INF 5490 RF MEMS

L12: Mikromekaniske filtre

V2008, Oddvar Søråsen Institutt for informatikk, UiO

Dagens forelesning

- Egenskaper ved mekaniske filtre
- Visualisering av virkemåte
- Konstruksjon, modellering
- Eksempler
 - 2 resonator c-c beam struktur for HF-VHF
 - kam-struktur
- Design-prosedyre
- Mikser

Mekaniske filtre

• Velkjent teknikk i flere tiår

 Jmfr. bok: "Mechanical filters in electronics", R.A. Johnson, **1983**

- **Miniatyrisering** av mekaniske filtre har aktualisert mulighetene for bruk
 - Muliggjort ved mikromaskinering
 - Drivkraft → Fabrikasjon av filtre så små at de kan integreres: "system-on-chip" og med gode filter-egenskaper

Filter karakteristikk

Figure 12.11. Parameters typically used for filter specification. (From reference [29])

Flere resonatorer benyttes

- En enkelt resonator har en smal BPkarakteristikk
 - Egner seg for å definere frekvens i oscillatorer
 - Ikke så egnet som BP-filter
- BP-filtre realiseres ved å koble resonatorer i kaskade
 - Gir bredere passbånd enn ved én enkelt resonerende struktur
 - 2 eller flere mikroresonatorer benyttes
 - hver av kam-type eller c-c beam type
 - Kobles sammen med svake (myke) fjærer

Filter orden

- Antall resonatorer, n, definerer ordenen til filteret
 - Orden = 2 * n
 - Skarpere "roll-off" til stoppbåndet ved flere resonatorer
 - → "skarpere filter"

Egenskaper ved mikromaskinerte filtre

- Kompakt realisering

 "on-chip" filterbank mulig
- Kan gi filtre med høy Q-faktor
- Kan realisere lav-taps BP-filtre
 - Hver enkelt resonator har lavt tap
 - Lavt "Insertion loss" totalt
 - IL: Degraderes ved smal båndbredde \rightarrow
 - IL: Bedres med høy Q-faktor \rightarrow

"Insertion loss"

Illustrasjon av prinsipp: 3 * resonator

Figure 12.12. (a) Equivalent lumped-parameter mechanical circuit for a mechanical filter. (b) Corresponding equivalent *LCR* network.

Mekanisk modell

- Et slikt koblet resonator-system har flere vibrasjonsmoder
- n uavhengige resonatorer
 - Svinger ved sine naturlige frekvenser bestemt av m, k
 - "Ettergivende" koblingsfjærer ("compliant")
 - Bestemmer hvilke "tillatte oscillasjoner" flerlegeme-systemet kan utføre

Visualisering av virkemåten

Figure 7.13 Illustration of two identical resonators, each with a mass and spring, coupled by a weak and compliant intermediate flexure. The system has two resonant oscillation modes, for in-phase and out-of-phase motion, resulting in a bandpass characteristic.

Visualisering av virkemåten, forts.

• 2 oscillasjonsmodi i figur 7.13

– I fase

- Ingen relativ forskyvning mellom massene
- Ingen kraft fra koblingsfjæra
- Oscillasjons-frekvens = naturlig frekvens for en enkelt resonator (begge er like, - masseløs koblingsfjær*)
 - (* massen til koblingsfjæra kan senke frekvensen)

Ut av fase

- Forskyvninger i motsatt retning
- Kraftvirkning fra koblingsfjær (tilleggskraft)
- Gir en høyere oscillasjons-frekvens (Newtons 2.lov, F=ma)
- → de 2 overlappende resonans-frekvensene splittes i 2 distinkte frekvenser

3-resonator-struktur

- Hver vibrasjonsmode tilsvarer en distinkt topp i frekvenskarakteristikken
 - Laveste frekvens: alle i fase
 - Midt-frekvens: senter i ro, endene i motfase
 - Høyeste frekvens: hver er 180 grader ute av fase fra sin nabo

Figure 12.13. Mode shapes of a three-resonator micromechanical filter and their corresponding frequency peaks.

