INF5490 RF MEMS

L3: Modeling, design and analysis

S2008, Oddvar Sgrasen
Department of Informatics, UiO



Today's lecture

« MEMS - function

— Transducer principles
— Sensor principles

* Methods for RF MEMS modeling

— 1. Simple mathematical models
— 2. Convert to electrical equivalents

— (3. Analyzing using Finite Element Methods)
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Transducers for (RF) MEMS

 Electromechanical transducers

— Transforming
electrical energy €<-> mechanical energy

* Transducer principles
— Electrostatic
— Electromagnetic
— Electro thermal
— Piezoelectric




Transducer principles

 Electrostatic transducers

— Principle: Forces between electric charges
* "Coulombs law”

— Stored energy when mechanical or electrical work is performed
on the unit can be converted to the other form of energy

— The most used form of electromechanical energy conversion
— Fabrication is simple

— Often implemented using a capacitor with movable plates
» Vertical movement: parallel plates
» Horizontal movement: Comb structures



Electrostatic transducers

+ Beneficial due to simplicity

+ Actuation controlled by voltage
» voltage - charge - attractive force - movement

+ Movement gives current

* movement = variable capacitor = current when voltage is
constant

+ Need environmental protection (dust)
« Packaging required (vacuum)

+ Transduction mechanism is non-linear

» Gives distortions (force is not proportional to voltage)
« Solution: small signal variations around a DC voltage



Transducer principles, contd.

» Electromagnetic transducers
— Magnetic winding pulls the element

 Electro thermal actuator

— Different thermal expansion on different
locations due to temperature gradients
 Large deflections can be obtained
* Slow



Transducer principles, contd.

 Piezoelectric transducers

— In some anisotropic crystalline materials the charges
will be displaced when stressed - electric field

 stress = "mechanical stress”
— Similarly, strain results when an electric field is
applied
« strain = "mechanical strain”
— Ex. PZT (lead zirconate titanates) — ceramic materials

* (Electrostrictive transducers
— Mechanical deformation by electric field
Magnetostrictive transducers
— Deformation by magnetic field)



Comparing different principles

Table 1.4 Comparison of electromechanical transducers

Actuator Fractional Maximum Efficiency Speed
stroke (%) energy
density
(Jem™)
Electrostatic 32 @ High Fast
Electromagnetic 50 (.025 Low Fast
Piezoelectric 0.2 @ High Fast
Magnetostrictive 0.2 0.07 Low Fast
Electrostrictive 4 0.032 High Fast
Thermal 50 20 Low

Source: Wood, Burdess and Hariss, 1996.



Sensor principles

Piezoresistive detection
Capacitive detection
Piezoelectric detection

Resonance detection



Sensor principles

 Piezoresistive detection

— Resistance varies due to external
pressure/stress

— Used in pressure sensors
» deflection of membrane

— Piezo-resistors placed on membrane where
strain is maximum

— Resistor value is proportional to strain

— Performance of piezoresistive micro sensors
are temperature dependent
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Sensor principles, contd.

« Capacitive detection
— Exploiting capacitance variations

— Pressure - electric signal
« Detected by change in oscillation
frequency, charge, voltage (V)
— Potentially higher performance
than piezoresistive detection
« + Better sensitivity

« + Can detect small pressure
variations

« + High stability

rEtectrﬂde

Figure 1.19 Capacitive sensing structure
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Sensor principles, contd.

 Piezoelectric detection

— Electric charge distribution changed due to
external force - electric field = current

« Resonance detection

— Analogy: stress variation on a string gives
strain and is changing the “natural”
resonance frequency
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Methods for modeling RF MEMS

* 1. Simple mathematical models
— Ex. parallel plate capacitor

« 2. Converting to electrical equivalents

* 3. Analysis using Finite Element
Methods
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1. Simple mathematical models

« Equations, formulas describing physical
phenomena
— Simplification, approximations
— Explicit solutions for simple problems
* linearization around a bias point
— Numerical solution of the set of equations
 Typical differential equations
+ + Gives the designer insight/ understanding

— How the performance changes by parameter
variations

— May be used for initial estimates
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Ex. On mathematical modeling

* Important equatins for many RF MEMS
components:

— —> Parallel plate capacitor!

