, \omega}=-V_{P 1} \frac{\partial C_{1}}{\partial x} v_{1}(t) \quad
\end{gathered}
$$

$$
\begin{aligned}
& F_{d}(j \omega)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot V_{1}(j \omega) \quad \text { In phasor-form } \\
& \frac{F_{d}(j \omega)}{V_{1}(j \omega)}=-V_{P 1} \frac{\partial C_{1}}{\partial x}
\end{aligned}
$$

Relation between displacement and force:

$$
\frac{X(s)}{F_{d}(x)}=\frac{1}{m s^{2}+b s+k}=\frac{1}{k} \frac{k / m}{s^{2}+\frac{b}{m} s+\frac{k}{m}} \quad \begin{gathered}
\text { D2. } X \text { depends on the electrostatic force, } \\
\mathrm{F}, \text { and } \mathrm{m}, \mathrm{~b} \text { and } \mathrm{k}
\end{gathered}
$$

$\omega_{0}{ }^{2}=k / m, b / m=\omega_{0} / Q$
Substitute
$Q=\frac{\sqrt{k / m}}{b / m}=\frac{\sqrt{k m}}{b}$

$$
\begin{aligned}
& \frac{X(s)}{F_{d}(s)}=\frac{1}{k} \cdot \frac{\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \rightarrow_{s=j \omega} \frac{1}{k} \cdot \frac{\omega_{0}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)+j \frac{\omega_{0} \omega}{Q}} \\
& \frac{X(j \omega)}{F_{d}(j \omega)}=\frac{1}{k} \cdot \frac{1}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{Q \omega_{0}}}
\end{aligned}
$$

E. Find an expression for Y (dynamic behavior)

$$
\begin{aligned}
& Y_{1 x}(j \omega)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot \frac{X(j \omega)}{F_{d}(j \omega)} \cdot \frac{F_{d}(j \omega)}{V_{1}(j \omega)} \\
& =-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot \frac{1 / k}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}} \cdot\left(-V_{P 1} \frac{\partial C_{1}}{\partial x}\right) \\
& \eta=V_{P 1} \frac{\partial C_{1}}{\partial x} \\
& Y_{1 x}(j \omega)=\eta^{2} \cdot j \omega \cdot \frac{1 / k}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}} \\
& I_{1 x}(j \omega)=[\ldots] \cdot V_{1}(j \omega)
\end{aligned}
$$

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-Rcircuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

F.
 Series L-C-R Admittance

The current through an $L-C-R$ branch is:

Match terms in motional admittance \rightarrow find equivalent elements

Current through the L-C-R-circuit

$$
\begin{aligned}
& V=I(s L+1 / s C+R) \\
& \frac{I(s)}{V(s)}=\frac{s C}{s^{2} L C+s R C+1} \\
& Y(j \omega)=\frac{I(j \omega)}{V(j \omega)}=\frac{j \omega C}{-\omega^{2} L C+j \omega R C+1}
\end{aligned}
$$

Introduce

$$
\begin{aligned}
& \omega_{0}^{2}=\frac{1}{L C}, \omega_{0}=\frac{1}{\sqrt{L C}} \\
& Y(j \omega)=\frac{j \omega C}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \omega R C}=\frac{j \omega C}{[\ldots]+j \frac{\omega}{\omega_{0} Q}} \\
& R C=\frac{1}{\omega_{0} Q}, Q=\frac{1}{\omega_{0} R C}=\frac{\sqrt{L C}}{R C}=\sqrt{\frac{L}{C}} \cdot \frac{1}{R}
\end{aligned}
$$

Which gives:

$$
Y(j \omega)=\frac{j \omega C}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}}
$$

Compare to

This results in:

$$
Y_{1 x}(j \omega)=\eta^{2} \cdot \frac{j \omega \cdot 1 / k}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}}
$$

$$
C_{x 1}=\eta^{2} / k
$$

$$
\omega_{0}^{2}=k / m=1 / L C \Rightarrow L_{x 1}=\frac{1}{C} \cdot \frac{m}{k}=\frac{k}{\eta^{2}} \cdot \frac{m}{k}=\frac{m}{\eta^{2}}
$$

$$
R C=\frac{1}{Q \omega_{0}}=\frac{1}{Q \sqrt{k / m}} \Rightarrow R_{x 1}=\frac{1}{C} \cdot \frac{1}{Q \sqrt{k / m}}=\frac{k}{\eta^{2}} \frac{\sqrt{m}}{Q \sqrt{k}}=\frac{\sqrt{k m}}{Q \eta^{2}}
$$ = Electromagnetic coupling coefficient