Filter-karakteristikk

- Frekvens-separasjonen er avhengig av stivheten i koblingsfjæra
 - Myk fjær ("compliant") → nærliggende frekvenser = smalt passbånd
- Økning av antall koblede resonatorer i en lineær kjede gir
 - Økt bredde på passbånd
 - Økt antall "ripples"
 - → det totale antall oscillasjons-moder er lik antall koblede resonatorer i kjeden

Konstruksjon

- Resonatorene i mikromekaniske filtre er normalt designet identiske
 - Like dimensjoner og resonansfrekvenser
 - Filterets senterfrekvens er da f0

– ("massless coupling spring")

- Passbånd er bestemt av maksimal avstand mellom node-toppene
 - Relativ plassering av vibrasjonstoppene er bestemt primært av
 - stivhet i koblingsfjærene k_{sij}
 - resonatorenes egenskaper (fjærstivhet) i k_r <u>koblingspunktene</u>

Design, forts.

 Ved senterfrekvens f
⁰ og b
^åndbredde B, m
^å fjærstivhetene tilfredsstille

$$B = \left(\frac{f_0}{k_{ij}}\right) \cdot \left(\frac{k_{sij}}{k_r}\right)$$

• k_{ij} = normalisert koblingskoeffisient som finnes i filter-kokebøker

 $\left(\frac{k_{sij}}{k_r}\right)$ spiller inn, IKKE absoluttverdiene

- Prinsipiell designprosedyre *
- (* som ikke lar seg gjennomføre i praksis)
 - Bestem f_0 og k_r Velg k_{sij} for ønsket B
 - I praksis **modifiseres** denne prosedyren (se senere \rightarrow)

Mekanisk eller elektrisk design?

- Det er stor likhet mellom beskrivelsen av mekaniske system og tilsvarende elektriske
- Den duale kretsen til "spring-mass-damper"systemet er et LC-ladder nettverk →
 - Elektromekanisk analogi benyttes ved konverteringen
 - Hver resonator en LCR-tank
 - Hver koblingsfjær (idealisert masseløs) tilsvarer en shunt-kapasitans

Modellering

- Systemer kan derfor prinsipielt modelleres og designes i elektrisk domene med prosedyrer fra koblet resonator "ladder filtre"
 - Alle polynom syntese-teknikkene fra elektrisk filter-design kan brukes
 - Et stort utvalg synteseteknikker og tabeller (kokebøker) eksisterer + elektriske krets-simulatorer
 - Butterworth, Chebyshev -filtre
- Mulig prosedyre: Fullstendig syntese i elektrisk domene og konvertering til mekanisk domene som siste trinn
 LC-elementene avbildes over til lumped mekaniske elementer
- Kan ikke generelt anbefales, selv om mulig
 - → kunnskap fra både elektrisk og mekanisk domene bør benyttes for <u>optimal</u> filter-design

2-resonator HF-VHF mikromekanisk filter

2-resonator HF-VHF mikromekanisk filter

- Det koblede resonator-filteret kan betraktes som en 2-port:
 - To c-c bjelker
 - 0.1 µm over substratet
 - Bestemt av tykkelse på "sacrificial oxide"
 - Myk fjær
 - polySi-striper under hver resonator \rightarrow elektroder
 - Vibrasjoner vinkelrett på substratet
 - DC spenninger påtrykkes
 - Flanke-poly virker som tunings-elektroder
 - ("beam-softening")

Motstander

- AC-signal på inngangs-elektrode gjennom R_{Q1}
 - R_{Q1} belaster Q og flater ut passbåndet
- Matched impedans på utgangen, R_{Q2}
 - R-ene kan skreddersys til ulike anvendelser
 - Kan bl.a. tilpasses etterfølgende lav-støy transistor-kretser

"Mekanisk signalprosessering"

- Inngangssignal konverteres til kraft
 ved kapasitiv inngangstransducer
- Mekaniske vibrasjoner induseres i x-retningen
- Mekaniske vibrasjoner betyr at en har et mekanisk signal som så prosesseres i det mekaniske domenet
 - "Reject" hvis utenfor passbånd
 - "Passed" hvis innenfor passbånd

"Mekanisk signalprosessering", forts.

