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Today’s lecture

• Vertical vibrating resonators
– Clamped-clamped beam (c-c beam)

• Working principle
• Detailed modeling

– free-free beam (f-f beam)
• Other resonator types

– Tuning fork
– Beam with lateral displacement
– Disk resonators
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Beam resonator
• How to obtain a higher resonance frequency than that 

which is possible with the comb-structure?
– Mass should be reduced more -> beam resonator

• Beam resonator benefits
– Smaller dimensions
– Higher resonance frequency
– Simple
– Many frequency references on a single chip
– Frequency variation versus temperature is more linear over a 

broader temperature range
– Integration with electronics possible lower cost
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Beam resonator

”One-port”-implementation
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Output circuit
• Resonator is a time varying capacitance C(ω)
• Simple electrical output circuit

– L = shunt RF blocking inductor: Open at high frequencies
– C_∞ = series DC blocking capacitance: Short circuited at high frequencies
– When Vd is a large DC-voltage bias, the dominating output current at frequency 

ω is given by: io = Vd * dC/dt
– At high frequencies the current io is flowing through RL

• RL may be the input impedance in the measurement equipment. Can be replaced by a 
transimpedance amplifier
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Mechanical resonance frequency

• Parameters
– E = Youngs modulus
– ρ = density of material
– h = beam thickness
– Lr = beam length
– g models the effect of an electrical spring constant k_e

• Is present when a voltage is applied between the electrodes
• Subtracted from the mechanical spring constant, k_m (“beam-softening”)

– κ =scaling factor (influenced by the surface topography, typical 0.9)
– V_p = DC bias on conducting beam
– k_r = effective resonator spring constant
– m_r = effective mass

• NB! E and ρ in expression + spring stiffness compensation term
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Typical frequencies
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”Beam-softening”

• DC-voltage, Vd, will give a downward-directed electrostatic 
force

• This force opposes the mechanical restoring force of the beam
• The result is a lower effective mechanical spring constant

– Resonance frequency decreases by a given factor 

– electrical tuning of resonance frequency!

)/(1 22 gkVC P ⋅⋅−
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Detailed modeling

• c-c beam modeled as in the book
– T. Itoh et al: RF Technologies for Low Power Wireless 

Communications”, chap. 12: ”Transceiver Front-End 
Architectures Using Vibrating Micromechanical Signal 
Processors”, by Clark T.-C. Nguyen

– (+ summary from various publications)
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Clamped-clamped beam
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Calculating electrical excitation

• Two bias voltages are applied
• A) First calculate potential energy
• B) Calculate force 
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A. Electrical excitation
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Procedure, contd.

• C) Apply DC bias, Vp

• D) Calculate the force

• E) Discussion of different contributions 
– Off-resonance DC-force
– Force with the same frequency as input voltage
– Double frequency term



14

C. A DC voltage is applied to the beam
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Then
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Procedure, contd.
• The main contribution to the force is 

proportional to cos
– Drives beam into resonance

• F) Force gives displacement (x-variation)
– The local spring constant varies over the width of the  

drive-electrode
– Local displacement depends on the y position

• G) Derivation of an expression for the 
displacement, x(y), versus the spring constant at 
position y
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Topology
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The main contribution to the force:
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Dynamic performance of a mechanical system:

resonance at ,
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Procedure, contd.

• When the beam moves a time varying 
capacitance is established between the 
electrode and resonator

• H) This gives an output current that is  ”DC-
biased” via Vp
– dC/dx is a non-linear term
– dx/dt is speed
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When the beam moves, a time dependent capacitance between 
the electrode and resonator will be created, giving an output current:
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Frequency response
• Typical parameters, Q, vacuum

– Bandpass filter characteristics, Q ~ 10,000
– Suitable for low loss reference oscillators and filters

• Q ~ a few hundreds at 1 AMP
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Procedure, contd.

• Transform to mechanical equivalent circuit: 
– ”mass-spring-damper”-circuit 
– NB! Still in the mechanical domain

• Beam described using ”lumped elements”
• Element values depend on position on beam, 

- dependent on y
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I. Calculation of  ”equivalent mass” as function of y
From R. A. Johnson: ”Mechanical Filters in 
Electronics”, Wiley, 1983

Simplified derivation of deflection equation
Form of ”fundamental mode”

Each point, y, has a specific effective mass, a 
specific velocity and spring constant