$I_{x 1}\left(\omega_{0}\right)=\frac{V_{1}\left(\omega_{0}\right)}{R_{x 1}} \quad$ At resonance the impedances from L and C cancel

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-R-circuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

G. Equivalent Circuit for Input Port

A series L-C-R circuit results in the identical expression \rightarrow find equivalent values $L_{x 1}, C_{x 1}$, and $R_{x 1}$

$$
L_{x 1}=\frac{m}{\eta^{2}} \quad C_{x 1}=\frac{\eta^{2}}{k} \quad R_{x 1}=\frac{\sqrt{k m}}{Q \eta^{2}} \quad \eta=V_{P 1} \frac{\partial C_{1}}{\partial x}=\begin{aligned}
& \text { electromechanical } \\
& \text { coupling coefficient }
\end{aligned}
$$

At resonance, the impedances of the inductance and the capacitance cancel out \rightarrow

$$
I_{x 1}=\frac{V_{1}}{R_{x 1}}
$$

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-R-circuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

H. Find the output current for a given input

$$
i_{1 x}(t)=-V_{P_{1}} \frac{\partial C_{1}}{\partial t}
$$

This displacement causes the output capacitance C2 also to change. Output current due to displacement ($\mathrm{v}_{2}=0 \mathrm{~V}$, short-circuited):

$$
\begin{aligned}
& i_{2}(t)=-V_{P 2} \frac{\partial C_{2}}{\partial t}=-V_{P 2} \frac{\partial C_{2}}{\partial x} \frac{\partial x}{\partial t} \\
& I_{2}(j \omega)=-V_{P 2} \frac{\partial C_{2}}{\partial x} \cdot j \omega \cdot X(j \omega) \quad \text { In phasor-form } \\
& X(j \widehat{\longrightarrow})=\frac{1 / k}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}} \cdot F_{d}(j \omega) \\
& F_{d}(j \omega)=-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot V_{1}(j \omega) \quad \text { voltage } \rightarrow \text { force } \rightarrow \text { displacement } \rightarrow \text { current } \\
& \Rightarrow I_{2}(j \omega)=\frac{V_{P 1} V_{P 2} \frac{\partial C_{1}}{\partial x} \frac{\partial C_{2}}{\partial x}}{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]+j \frac{\omega}{\omega_{0} Q}} \cdot j \omega \cdot(1 / k) \cdot V_{1}(j \omega)
\end{aligned}
$$

I. Calculate the ratio between the output and input currents ("forward current gain")

"Forward current gain"

$$
\begin{gathered}
\Phi_{21}=\frac{I_{2}(j \omega)}{I_{x 1}(j \omega)}=\frac{-V_{P 2} \frac{\partial C_{2}}{\partial x} \cdot j \omega \cdot X(j \omega)}{-V_{P 1} \frac{\partial C_{1}}{\partial x} \cdot j \omega \cdot X(j \omega)}=\frac{V_{P 2}}{V_{P 1}} \frac{\frac{\partial C_{2}}{\partial x}}{\frac{\partial C_{1}}{\partial x}} \\
I_{2}(j \omega)=\Phi_{21} \cdot I_{x 1}(j \omega), V_{2}=0
\end{gathered}
$$

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-R-circuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

J. Two-Port Equivalent Circuit ($\mathrm{V}_{2}=0$)

EE C245 - ME C218 Fall 2003 Lecture 26

Calculation procedure

- A. Model the comb is a two-port. Analyze first the input port
- B. When the comb moves the input capacitance will have a static and a variable component
- C. Find the input current versus displacement, X , when the comb moves
- D. Calculate the input admittance, Y ("motional admittance")
- D1. Find Y versus X
- D2. X depends on the electrostatic force, F, and m, b and k
- D3. F depends on the applied bias, V
- E. Find an expression for Y (dynamic behavior)
- F. Compare the expression to Y for a L-C-R-circuit and find equivalent elements
- G. Define and set up an equivalent circuit for the input port
- H. Find the output current for a given input
- I. Calculate the ratio between the output and input currents ("forward current gain")
- J. Set up a two port equivalent circuit
- K. Set up a complete two-port-model