 Det mekanisk prosesserte signalet viser seg som bevegelse på <u>utgangs-transduceren</u> og blir der konvertert til elektrisk energi

– Utgangsstrøm i
⁰ = Vd * dC/dt

> "mikromekanisk signal-prosessor"

• Det elektriske signalet kan prosesseres videre i et etterfølgende transceiver-trinn

BP-filter av 2 c-c beam resonatorer

Kam-struktur

- Både serie og parallellkonfigurasjoner har vært benyttet
- I figur 5.11.b adderes utgangsstrømmene

Figure 5.11 (a) Series and (b) parallel combination of resonators. Reproduced from L. Lin, C.T.-C. Nguyen, R.T. Howe, and A.P. Pisano, 1992, 'Micro electromechanical filters for signal processing', in *IEEE Conference on Micro Electro Mechanical Systems '92, February 4–7 1992*, IEEE, Washington, DC, by permission of IEEE, © 1992 IEEE

Kam-struktur, forts.

 Resonatorene designes til å ha forskjellig resonans-frekvens

$$f_2 - f_1 = \frac{f_1}{Q_1}$$

- Modell beskrives i Varadan p 262-263:
 - Modellen antar at koblingbeam er uten masse. Mulig å se bort fra påvirkningen av denne massen på filter-egenskapene ved å gjøre koblingsbjelken en kvartbølgelengde av senterfrekvensen
- De gitte formlene blir unøyaktige ved høyere frekvenser og mindre dimensjoner
 - → Bedre metode: Bruk av avansert modellerings og simulerings-sw

Filter realisert ved kam-struktur

Design-prosedyre c-c beam filter

- A. Design enkelt-resonatorene først
 - Dette gir en del føringer for valg av koblingsbjelkens fjærstivhet
 - \rightarrow båndbredden B kan ikke velges fritt!
- B. Design koblingsbjelkens fjærstivhet
 - Bestem den fjærstivhet resonatorene må ha for en gitt B
 - \rightarrow dette bestemmer koblingspunktene!

Design-prosedyre A.

- A1. Bestem resonatorenes geometri for en oppgitt frekvens og gitt materiale (ρ)
 - Beregn beam-lengde (Lr), tykkelse (h) og gap (d) utfra ligninger for f
 og termineringsmotstand (RQ)
 - Hvis filteret designes symmetrisk og med Q_resonator >> Q_filter, kan det brukes en forenklet modell for termineringsmotstanden til enderesonatorene →

For gitt resonatorfrekvens, bestemmes resonator-geometriene utfra:

$$f_0 = const \cdot \sqrt{\frac{E}{\rho}} \cdot \frac{h}{L_r^2} \cdot \left(1 - \left\langle \frac{k_e}{k_m} \right\rangle \right)^{1/2}$$

h, L_r : bestemmes fra f_0 -krav W_r , W_e : velges fra praktiske føringer Tilleggskrav: R_o

$$R_{Q} = \frac{k_{re}}{\omega_{0} \cdot q_{1} \cdot Q_{filter} \cdot \eta_{e}^{2}}, \quad Q_{res} \rangle \rangle Q_{filter}$$

$$\begin{split} k_{re} &: \text{ gitt av resonator - dimensjoner} \\ \omega_0 &: \text{ er gitt} \\ q_1 &: \text{ fra filter - kokebok} \\ Q_{filter} &: \text{ er gitt} \\ \eta_e &= V_P \cdot \frac{\partial C}{\partial x} \approx \frac{V_P}{d^2} : \text{ eneste mulige variasjon} \\ V_P &: \text{ har begrensninger} \\ d : \text{ kan endres!} \qquad (\text{e, er senterlokasjon av beam}) \end{split}$$

Design-prosedyre A, forts.

