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Today’s lecture

• MEMS - function
– Transducer principles
– Sensor principles

• Methods for RF MEMS modeling
– 1. Simple mathematical models
– 2. Convert to electrical equivalents
– (3. Analyzing  using Finite Element Methods)

• L4
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Transducers for (RF) MEMS

• Electromechanical transducers
– Transforming

electrical energy mechanical energy
• Transducer principles

– Electrostatic
– Electromagnetic
– Electro thermal
– Piezoelectric
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Transducer principles
• Electrostatic transducers

– Principle: Forces between electric charges 
• ”Coulombs law”

– Stored energy when mechanical or electrical work is performed 
on the unit can be converted to the other form of energy

– The most used form of electromechanical  energy conversion
– Fabrication is simple

– Often implemented using a capacitor with movable plates
• Vertical movement: parallel plates
• Horizontal movement: Comb structures
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Electrostatic transducers
• + Beneficial due to simplicity
• + Actuation controlled by voltage

• voltage charge attractive force movement

• + Movement gives current
• movement variable capacitor current when voltage is 

constant

• ÷ Need environmental protection (dust)
• Packaging required (vacuum)

• ÷ Transduction mechanism is non-linear
• Gives distortions (force is not proportional to voltage)
• Solution: small signal variations around a DC voltage
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Transducer principles, contd.

• Electromagnetic transducers
– Magnetic  winding pulls the element

• Electro thermal actuator
– Different thermal expansion on different 

locations due to temperature gradients
• Large deflections can be obtained
• Slow
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Transducer principles, contd.
• Piezoelectric transducers

– In some anisotropic crystalline materials the charges 
will be displaced when stressed electric field

• stress = ”mechanical stress”
– Similarly, strain results when an electric field is 

applied
• strain = ”mechanical strain”

– Ex. PZT (lead zirconate titanates) – ceramic materials

• (Electrostrictive transducers
– Mechanical deformation by electric field

• Magnetostrictive transducers
– Deformation by magnetic field)
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Comparing different principles
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Sensor principles

• Piezoresistive detection

• Capacitive detection

• Piezoelectric detection

• Resonance detection



10

Sensor principles

• Piezoresistive detection
– Resistance varies due to external  

pressure/stress
– Used in pressure sensors

• deflection of membrane
– Piezo-resistors placed on membrane where 

strain is maximum
– Resistor value is proportional to strain
– Performance of piezoresistive micro sensors 

are temperature dependent
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Pressure sensor 

Senturia
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Sensor principles, contd.
• Capacitive detection

– Exploiting capacitance variations
– Pressure electric signal

• Detected by change in  oscillation 
frequency, charge, voltage (V)

– Potentially higher performance 
than piezoresistive detection

• + Better sensitivity
• + Can detect small pressure 

variations
• + High stability
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Sensor principles, contd.

• Piezoelectric detection
– Electric charge distribution changed due to 

external force electric field current

• Resonance detection
– Analogy: stress variation on a string gives 

strain and is changing the “natural”
resonance  frequency
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Methods for modeling RF MEMS

• 1. Simple mathematical models
– Ex. parallel plate capacitor

• 2. Converting to electrical equivalents

• 3. Analysis using Finite Element 
Methods
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1. Simple mathematical models
• Equations, formulas describing physical 

phenomena
– Simplification, approximations 
– Explicit solutions for simple problems

• linearization  around a bias point
– Numerical solution of the set of equations

• Typical differential equations

• + Gives the designer insight/ understanding 
– How the performance changes by parameter 

variations
– May be used for initial estimates
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Ex. On mathematical modeling

• Important equatins for many RF MEMS 
components: 
– Parallel plate capacitor!

– Electrostatic actuation of the capacitor with 
one spring-suspended plate

– Calculating  ”pull-in”
• Formulas and figures 
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Electrostatics
Electric force between charges: Coulombs law
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Capacitance
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Parallel plate capacitor

Attractive force between plates
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Movable capacitor plate

• Assumptions for calculations:
– Suppose air between plates
– Spring attached to upper plate

• Spring constant: k
– Voltage is turned on

• Electrostatic attraction
– At equilibrium

• Forces up and forces down are in balance 
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Force balance

k = spring constant

deflection from start position

d0 = gap at 0V and zero spring strain
d = d0 – z
z=d0 – d

Force on upper plate at V and d:

= 0 at equilibrium
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Two equilibrium positions

ς = 1 – d/d0 Senturia
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Stability

Suppose the gap decreases

• How the forces develop when d decreases
– Suppose a small perturbation in the gap at constant voltage

If the upward force also deceases, 
the system is UNSTABLE!
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Stability, contd.