Complete Two-Port Model

Symmetry implies that modeling can be done from port 2, with port 1 shorted \rightarrow superimpose the two models

Equivalent Circuit for Symmetrical Resonator ($\phi_{21}=\phi_{12}=1$)

Alternative modeling

- Exploit conversion between mechanical and electrical energy domains
- Slides from UCLA
- Supported by lecture notes \rightarrow

Conversion between energy domains

- Both vertical and lateral resonator structures may be described by a generalized non-linear capacitance, \mathbf{C}, interconnecting energydomains

Electrical domain

Mechanical domain

Interconnecting where there is no energy loss

Procedure

- First, transform the mechanical domain impedances to an electrical representation
- The mechanical components are modeled as lumped electrical components
- NB! You are still in the mechanical domain!
- $C=1 / k$
$-L=m$
$-\mathrm{R}=\mathrm{b}$

- Power-variables
- Effort $=$ force \rightarrow voltage
- Flow = velocity \rightarrow current

Interconnecting different energy domains

- 1. Each energy domain is transformed to its electrical equivalent
- 2. Domains are interconnected by a generalized nonlinear capacitance, C
- 3. Transformer and gyrator may be used for interconnecting if a linear relationship exists between the power-variables!
- Problem: Transducer C is generally NOT a linear 2-port
- 4. Must linearize the 2-port transducer to be able to substitute it with a transformer
- 5. The transformer can "be removed" by recalculating the component values to new ones
$-\rightarrow$ Electromechanical coupling coefficient used! = turn ratio
$-\rightarrow$ Results in a common circuit diagram

Interaction between energy domains

- Suppose linear relation between power variables
- A linear 2-port element can be used:
- Use a transformer or gyrator

Figure 5.11. General two-port element.
power in = power out NO POWER LOSS

$$
\begin{equation*}
e_{1} f_{1}+e_{2} f_{2}=0 \tag{5.41}
\end{equation*}
$$

Transformer

TRANSFORMER:

$$
\binom{e_{2}}{f_{2}}=\left(\begin{array}{rr}
n & 0 \tag{5.4}\\
0 & -\frac{1}{n}
\end{array}\right)\binom{e_{1}}{f_{1}}
$$

$$
\begin{aligned}
& e_{2}=n \cdot e_{1} \\
& f_{2}=-\frac{1}{n} f_{1}
\end{aligned}
$$

Transformer
n = "turns ratio"

Ex. V and F can be interconnected

Gyrator

GYRATOR:

$$
\binom{e_{2}}{f_{2}}=\left(\begin{array}{rr}
0 & n \tag{5.43}\\
-\frac{1}{n} & 0
\end{array}\right)\binom{e_{1}}{f_{1}}
$$

$$
\begin{aligned}
& e_{2}=n \cdot f_{1} \\
& f_{2}=-\frac{1}{n} e_{1}
\end{aligned}
$$

Gyrator

The impedances can be transformed

$$
z_{\text {in }}(s)=\frac{2(s)}{n^{2}}
$$

n = coupling coefficient between energy domains

$$
\begin{aligned}
& Z_{\text {in }}(s)=\frac{e_{1}}{f_{1}} \\
& Z(s)=\frac{e_{2}}{-f_{2}}=\frac{n \cdot e_{1}}{\frac{1}{n} \cdot f_{1}}=n^{2} \cdot \frac{e_{1}}{f_{1}}=n^{2} \cdot Z_{\text {in }}(s)
\end{aligned}
$$

Lumped Element Model (Senturia's Book)

Procedure

- Investigate relation between "efforts" and "flows" in the 2 domains
- Efforts: calculation procedure
- 1. Start with an expression for potential energy
- 2. Calculate force
- 3. Look at perturbations around the DC-bias
-4. Find the relationship between AC-terms
$-\rightarrow$ A linear relationship is obtained