Lowest  ”mass” in the middle, where the speed is 
maximum
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Flexural mode resonator: beam
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Procedure, contd.
• J) After calculation of the equivalent mass as function of (y), the 

equivalent spring stiffness k_r (y) and  damping factor c_r (y) can 
be calculated
– k_r = ”equivalent”, eg. influenced both by mechanical and electrical

effects
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By just looking at the mechanical contribution:
A certain frequency, ω_nom, and a corresponding Q-factor, Q_nom
are obtained:
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Tunable electrical spring stiffness

• Spring stiffness can be tuned by Vp
– The result depends on ratio between k_e and k_m

• L) Calculate how k_e depends on position y
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The resonance frequency can be tuned by Vp

The electrically tunable spring constant, ke, is subtracted from
the mechanical one
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The gap, d(y), has to be computed:
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Assume that the beam is flat over the electrode

Simplification

Potential energy

Work being done to move the beam a distance g 
AGAINST the force due to the electrical
beam stiffness k_e
(The spring stiffness is now considered to be
CONSTANT in each pont y´)

The energies can be set equal

Simplified expression for the electrical
beam stiffness
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Simplified expression for frequency

Substitute for C:
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Differential electrical spring stiffness in location y´ and
with an electrode width dy´

This is equivalent to the previous calculations
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Beam-softening

• Resonance frequency decreases by 

– resonance frequency may be tuned 
electrically!

)/(1 22
0 gkVC mP ⋅⋅−
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Small signal equivalent

• An electrical equivalent circuit is needed to model and 
simulate the impedances of this micro-mechanical 
resonator in a common electromechanical circuit
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Coupling coefficient
• Look into the circuit from the left side
• Observe a transformed LCR-circuit with new 

element values given by (12.17)
– Electromechanical coupling coefficient = ”transformer 

turns ratio”

• Coupling coefficient is calculated in notes from 
UCLA
– Discussed in relation to 2-port lateral comb-drive 

actuator (L10)
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Discussion:

Ionescu, EPFL
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Loss, c-c-beam
• Resonance frequency increases when the stiffness of a 

beam increases
– Also: More energy pr. cycle enters the substrate via the anchors

• c-c-beam has loss through anchors
– Q-factor decreases when frequency increases
– c-c-beam is not the best structure for high frequency!
– Ex. Q = 8,000 at 10 MHz, Q = 300 at 70 MHz

• c-c beam may be used as a reference oscillator or 
HF/VHF filter/mixer

• Use of ”free-free beam” can reduce the energy loss 
via anchors to the substrate!



49

free-free-beam
• Beneficial for reducing loss to substrate via anchors
• f-f-beam is suspended using 4 support-beams in width-

direction
– Torsion-support
– Anchoring at nodes for ”flexural mode”

• Support dimension is a quarter-wavelength of f-f-beam
resonance frequency

• The electrical impedance at the flexural nodes is then infinite 
• Beam vibrates without energy loss as if there is no support

• Higher Q is achieved
– Ex. Q= 20,000 at 10 – 200 MHz
– Applied in reference-oscillators, HF/VHF-filter/mixer
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free-free beam

Nguyen, 1999
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Other resonator types

”Tuning fork” balanced!
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Disk resonators
• Advantages of using disks compared to beams

– Reduced air damping
• Vacuum not needed to measure Q-factor

– Higher stiffness
• Higher frequency for given dimensions

– Larger volume
• Higher Q because more energy is stored
• Less problems with thermal noise

• Periphery of the disk may have different 
motional patterns
– Radial, wine-glass
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59Ionescu, EPFL



60EAM = Electromechanical Amplitude Modulation (sinus also on ”shuttle”)
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Limitations of micromechanical resonators

• Frequency-limitations
– By reducing m to obtain higher frequency:
– This will give fluctuations in frequency

• ”mass loading”: interchange of molecules with environment
• Air gas molecules have Brownian motion 

• Energy limitations
– Q depends on energy loss caused by damping

• Viscous damping
• Vertical motion: squeezed-film damping
• Horizontal motion: slide film damping, Stokes- or Couette-

type damping
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Limitations, contd.

• Temperature dependence
– Resonance frequency changes due to 

temperature and aging
– Increased temperature gives frequency 

decrease
• Analog or digital compensation (feedback)
• Mechanical compensation

– Exploit structures with both compressive and tensile 
stress: opposing effects 
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Temperature compensation
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Temperature compensation, contd.

• Top-electrode reduces effective spring constant 
because Vc causes an electrostatic attraction

• Top-electrode will be elevated (gap increases) when the 
temperature increases reduction of spring constant

• Generally the mechanical spring constant decreases by 
increased temperature. But the reduction will be less due 
to the effect of the top electrode (e.g. the ”beam-
softening”-effect decreases)!
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