- A2. Velg en **realistisk bredde** av koblingsbeam, W_{s12}
- Lengden av koblingsbeam bør velges til kvartbølgelengden av filter senterfrekvensen
 - \rightarrow Koblingsfjærer generaliseres til transmisjonslinjer
 - Når en realiserer koblingsbjelkene som kvartbølgelengde av senterfrekvensen, blir ikke filteret så følsomt for geometriske variasjoner i koblingsbjelken
 - Kvartbølgelengdekravet <u>bestemmer</u> derved lengden av koblingsbeam L_{s12}

Design-prosedyre A, forts.

- Føringer på valg av bredde, tykkelse og lengde bestemmer derved k_{s12} , dvs. koblingsfjærstivheten
 - Dette begrenser muligheten til <u>uavhengig</u> å sette båndbredden på filteret (B er avhengig av koblingsfjærstivheten)

$$B = \left(\frac{f_0}{k_{12}}\right) \cdot \left(\frac{k_{s12}}{k_{rc}}\right)$$

 Derfor trengs en alternativ metode for å kunne sette filter-båndbredden → se design-prosedyre B.

Design-prosedyre B

- B1. Bruk koblingspunktene på resonatorene til å bestemme filterbåndbredden
 - B bestemmes av forholdet

•
$$k_{rc}$$
 betyr verdien av k i **koblingslokasjonen!**

- k_{rc} varierer med lokasjon, spesielt med **hastigheten** ved lokasjonen
- k_{rc} kan settes til en ønsket verdi ved å velge et passende koblingspunkt til beam!

 $\frac{k_{s12}}{k_{rc}}$

- Den dynamiske fjærkonstanten k_{rc} til en c-c bjelke er størst nærmest ankerfestene
 - $-k_{rc}$ er større jo lavere hastighet koblingspunktet beveger seg med ved resonans

Plassering av koblingsbjelke

• Altså: båndbredden til filteret kan settes, ikke ved å velge koblingsbeam-stivheten k_{sij} , men ved å velge en passende verdi på k_r som tilfredsstiller ligningen

$$B = \left(\frac{f_0}{k_{ij}}\right) \cdot \left(\frac{k_{sij}}{k_r}\right)$$

- der k_{sij} er **gitt** utfra kravet om kvartbølgelengde design

 Valget av koblingspunktet til beam influerer på båndbredden til det mekaniske filteret →

Plassering av koblingsbjelke

Figure 12.15. Filter schematics showing (a) maximum velocity coupling to yield a large percent bandwidth and (b) low-velocity coupling to yield a smaller percent bandwidth.

Design-prosedyre, forts.

- B2. Generer en komplett ekvivalent-krets for hele filterstrukturen og verifiser med en kretssimulator
 - Ekvivalent-krets for 2-resonator filteret
 - Hver av resonatorene modelleres som tidligere utledet
 - Koblings-beam opererer som en akustisk transmisjonslinje og er modellert som et T-nettverk av energilagrings-elementer
 - Transformatorer settes inn mellom resonator og koblingsbeam-krets for å modellere hastighetstransformasjoner som oppstår når en fester koblingsbjelken på lokasjoner som ligger utenfor sentrum av resonator-beam

Figure 12.14. (a) Perspective-view schematic of a symmetrical two-resonator VHF µmechanical filter with typical bias, excitation, and signal conditioning electronics. (b) Electrical equivalent circuit for the filter in (a) along with equations for the elements [18]. Here, m_{rie} , k_{rie} , and c_{rie} denote the mass, stiffness, and damping of resonator *i* at the beam center location, and η_e and η_c are turns ratios modeling electromechanical coupling at the inputs and mechanical impedance transformations at low-velocity coupling locations. (From reference [18])

SEM av symmetrisk filter: 7.81 MHz

Figure 12.16. SEM of a fabricated 7.81 MHz two-resonator micromechanical filter. (From reference [18])

• Resonatorer består av fosfor-dopet poly

Målt og simulert frekvensspekter

• BW = 18 kHz, Insertion loss = 1.8 dB, Q_filter = 435

Figure 12.17. Measured spectrum for a terminated 7.81 MHz µmechanical filter with excessive input/output shunt capacitance. Here, $Q_{\text{fltr}} = 435$. (From reference [18])