Relation between "efforts"

$$
\begin{aligned}
& F=\frac{\partial W^{*}}{\partial x}=\frac{1}{2} V^{2} \frac{\partial C}{\partial r} \\
& F=F_{\text {d }}+f \cdot \sin (\phi) \\
& V=V_{i}+v \cdot \sin (\omega t) \\
& F_{d}+f \cdot \sin (\omega t)=\frac{1}{2}\left(F_{d}+v \cdot \sin (\omega t)\right)^{2} \frac{\partial C}{\partial x} \\
& =\frac{1}{2}\left(\left(V_{d}\right)+2 \cdot V_{s} \cdot v \cdot \sin (\omega v) \frac{\partial C}{\partial x}\right. \\
& f=V_{i x} \cdot \frac{\partial C}{\partial x} \cdot v+\quad \text { AC terma }
\end{aligned}
$$

effort (mechanical domain) = const. * effort (electrical domain)

Similarly for relationship between FLOWS:

Linearization - Small Signal Analysis

$$
\begin{aligned}
& \text { Relations between "Efforts" } \\
& F=\frac{\partial W^{*}}{\partial x}=\frac{1}{2} N^{2} \frac{\partial C}{\partial x} \\
& F=F_{\text {d }}+f \cdot \sin (\phi) \\
& V=V_{i c}+v \cdot \sin (\alpha) \\
& F_{d}+f \cdot \sin (\alpha)=\frac{1}{2}\left(W_{d}+v \cdot \sin (\alpha)\right)^{2} \frac{\partial C}{\partial x} \\
& =\frac{1}{2}\left(V_{s} F+2 \cdot V_{e} \cdot v \cdot \sin (o r) \frac{\partial C}{\partial x}\right. \\
& f=V_{s} \cdot \frac{\partial C}{\partial x} \cdot v \longleftarrow \text { AC terma } \\
& \text { Relatione between "Flows" } \\
& Q=V \cdot C \\
& I=V \cdot \frac{\partial C}{\partial t}=V \cdot \frac{\partial C}{\partial T} \cdot \frac{\partial X}{\partial t}=V \cdot \frac{\partial C}{\partial X} \cdot \dot{X} \\
& I=I_{4}+i \cdot \sin (\omega x) \\
& X=X_{i v}-X \cdot \sin (\operatorname{Or}) \text { Nogative elgn due } \\
& i=-V_{\Delta} \frac{\partial C}{\partial x} \dot{x}
\end{aligned}
$$

Linearized capacitive transducer is a Transformer

$$
\binom{f}{\dot{x}}=\left(\begin{array}{cc}
n & 0 \\
0 & -\frac{1}{n}
\end{array}\right)\binom{v}{i}
$$

Turn Ratio: $\quad n=V_{s} \frac{\partial C}{\partial x}$

flow (electrical domain) = - const. * flow (mechanical domain)

Current direction, mechanical domain

- Flow in the mechanical domain is defined as positive into the 2-port transducer
- Choose the current to go out of 2-port C. Then we have:
- Current goes into the electrical domain
$-\rightarrow$ creates an attractive force on the comb
$-\rightarrow$ spring stretches
$\rightarrow \rightarrow$ potential energy is built up
$-\rightarrow$ equivalent to charging of an $1 / k$-capacitor
$-\rightarrow$ Current increases \rightarrow charge on the capacitor increases \rightarrow attractive force increases \rightarrow displacement (x) decreases

Compatible relations both between "efforts" and "flows"

$$
\begin{aligned}
& f=V_{d e} \cdot \frac{\partial c}{\partial x} \cdot v=n \cdot v \quad \text { du } \quad n=V_{d c} \cdot \frac{\partial c}{\partial x} \\
& i=-V_{d c} \cdot \frac{\partial c}{\partial x} \cdot \dot{x}=-n \cdot \dot{x} \quad \Rightarrow \quad \dot{x}=-\frac{1}{n} \cdot i
\end{aligned}
$$

- effort (mechanical domain) $=\mathrm{n}$ * effort (electrical domain)
- flow (mechanical domain) $=-1 / n$ * flow (electrical domain)
- A linearized capacitive transducer implemented as a transformer can be used!

