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Today’s lecture
• Passive components in RF circuits

– Capacitors, C
– Inductors, L

• Tunable RF MEMS capacitors
– Vertical tunable capacitors
– Lateral tunable capacitors
– Thermal tunable MEMS capacitance
– Piezoelectric actuator tunable capacitors
– Tuning by changing of dielectric material

• RF MEMS capacitance banks
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Passive components in RF circuits

• MEMS capacitors and inductors
– Relevant as replacements for traditional ”off-chip”

passive components
– Tuneability and programability are desired

• MEMS capacitors
– Simple, tunable capacitances

• = varactor (”variable reactor”)
– Programable capacitance banks with fixed C

• MEMS inductors (L14)
– Simple, fixed inductors
– Programable inductance banks with fixed L
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Use of tunable capacitors

• VCO = ”Voltage controlled oscillator”
– Value of C determines the frequency
– Voltage tuned
– VCO has strict requirements on

• Stability
• Low phase noise
• Wide frequency bandwidth

• Tunable filters
• Tunable network
• Impedance matching
• Phase shifters
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MEMS compete with commercial 
semiconductor technologies

• Many discrete Si and GaAs varactors exist
– 30 GHz
– Ex. Q = 30-60 for 0.5-5 GHz (SiGe)
– MEMS varactors not mature enough to replace GaAs

varactors, especially for frequencies below 5 GHz
• MEMS varactors have not developed as fast as  

MEMS switches
– But:  is the RF MEMS component closest to 

commercial applications
– Relative mature technology
– Already, many replacements using MEMS have been 

demonstrated, DC 100 GHz
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Typical characteristics for MEMS varactors

• + Potentially high Q-values
– High Q-value (>100) over a wide frequency band

• Q = 100 – 400 for mm-frequencies
• + Simplicity, compared with alternative 

technologies
• + Capable of sustaining large RF voltage
• + Low cost fabrication on glass, ceramic, high-

resistivity Si-substrate 
– Ex. ”low-cost” 3 – 60 GHz tunable networks and filters

• + More reliable
• + Simple and low-cost packaging
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Why high Q-values?

• Q-factor characterizes loss due to power dissipation in  
elements

• Q should be as high as possible to reduce Insertion 
loss
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Relation between Q-factor and oscillator stability

• Q-factor is critical for RF circuit performance!
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Equivalent circuit for capacitor
• At high frequency 

inductance
– has a characteristic 

self resonance 
frequency

– Inductance should 
be as low as 
possible so the self 
resonance 
frequency is much 
higher than the 
frequency used in 
normal operation
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Impedance and Q-factor for a discrete capacitor

Q-factor given for ωL<<1/ωC

Calculations shown next Rebeiz
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(series)

(Self resonance)

Below self resonance)
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(parallel)

(dominating term at 
low frequencies)
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Challenges for RF MEMS capacitors

• ÷ Tuning ratio for MEMS varactors is small
– 1.2 – 2.5
– For semiconductor varactors: 4 – 6
– Obtain required Tuning Ratio (TR)

• Definition TR: 
• Should be > 2

• ÷ MEMS is sensitive to various noise effects
present for low spring constant, k
– Low k is desired for 3 – 5 V applications
– Is a challenge due to

• Acceleration, RF power self actuation, noise effects

minmax CC
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Parallel plate capacitor

• Basic equations
– Q = V C, I = C dV/dt
– C = ε A / g

• NB! C generally tuned by 3 parameters
– g, gap
– A, area
– ε, dielectric constant
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Tunable RF MEMS capacitors
• Electrostatic actuation is a dominating mechanism for 

tuning
– Low power consumption, simple

• Vertical electrostatic displacement
– Tuning the gap (non-linear change) in parallel plate capacitor

• 2-plate capacitance
• 3-plate capacitance
• Double air-gap capacitance
• Other examples

• Horizontal (lateral) displacement
– Tuning of area (linear change)