HF mikromekanisk filter

- Kommentarer til fig. 12.16 og 12.17:
- Koblingslokasjon I_c ble justert for å matche båndbredde-kravet
 - Dreiende (torsjon) bevegelse på koblingsbeam kan også influere på den aktuelle mekaniske koblingen
 - effektiv verdi av l_c endres
- Simuleringene matcher bra i passbåndet
 - Avviker betydelig i transisjonen til stopp-bånd
 - I virkeligheten introduseres poler som ikke modelleres i teorien. Disse forbedrer shape-faktorene til filteret. Oppstår pga. feedthrough kapasitans C_p som forbinder inngangs- og utgangselektrodene (parasitt-element). For fullintegrerte filtre har en mer kontroll over denne kapasitansen slik at en bevisst kan velge poler som legges inn.

Mikromekaniske mikser-filtre

- En 2 c-c beam –struktur kan enkelt bygges ut til en mikser
 - Anta at en har signalinnganger både på v_e (elektrode) og v_b (beam)
- Fig 12.18 Itoh viser skjema for en symmetrisk mikromekanisk mikser-filterstruktur →

Figure 12.18. (a) Simplified block diagram of a wireless receiver, indicating (with shading) the components replaceable by mixer-filter devices. (b) Schematic diagram of the described μ mechanical mixer-filter, depicting the bias and excitation scheme needed for downconversion. (c) Equivalent block diagram of the mixer-filter scheme.

Mikser

Anta v_{RF} på elektrode Anta lokal oscillator på beam, $v_b = v_{LO}$ Kraften beregnes :

$$F_{d} = \frac{1}{2} (v_{e} - v_{b})^{2} \frac{\partial C}{\partial x} = \frac{1}{2} (v_{b}^{2} - 2v_{b}v_{e} + v_{e}^{2}) \frac{\partial C}{\partial x}$$
Anta at : $v_{e} = v_{RF} = V_{RF} \cos \omega_{RF} t$
 $v_{b} = v_{LO} = V_{LO} \cos \omega_{LO} t$

$$F_{d} = \dots - \frac{1}{2} \cdot 2V_{LO}V_{RF} \frac{\partial C}{\partial x} \cdot \cos \omega_{LO} t \cdot \cos \omega_{RF} t$$
[der $2\cos \omega_{1} t \cdot \cos \omega_{2} t = \cos(\omega_{1} - \omega_{2})t + \cos(\omega_{1} + \omega_{2})t$]
 $F_{d} = \dots - \frac{1}{2}V_{RF}V_{LO} \frac{\partial C}{\partial x} \cdot \cos(\omega_{RF} - \omega_{LO})t$
 $F_{d} = \dots - \frac{1}{2}V_{RF}V_{LO} \frac{\partial C}{\partial x} \cdot \cos(\omega_{RF} - \omega_{LO})t$

Mikromekaniske mikser-filtre, forts.

- Oppsummering av beregningen
 - Starter med et ikke-lineært forhold mellom spenning og kraft: voltage/force karakteristikk (kvadratisk)
 - Lineariserer: Vp undertrykker ulineariteten
 - Spennings-signalene v_RF og v_LO mikses ned til en mellomfrekvens (kraft), ω_IF = differansen mellom frekvensene!
- Transduser nr. 1 kan koble signalet videre inn i etterfølgende resonator
 - Hvis transduser nr. 2 designes som et mikromekanisk filter med passbånd sentrert om ω_ιF, så får vi en effektiv mikser-filter-struktur

Mikromekaniske mikser-filtre, forts.

- → Mikser-strukturen tilsvarer en funksjons-blokk i et RF-system (senere forelesning)
 - Dette er en komponent som kan erstatte dagens mikser + IF-filter (mellomfrekvens-filter)
 - Mindre kontakt-tap mellom delene og ideelt null DC effektforbruk
 - Det benyttes en <u>ikke-ledende koblings-bjelke</u> for å isolere IFporten fra LO (local oscillator)