— Electrostatic actuation of the capacitor with
one spring-suspended plate

— Calculating "pull-in”
 Formulas and figures -
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Electrostatics

Electric force between charges: Coulombs law

+q -q
Q—> 4—0 F = 1 . ql(jz
F Are, I
- _ _ E
Electric field = force pr. unit charge E "0
0

Work done by a force = change in potential energy a

Potential, V = potential energy pr. unit charge V==

b
Voltage = potential difference V. -V, = _[E-di
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Capacitance

e Definition of capacitance c-2
) Vab
b E d Vab
A ‘ -Q
Surface charge density = o Voltage
_o_ Q1 Q
&y A &, Vab:E.d:AgO.d
C= Q_ & A
vV, d
Energy stored in a capacitor, C, . dv
that is charged to a voltage V, ata current 1=Q=C ot
| dv k: 1 £,A
U :jv-l-dt:jv-C—-dt:ij-dv:—CVO2 =20
dt ) 2 2d

V,’
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Parallel plate capacitor
i g
C-~

z
-+ %,; A
C”’,ﬁ djelelct rhum
_,EQ/T/ & = cﬂ(iﬁ/dz/us/( puw‘ﬁlb%&f

—
—

Attractive force between plates

2
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Movable capacitor plate

* Assumptions for calculations:
— Suppose air between plates
— Spring attached to upper plate

« Spring constant: k
— Voltage is turned on
 Electrostatic attraction
— At equilibrium
* Forces up and forces down are in balance -
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Force balance

% k k = spring constant

+V

” d L zv TF = k-x
o] —-:[:._ v Sf/ulg

deflection from start position

dO = gap at OV and zero spring strain
d=d0-z
z=d0 —-d

Force on upper plate at V and d:

VZ
g =~ €2
24

+ 4 (6(0__50 = 0 at equilibrium
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Two equilibrium positions
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Figure 6.7. Electrical and spring forces for the voltage-controlled parallel-plate electrostatic
actuator, plotted for V/Vp; = 0.8.
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Stability

 How the forces develop when d decreases

— Suppose a small perturbation in the gap at constant voltage

SFMZ = %JJSJ
od
V

0 Frdd = (MV& ﬂz) 0 d

Suppose the gap decreases gd <O

If the upward force also deceases,
the system is UNSTABLE! 5 Fad < O
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Stability, contd.

DE.L

Stability condition: il s
aollty condition @of / < O
y
L > €AV
:(;"'3“
2
Pull-in when: ﬁ = e /PI
J 3
PI
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Pull-in when:
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Pull-in
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Figure 6.8. Normalized gap as a function of normalized voltage for the electrostatic actuator.
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2. Converting to electrical
equivalents

* Mechanical behavior can be modeled using
electrical circuit elements

— Mechanical structure - simplifications = equivalent
electrical circuit
« ex.spring/mass 2> R, C, L
— Possible to “interconnect” electrical and mechanical
energy domains

« Simplified modeling and co-simulation of electronic and
mechanical parts of the system

— Proper analysis-tools can be used
 Ex. SPICE
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Converting to electrical equivalents,
contd.

* We will discuss:
— Needed circuit theory

— Conversion principles
o effort - flow

— Example of conversion
 Mechanical resonator

— |In a future lecture:

» Co-existence and coupling between various
energy domains
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Circuit theory

 Basic circuit elements: R, C, L

« Current and voltage equations for basic
elements (low frequency)

— Ohms law, C and L-equations
- V=RI, |1=C dV/dt, V=L dl/dt

— Laplace transformation
» From differential equations to algebraic (s-polynomial)
= Complex impedances: R, 1/sC, sL
» Kirchhoffs equations

— 2 current into nodes = 0, 2 voltage ina loop =0
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Effort - flow

Electrical circuits are described by a set of variables:
conjugate power variables

— Voltage V: across or effort variable
— Current I: through or flow variable
— An effort variable drives a flow variable through an impedance, Z

Circuit element is modeled as a . >
1-port with terminals . Lumped
Element
— Same current (f = flow) in . 0—

and out and through the element
« Positive flow into a terminal defining a positive effort
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Energy-domains, analogies

* Various energy domains exist
— Electric, elastic, thermal, for liquids etc.