• Thermal tunable MEMS capacitance
• Piezoelectric actuator tunable capacitance
• Tuning by change of dielectric material
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Two-plate tunable MEMS capacitance

• Young & Boser, Berkeley
• Gap-tuning
• One plate can move by 

electrostatic actuation
• Equilibrium between 

elastic and electrical 
forces
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Calculation of TR for 2-plate 
capacitance

1

Theoretical TR = 150%. Limited by the pull-in effect
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Young & Bover, Berkeley

• Etching a hole in capacitance 
plate
– For decreased squeezed-film 

damping
– Positive for ”release”-step in 

the process

Varadan
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Implementation

• Typical features for a 
Berkeley 
implementation 

• Surface 
micromachining
– 2 metal layers + Al 

gnd-plane

LTO = Low temperature oxide
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3-plate tunable MEMS capacitance

• TR can be increased by introducing a 3rd plate
– A. Dec & K. Suyama: ”Micromachined Electro-Mechanically 

Tunable Capacitors and Their Applications to RF IC´s” 1998. 
Columbia University
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Calculating TR for 3-plate

TR = 200%, e.g.: can be tuned 100%
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Demonstrated values,
Dec & Suyama:



23Rebeiz:
Dec & Suyama
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Dec & Suyama, contd.

• Process
– Standard 3-layer poly 

surface micromachining 
(MUMP´s) with HF etching 
and ”supercritical drying”

– Poly often used as parallel 
plate due to superior 
mechanical properties 
instead of Al (in spite of Al 
having better conductivity)
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Dec & Suyama, ex.2

Rebeiz
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Double air-gap capacitance

• J. Zou et al, 2000, Univ of 
Illinois

• Why double air-gap?
– Increase TR

• Eliminate pull-in effect
– May deflect down to 1/3 d2

before pull-in 
– TR may increase significantly 

if 1/3 *d2 > d1

• Eg. centre electrode can be 
fully deflected without pull-in!
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Univ of Illinois, contd.
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Univ of Illinois, contd.
Simplified fabrication process

- Cu as sacrificial layer
- Metals: gold & permaloy (Ni-Fe)
- Air-gap: d1 = 2 µm, d3 = 3 µm
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Ex. from Univ of Michigan

Rebeiz
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Ex. from Univ of Michigan, contd.

• Implemented on quartz substrate
• SiO2 sacrificial layer partly etched 2-steps Au membrane
• Q = 120 @ 34 GHz
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Univ of Michigan, discrete 2-valued
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Different segments with multi-gap. May be tuned to 2 or 3 levels. Hystereses properties

Ionescu, EPFL: H. Nieminen et al (Nokia)
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Working principle:
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”Zipper” capacitance

• Ex. zipper cantilever 
capacitance

• Design and fabrication at 
Columbia University
– Long, thin beam deflected 

gradually from one edge
– Small capacitances added 

in parallel
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Ex. from MIT

Softest near edge

Rebeiz
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Univ of Colorado, Boulder

• Digitally controlled individual capacitances
• Has individual plates that may be actuated 

sequentially

Varadan
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Univ of Colorado, Boulder

Each ”plate” coupled with
different width of beam, eg.
different spring constant for
each part

Standard MUMP´s process 
(poly-Si and gold), alumina-substrate

Electrostatic actuation V= 30 V
TR = 4 : 1
Q = 140 @ 750 MHz
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Elevated platform capacitance

• L. Fan et al, 1998
– One of the electrodes may be 

elevated to several hundred 
micrometers above the substrate

• 250 µm elevation, TR 2400%
• ÷ Fine tuning difficult

• Uses actuators pushing the 
structure together
– ”Scratch drive actuator”
– Must implement hinges 



39Ionescu, EPFL
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Self actuation

• Design parallel plate capacitances to handle RF 
power 
– AC applied over the RF MEMS capacitance

• RF frequency does not modulate C-value
– BUT, RMS-value of RF-signal will influence C and 

can induce pull-in by self actuation

• Capacitances for gap-tuning has limited RF 
power handling capability due to small electrode 
gap
– Decrease distance RF breakdown
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Lateral tunable capacitors

• Horizontal displacement
– C can be tuned by changing the area, C = ε A / g
– + No theoretical limit for TR
– + Pull-in effect avoided
– ÷ Photolithography determines precision of 

dimensions
– ÷ More complicated suspension structures?

