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Lecture overview INF5490

» Basic topics
— L1: Introduction. MEMS in RF
— L2: Fabrication
— L3: Modeling, design and analysis (part 1, 2)

* Main topic of today’s lecture:

Some characteristics and challenges of
RF circuit design



Today's lecture

Modeling: 3. Analysis using Finite Element Methods

— (from "Modeling, design and analysis”)

RF circuit design

— Electromagnetic waves
— Skin depth
— Passive components at high frequencies

Transmission line theory

Two-port networks
— S-parameters

Filters
Q-factor



3. Finite Element Method analysis

« Characteristics
— Meshing the 3D model into smaller elements
— Solve mathematical equations for interaction between elements
— Many iterations needed before a stable solution is obtained

 + More realistic results

— Simple mathematical models are approximations
* Not accurate enough for complex structures
« Ex. Beam deflection: non-uniform charge distribution <—-> force

» Use of FEM-simulations
— CoventorWare
— Examples of bulk process modeling -2



Finite Element Methods

* Features
— + good precision
— + coupled electrostatic/ mech interaction
— + can cope with irregular topologies
— - insight into parameters influence is lost
— - only small parts are practical

 Critical issues
— proper system selection, building the 3D model
— partitioning (meshing) , simulation parameters




3D model building: process
specification
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3D model
building: layout

Make accompanying
layout




n-epi layer, for thin diaphragm
and release-etched structures

MultiMEMS, typical
features

Qurface conductor |

DRIE release etch
through epi-membrane

Anodically bonded top cap with pre-st
sealed cavity and wire-bonding area

ructured

p-type surface
piezoresistor

p*-type buried conductor for

crossing anodic bending area

Bondpad area

a9

Anisotropically etched cavity

p-type substrate

p-type buried

Diffused n-well for seismic mass, diaphragm, piezoresistor
boss, ... definition

Anodically bonded glass with

through-hole and/or sealed cavity




How to model the MultiMEMS bulk
process in CoventorWare?

* Problem:
— the process is not based on “stacking layers”

* Create a pseudo process!
— simplified, but matching

— transfer to a procedure of stacking layers
* some layers with zero spacing
» slicing the bulk material into sub-layers in contact
* make etchings and re-fillings
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Surface conductor is made
visible

Epi-layer is invisible
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3D model building: expansion

(some layers invisible)
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Complete structure with some layers made invisible
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3D modeling procedure

* To introduce one diffusion:
— etch base material
— fill in implanted material
« use “deposit planar” with thickness =0
« To introduce multiple overlapping diffusions:

— etch base material with all diffusion masks (the
deepest first)

— fill in the deepest implanted material
— re-etch the remaining diffusion openings
— fill in the next deepest implant etc.

16



Meshed model

 Mirror meshed
by tetrahedrons
— 23 um, 3 ym

 Electrodes
meshed by
Manhatten
bricks
— S UM

« Rather coarse
dim due to pull-
In analysis
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Mirror deflection, snapshot
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Simulation: pull-in

MemMech Results: mirror_ani_num/cs_1_mirror.mbif | 21 Nov 20¢3 | Coventor Data

‘ J Displacement |Uj:  0.0E+CO 2 BE-C2 5.2E-02 7.8E-02 1.0E-01
COVENTOR





Today's lecture

Modeling: 3. Finite Element Method analysis

RF circuit design

— => "Multidisciplinary”

— Electromagnetic waves

— Skin depth

— Passive components at high frequencies

Transmission line theory

Two-port networks
— S-parameters
Filters

Q-factor
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RF- and microwave design is multidisciplinary

* Theoretical fundament
— Electromagnetism
— Signal processing

 Technology, practical aspects
— Circuit theory
— Kirchhoff's laws for current and voltage

« Some topics in today’s lecture is also covered in
INF5480
— "RF-circuits, theory and design” (Tor Fjeldly)
— Here: - Critical issues covered in one lecture!
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RF circuit design

* |Important questions

— How do circuits behave at high frequencies?
— Why do component functionality change?

— At what frequencies is standard circuit analysis not
valid?

— What “new” circuit theory is needed?
— How can this theory come into practical use?

« 2 Figures and equations from R. Ludwig et al: "RF Circuit Design”
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Electromagnetic waves

» Electric and magnetic fields

H=Hjy

Figure 1-3 Electromagnetic wave propagation in free space. The electric and
magnetic fields are recorded at a fixed instance in time as a function of space
(X, ¥ are unit vectors in x- and y-direction).

23



Important wave parameters:

Electric field E, = E,, cos(at — fz)
Magnetic field H, = H,, cos(at — S2)
Angular frequency: w Propagation constant: 3

Wave is periodic, repeating when: f-z=2x

27
Wavelength: 22/1:?

The wave propagates a distance A during the time T = period

Propagation velocity: V,-T =4
(in vacuum: c) 1 5
T p 2 p
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Important wave parameters, contd.