 For every energy domain it is possibleto
define a set of conjugate power variables
that may be used as basis for lumped
component modeling using equivalent

circuits elements

« Table 5.1 Senturia ->
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EX. of conjugate power variables

Energy Domain Effort Flow Momentum Displacement
Mechanical Force Velocity Momentum Position
translation F T,V p T
Fixed-axis Torque Angular Angular Angle

rotation T velocity momentum 0
' w J
Electric Voltage Current Charge
circuits Vv 1% Q
Magnetic Magnetomotive Flux rate : Flux
circuits force ¢ )
MMF
Incompressible Pressure Volumetric flow Pressure Volume
fluid flow B Q momentum |4
I
Thermal Temperature Entropy flow rate Entropy
S S




Conjugate power variables: e,f

Assume conversion between energy domains
were the energy is conserved!

Properties

— e * f = power

— e/ f =impedance

Generalized displacement represents the
state, f. ex. position or charge

t

f(t) =q(t) q(t) = [ f (t)dt+a(t,)

— e * q = energy b
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Generalized momentum

p(t) = [ e(t)dt + p(t,)

— Mechanics: impulse
e F*dt = mv —mv0

— General: p * f = energy
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EX.: Mechanical energy domain

AT ( /W%() force

ﬁ =i X ( /hfw/fgﬁul) velocity

g =X ( POSI'SJ’on) . f i) position

Porp (rometun) JEAE o
(k’"“’/l x hd ) force x time

2 f —> F')E z F ax ” aib_r"_f‘_g. i e/w work/time = power

C.i —P F*X z bm%x M ‘=aab(x'of‘-'— {nm(j" Lonrgre;Sistance=work=

= = ;
()f -2 f’ X =z muo-t = myg = 4/'013(, energy
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Ex.: Electrical energy domain

e -V (spomin)
{ = T C sf)la')m) current
q_ - JIOU' - Q C (aa{m.vj ) charge
P = M.q.

ﬁf = V' I - ﬂ!/&b{l power

e-g - V.Q - fodf 2 majc' energy
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e 2 V - convention

Senturia and Tilmans use the
e—~>V —convention
EXx. electrical and mechanical circuits

— e 2 V (voltage) equivalent to F (force)
— f =2 | (current) equivalent to v (velocity)
— g2 Q (charge) equivalent to x (position)

— e * f ="power” injected into the element

H. Tilmans, Equivalent circuit representation of electromagnetical transducers:
|. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996
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Other conventions

 Different conventions exist for defining through-
or across-variables

Table 5.2.  Different conventions for assigning circuit variables.

Convention  Across Through Product Principal Use
Variable Variable

e=V * e f power electric circuit elements
f—V alternativt f e power mechanical circuit elements
Thermal T Q Watt-Kelvin  thermal circuits

HDL q e energy HDL circuit representation

of mechanical elements
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Generalized circuit elements

* One-port circuit elements
— R, dissipating element
— C, L, energy-storing elements

— Elements can have a general function!
 Can be used in various energy domains

f

Resistor

f

P ik

-
e

£

— C e L

o——

Capacitor Inductor
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Generalized capacitance

e = ®(g)

Figure 5.5. Illustrating energy and co-energy for a generalized capacitor.

Compare with a simplified case:
- a linear capacitor

QR - \/'C, definisjon av C
vV =1 .Q
C Area A lg
(! —’)‘ / )
£ = $ v
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Generalized capacitance, contd.

Capacitance is associated with stored potential energy

@ ra
W(q) = /ﬁ edq = /0 ®(q) dg (5.10)
] e = ®(g)
Co-energy: *’+fnrﬁ;m73;.--l !
|
Energy :I
W*(e) = eq—W(q) (5.11) i
/ u

W*(e1) =/:1 gde = f:’ d1(e) de (5.12)



Energy stored in parallel plate capacitor

Q Qq Qz
Energy: W(Q):Ie.dq:IE.dq:E

\Y \Y CV2
Co-energy: W'() :jq.de:jc.v.dV:T
0 0

W™ (V) =W (Q) for linear capacitance
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Mechanical spring

k
VVW\——>F
>
X
Hook's law: F=k-X
Stored energy  W(z1) = fo ? Plo)dz = %kx*f (5.18)
| | 11
Compare with capacitor W(Q) = E'E'Q

Q  displacement
X1 displacement

- 1/C equivalent to k
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"Compliance”

« "Compliance” = "inverse stiffness”

1
Cspring = E
« Stiff spring = small capacitor

« Soft spring - large capacitor
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Generalized inductance

Energy also defined as:

f"/) " /QW' X Mommzlum
P /
fﬂ 1} v m )