• Make sure that the movable structure is suspended!

• Comb structure is common
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Ionescu, EPFL: J. J. Yao et al, Rockwell
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Simple comb structure

• Ex. from Rockwell Science Center 
– Inter-digital tunable MEMS capacitance
– One set of combs is stationary, the other set can be 

moved
– Gap is not changing
– Length of comb and finger length limit tuning range
– Can be tuned by an electrostatic micro motor or by 

applying different actuation voltages
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Rockwell Science Center, forts.

Ex. of tuning

VS = RF HS = tuning

Varadan
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Rockwell Science Center, contd.

Rebeiz
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Rockwell Science Center, contd.

Rebeiz
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Thermal tunable parallel-plate MEMS capacitance

• Use hot and cold arms
– A high resistivity arm will be hotter and deform more

• Differential thermal expansion

• Challenges with this technology 
– Power dissipation
– Low speed
– But removes the pull-in limitation!
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Univ of Colorado

Z. Feng et al, Univ of Colorado: Design and Modeling of RF MEMS 
Tunable Capacitors Using Electro-thermal Actuators

Rebeiz
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Temperature gradient causes a vertical displacement

Ionescu, EPFL
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Electro-thermal tuning

Varadan



51

Variable capacitors in CMOS-MEMS
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CMOS-MEMS:
Lateral displacement due to different
stress gradients in metal and
dielectrics



Different thermal
expansion coefficients
for Al and dielectrics
causes movement upon
heating

53



54Carnegie Mellon University



55Carnegie Mellon University
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Vertical curling upon post-CMOS release

The effect can be used
for making variable C

National Chung Hsing Univ,
Taiwan, Dai et al
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Piezoelectric tuning
A bias voltage causes the capacitor plate to move vertically

+ Low drive-voltage
+ Linear tuning of capacitance

Two of the beam lengths increase

Rebeiz



58Rebeiz
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Dielectric tunable capacitances

• Change the material 
properties between 
plates
– DC bias voltage can 

change electrical 
properties

• Dielectric layer
• Dielectric constant, ε

– Ferro-electric thin-films, 
Var fig. 4.48 
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University of Michigan

Movable dielectric membrane
between fixed plates, - masking
the effective area

Rebeiz
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Univ of Micigan, explanation

• Principle: both top and bottom are rigid
• Tuning by a movable dielectric membrane  

(high-k = ε) that is electrostatic actuated
• Performance parameters

– IC compatible technology (<200 ° C), post CMOS
– Electroplated metal + surface micromachining
– Movable dielectric Nitride membrane
– No pull-in effect
– Low actuation voltage < 10 V with k = 0.187 N/m
– TR = 40%
– Q = 218 @ 1 GHz for C = 1.14 pF design (maybe the 

highest Q published!)
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Univ of Micigan, contd.

Rebeiz
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RF MEMS capacitance banks

• Use of programmable capacitance banks
– Use an ”array” of fixed capacitances
– Connect to the desired C-value
– MEMS switches used for connecting
– Can be programmed using a digital signal 

– Both series and shunt configurations are possible



64Ionescu, EPFL
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Eliminate influence of thermal stress

• One example
• H. Nieminen et al: ”Design of a Temperature-

Stable RF MEMS Capacitor, J MMSyst, vol 13, no 
5, 2004:

• Design capacitance into a  frame-structure
• Use frame to compensate the thermal induced 

stress
• Anchor the capacitance in such a way that when 

the frame is deformed, minimal stress is induced 
on the capacitance itself

– Ex. corners displace very little
– Anchor the capacitance in the corners!
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