Transformation of impedances

$$
\begin{array}{ll}
& Z_{e l}=\frac{1}{n^{2}} \cdot Z_{m e k} \\
\text { Inductor } & s L_{e l}=\frac{1}{n^{2}} \cdot s L_{m e k}=\frac{s m}{n^{2}} \Rightarrow L_{e l}=\frac{m}{n^{2}} \\
\text { Resistor } & R_{e l}=\frac{1}{n^{2}} \cdot R_{m e k}=\frac{b}{n^{2}} \\
\text { Capacitor } & \frac{1}{s C_{e l}}=\frac{1}{n^{2}} \cdot \frac{1}{s C_{m e k}}=\frac{1}{n^{2}} \cdot \frac{k}{s} \Rightarrow C_{e l}=\frac{n^{2}}{k}
\end{array}
$$

Small Signal Equivalent Circuit of Microresonators

$\underset{\text { Domain }}{\text { Electrical }}<\quad>\underset{\text { Domain }}{\text { Mechanical }}$

Equivalent
Electrical Circuit

Both methods result in the same equivalent circuit:

Comb-Transduced Folded-Beam Microresonator

* Micromachined from in situ phosphorous-doped polysilicon

22

Comb resonator, summary

- Summary of modeling:
- Force: $\mathrm{Fe}=1 / 2 \mathrm{dC} / \mathrm{dx} \mathrm{V} \wedge 2$ (force is always attractive)
- Input signal Va * $\cos (\omega t)$
- $\mathrm{Fe} \sim \mathrm{Va}^{\wedge} 2$ * $1 / 2[1+\cos (2 \omega t)]$
- Driving force is $2 x$ input-frequency + DC: NOT DESIRABLE
- Add DC bias, Vd
- $\mathrm{Fe} \sim \mathrm{Vd}{ }^{\wedge} 2+2 \mathrm{Vd}$ * Va * $\cos \omega \mathrm{t}+$ negligible term ($2 \omega \mathrm{t}$)
- Keep linearized AC force-component ~Vd * Va, which oscillates with the same frequency as Va: ω
- C increases when finger-overlap increases (comb moves)
$-\varepsilon$ * $A / d \quad(A=$ comb-thickness * overlap-length)
- $d C / d x=$ constant for a given design (linear change, C is proportional to length-variation)

Comb-resonator, output current

- A time varying capacitance is established at the output comb
- Calculate output current when V_{d} is kept constant and C is varying
- $\mathrm{I} 0=\mathrm{d} / \mathrm{dt}(\mathrm{Q})=\mathrm{d} / \mathrm{dt}\left(\mathrm{C}^{*} \mathrm{~V}\right)=\mathrm{Vd}_{\mathrm{d}}$ * $\mathrm{dC} / \mathrm{dt}=$
$V_{d}{ }^{*} d C / d x$ * $d x / d t$
- $10=\mathrm{Vd}$ * dC/dx * ω * x_max
- Io plotted versus frequency, shows a BPcharacteristic

Comb-resonator, spring constant

- Spring constant for simple beam deflected to the side
- k_beam = const * E * t * (w/L) exp3
- $E=$ Youngs modul, $t=$ thickness, $w=$ width, $L=$ length
- Example in figure 7.9:
- const $=1=4$ * $1 / 4$
- k_total $=2$ *k_beam

Figure 7.9 Illustration of a micromachined folded-beam comb-drive resonator. The left comb drive actuates the device at a variable frequency ω. The right capacitive-sense-comb structure measures the corresponding displacement by turning the varying capacitance into a current, which generates a voltage across the output resistor. There is a peak in displacement, current, and output voltage at the resonant frequency.

Design parameters

- To obtain a higher resonance-frequency:
- Total spring constant must increase
- Dynamic mass must decrease
- Difficult to achieve because a minimum number of fingers are needed
- To have good electrostatic coupling (voltage \rightarrow force)
- Process resolution determines how small the lateral structures can be fabricated (geometrical design rules)
- Frequency can be increased by using another material with larger $\mathrm{E} / \mathrm{\rho}$ than Si
- $\mathrm{E} / \mathrm{\rho}$ is a measure of the spring constant relative to weight
- Elastic modulus versus material density
- Aluminum and titanium has $\mathrm{E} / \mathrm{\rho}$ lower than Si
- Si carbide, poly diamond has E/o higher than for Si (poly diamond is a research topic)