Energy = stored kinetic energy

0 45



Ex.: Electrical inductor
oo
Co-energy: W ({) = f(’({) 6{/
0

dL

p - jw@/ frab - oG- far
P(f)-p(1): LT

1,
W’F(/,)‘Wk(f,) ‘-'jl_'f'cff’* ’_zf.LIIQ
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Analogy between mass
(mechanical inertance) and inductance L

A mechanical system has linear momentum: p = mv

F|OW % 1V =
W(p,)- f%)cff fﬁc@r

W*(fv')f (%) dur . f(m..r)cw L

N\
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Analogy between m and L

- T,
W) W s) - [vrdr- fo7?
(6]

Compare with:

-

% _ 1
W (fv:)’ "2 MY
I‘ = I&OW
01 - —_—h—

L is equivalent to m

m = L inertance

Mechanical inertance = mass m
is analog to inductance L

2
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Interconnecting elements

* e - V follows two basic principles

— Elements that share a common flow , and
hence a common variation of displacement,
are connected In series

— Elements that share a common effort are
connected in parallel
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Ex. of interconnection:

’Direct transformation”

X
—> ||
—> X I
1/k
m ——>F F -
b
Spring-mass-dashpot system Equivalent circuit

Figure 5.9. Translating mechanical to electrical representations.
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Mechanical / Electrical Systems

Input : external force F

Output : displacement x
mx(t)+bx(t)+ Kx(t) =F

m mass, b damping, K stiffness

Transfer function :

1
x -
— m
. 2, b K
B

m m

H(s)=

—0

||
~

Input : voltage V,

Output : voltageV,
Lg(1) + Rg(1) + = q(1) =7,

L induct., R resist., C capacit.

Transfer function:

1
H(S):V" = L

2 R 1
Vi s +Zs+—

i

ent of Engineering Ed Kolesar
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Mechanical / Electrical Systems

L

Alternative circuit:

Input : voltage V.

Output : voltage V,

L§(1) + = 4(1) + =q() =7,

L inductance, R resistance, C capacitance
Transfer function :

1
H(s)= Lo = Lc

2 1 1
V. s + =S+

I

Texas Chnshian University Department of Engineening Ed Kolesar
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Resonators

e Analogy between mechanical and electrical system:
» Mass m - inductivity £
» Spring K - capacitance C
= Damping b - resistance R (depending where KR is placed in circuit)

e Solution to 2nd order differential equation:

2
@,

s+,

H(S) = Ou

S+
w, =27, natural frequency
@, = \/E mechanical system, o, = ,f% electrical system
O quality factor




System without damping (b=0, R=0)

z

#{S) . Wo _ wd"
Sz‘f' Woz (S+JLU¢)C.S -_)Pwo)
“)“*Jo S’p!am _
% > /H'(on>[ = 62

% ’J'wo

) - 7y e

o
w
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System without damping, contd.

H(jw)

{
f—(%Q*
{H(Jw)(f—“{ nar  w << we OdB

{H)’w) [- —(%O)z R o PP sy, ‘“I/Od%/m&
H 48T *

v

=0 dB/ duleg cle
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With damping
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Damped system, contd.
T
’f\_,,.——wo s'pfa/u

Wo

ya

BF

Wo 4 1 /Z‘“
C‘B-)._-:b—_:—_ Clq = Jf ==
mM T M
g P R
! RT  K&m

Y



Mechanical Resonator

Frequency and
phase shift under
damping:

Energy dissipation:

x(1) = Ae_%f cos(a,f + @)

= 3 damping time

, 1 b
W, = @, 1-4 — =0, 1-4]{

@ phase shift

E(®)=Ee "’
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Power

What is the meaning of "damping time™?

T = CfZwaggﬁg }QLUL

“%2" N Y2 {

© f G
t=T

E ol

]x(f)fz/ S

<
t-r

- Yor

x(t) - e Com WJ‘*‘F)
<(0) = A co f (n/)@dMMﬁo&%

initial conditions
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Q-factor and damping time

GM %M;j General equation
w
S 4+ —< s + W 2 = o
a o
rg [ 2
= S + ’E' s+ w, = 0
Q = Wof
= M . L .
(4 7 kel T= = bk
mechanical R electrical
_ Wem
Q mele = y @df w, L
R
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Amplitude at resonance for forced vibrations

Gain [
(dB)

@ @ (1/5) '
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