Stability condition:

Pull-in when:
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Pull-in

Pull-in when:
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Pull-in

Senturia
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2. Converting to electrical 
equivalents

• Mechanical behavior can be modeled using 
electrical circuit elements
– Mechanical structure simplifications equivalent 

electrical circuit
• ex. spring/mass R, C, L

– Possible to “interconnect” electrical and mechanical 
energy domains

• Simplified modeling and co-simulation of electronic and 
mechanical parts of the system

– Proper analysis-tools can be used
• Ex. SPICE
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Converting to electrical equivalents, 
contd.

• We will discuss:
– Needed circuit theory
– Conversion principles

• effort - flow
– Example of conversion

• Mechanical resonator

– In a future lecture:
• Co-existence and coupling between various 

energy domains
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Circuit theory 

• Basic circuit elements: R, C, L
• Current and voltage equations for basic 

elements (low frequency)
– Ohms law, C and L-equations

• V = RI, I = C dV/dt, V = L dI/dt
– Laplace transformation

• From differential equations to algebraic (s-polynomial)
• Complex impedances: R, 1/sC, sL

• Kirchhoffs equations
– Σ current into nodes = 0, Σ voltage in a loop = 0
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Effort - flow
• Electrical circuits are described by a set of variables: 

conjugate power variables
– Voltage V: across or effort variable
– Current I: through or flow variable
– An effort variable drives a flow variable through an impedance, Z

• Circuit element is modeled as a 
1-port with terminals

– Same current (f = flow) in 
and out and through the element
• Positive flow into a terminal defining a positive effort
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Energy-domains, analogies

• Various energy domains exist
– Electric, elastic, thermal, for liquids etc.

• For every energy domain it is possible to 
define a set of conjugate power variables
that may be used as basis for lumped 
component modeling using equivalent 
circuits elements

• Table 5.1 Senturia ->
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Ex. of conjugate power variables



Conjugate power variables: e,f
• Assume conversion between energy domains 

were the  energy is conserved!
• Properties

– e * f = power
– e / f = impedance

• Generalized displacement represents the 
state, f. ex. position or charge

– e * q = energy
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Generalized momentum
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– Mechanics:  impulse
• F*dt = mv – mv0

– General: p * f = energy
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Ex.: Mechanical energy domain
force

velocity

position

momentum

force x time

work/time = power

force*distance = work =
energy

energy
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Ex.: Electrical energy domain

voltage

current

charge

power

energy
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e V - convention
• Senturia and Tilmans use the

e V –convention
• Ex. electrical and mechanical circuits

– e V (voltage) equivalent to F (force)
– f I (current) equivalent to v (velocity)
– q Q (charge) equivalent to x (position)
– e * f = ”power” injected into the element

H. Tilmans, Equivalent circuit representation of electromagnetical transducers:
I. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996
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Other conventions
• Different conventions exist for defining through-

or across-variables

*
alternativt
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Generalized circuit elements
• One-port circuit elements

– R, dissipating element
– C, L, energy-storing elements
– Elements can have a general function!

• Can be used in various energy domains
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Generalized capacitance

Compare with a simplified case:
- a linear capacitor

definisjon av C
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Generalized capacitance, contd.

Capacitance is associated with stored potential energy

Co-energy:
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Energy stored in parallel plate capacitor
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Mechanical spring

Hook´s law: xkF ⋅=

Compare with capacitor 21
2
1)( Q

C
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1/C equivalent to k

Stored energy
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”Compliance”

• ”Compliance” = ”inverse stiffness”

• Stiff spring small capacitor
• Soft spring large capacitor

k
Cspring

1
=
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Generalized inductance
Energy also defined as:

Energy = stored kinetic energy
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Ex.: Electrical inductor

Co-energy:
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Analogy between mass  
(mechanical inertance) and inductance L

A mechanical system has linear momentum: p = mv

Flow:

Co-energy:
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Analogy between m and L

Compare with:

L is equivalent to m

m = L inertance

Mechanical inertance = mass m
is analog to inductance L
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Interconnecting elements

• e V follows two basic principles

– Elements that share a common flow , and 
hence a common variation of displacement, 
are connected in series

– Elements that share a common effort are 
connected in parallel
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Ex. of interconnection:

”Direct transformation”
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m
k

LC
== 00 ,1 ωω

System without damping (b=0, R=0)
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System without damping, contd.
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With damping



57

Damped system, contd.
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What is the meaning of ”damping time”?

Power

initial conditions
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Q-factor and damping time

General equation

mechanical electrical
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Amplitude at resonance for forced vibrations
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