For a position z = constant, the wave repeats after a period T:
wl=2T1m and w=2m1m/T=21mf

in which f = frequency
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Frequency and wavelength

* Invacuum: A " f=cC

— Increasing frequency = decreasing
wavelength

At high frequencies (RF) is the wavelength
comparable to the circuit dimensions

-
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Table 1-1 |EEE Frequency Spectrum

Frequency Band Frequency Wavelength
ELF (Extreme Low Frequency) 30-300 Hz 10,000-1000 km
VF (Voice Frequency) 300-3000 Hz 1000-100 km
VLF (Very Low Frequency) 3-30 kHz 100-10 km
LF (Low Frequency) 30-300 kHz 10-1 km
MF (Medium Frequency) 300-3000 kHz 1-0.1 km
HF (High Frequency) 3-30 MHz 100-10 m
VHF (Very High Frequency) 30-300 MHz 10-1 m
UHF (Ultrahigh Frequency) 300-3000 MHz 100-10 cm
SHF (Superhigh Frequency) 3-30 GHz 10-1 cm
EHF (Extreme High Frequency) |[30-300 GHz 1-0.1 cm
Decimillimeter 300-3000 GHz 1-0.1 mm
P Band 0.23-1 GHz 130-30 cm
L Band 1-2 GHz 30-15 cm
S Band 2-4 GHz 15-7.5 cm
C Band 4-8 GHz 7.5-3.75 cm
X Band 8-12.5 GHz 3.75-24 cm
Ku Band 12.5-18 GHz 2.4-1.67 cm
K Band 18-26.5 GHz 1.67-1.13 cm
Ka Band 26.5-40 GHz 1.13-0.75 cm
Millimeter wave 40-300 GHz 7.5~1 mm
Submillimeter wave 300-3000 GHz 1-0.1 mm
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Two important laws

 Faradays law
— Varying magnetic field induces current

« Amperes law
— Current is setting up a magnetic field

28



Faradays law

Figure 2-15 The time rate of change of the magnetic flux density induces a

voltage.
_ dere  —
$E dI:——”B-dS
=magnetic  flux — density

u-H
permeability = 4, - 1,
= magnetic _ field

B
B
Y7
ﬁ
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Amperes law

{4

Line path / b

Figure 2-13 Ampére’s law linking the current flow to the magnetic field.

| =¢H -dl=[[J-dS
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"Skin depth”

« Signal transmission at increasing frequency
— DC signal:

» Current is flowing in whole cross section

— AC signal (arguments for the operation):

 Varying current induces an alternating magnetic field
(Amperes law)

« Magnetic field strength higher for small radius
* Increased time variation of magnetic field in centre

» Varying magnetic field induces an electric field (Faradays
law)

 Induced electric field (opposing the original one) increases in
strength towards the centre of the conductor
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Skin depth, contd.

Resistance R increases
towards centre of
conductor

— Current close to surface at
increasing frequency

— Formula: "skin-depth” -

» Current density reduced O = (mfuc -1/2
by a factor 1/e (/1O cong)

What does this mean for
practical designs? -
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"Skin-depth”
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0.8 ¢
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0.5
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Figure 1-4 Skin depth begawor of copper 6,
G, = 40.0x10° S/m, and gold GAu

10° 10°

64. 516><10 S/m , aluminum
48. 544><10 S/m.

33



Current density for various frequencies

2
1.8
1.6}
1.4}
] iz_ 1 kHz -1
el \*'
5
08} 7
10 kHz
0.6
04f  100kHz 1 GHz| |}
0.2¢ \N H]h%.
0

0 01 02 03 04 05 06 07 08 09 |
r, mm

Figure 1-5(b) Frequency behavior of normalized AC current density for a
copper wire of radius a=1 mm.
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Passive components at high frequencies

« Equivalent circuit diagram for resistor

C.
Ll!é[z,
——J00——W

Figure 1-8 Electric equivalent circuit representation of the resistor.
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Calculating resistor-impedance

Simplified model:

HM»{(IE_:&"‘"’H
| v~ -

R B G:%JrSC
Z=SL+ 1 1 =SL + R
L sC 1+sRC
R
2(j@) = joL +—

1+ JoRC
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Impedance versus frequency

3

10'¢

.
10" ideal resistance

10' /

10"} capacitive effect

inductive effect |

\

1Z1, Q

1

10 f

107}

=X

10° T - i
10° 10’ 10° 10 10" 10" 10"
Frequency, Hz

Figure 1-10 Absolute impedance value of a 500-Q thin-film resistor as a
function of frequency.

Limits :
Zz(jo) >R, nar w—0
z(jo) > joL, nar o — ©



Resonance when terms cancel

sL=—— "
1+sRC
LRCs* +Ls+R =0
SR RS
RC LC

1

1 |1
S:_—ij\/ T D22
2RC LC 4R°C
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High frequency capacitor

« Equivalent circuit

C
|
L R, |
—T— W &
—AA—

Figure 1-11 Electric equivalent circuit for a high-frequency capacitor.
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Impedance versus frequency

Real capacitor

10
5 |
—= 10'}
N

10" /‘

Ideal capacitor
10" r :
10* 10° 10" 10"
f,Hz
Figure 1-12 Absolute value of the capacitor impedance as a function of
frequency.
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High frequency inductor

* Equivalent circuit

Figure 1-14 Distributed capacitance and series resistance in the inductor coil.

L R,
} C; I
|
If
Figure 1-15 Equivalent circuit of the high-frequency inductor.
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Impedance versus frequency

Ideal inductor

\

Real inductor

1Z1, Q

10° 10° 10" 10"
f,Hz
Figure 1-17 Frequency response of the impedance of an RFC.
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Transmission line theory

Frequency increases - wavelength decreases ( A)

When A is comparable with component dimensions,
there will be a voltage drop over the component!!

— Current and voltage are not constant

Voltage and current are waves that propagate along
conductors and components

— Position dependent value -
— Signal should propagate along transmission lines

— Reflections, characteristic impedances must be
controlled
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4
Vi —>

/

Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning

(location A) and somewhere in between a wire connecting load to source. =

| E
[!}



Transmission line

A conductor has to be modeled as a
transmission line

z ztAz
12 R, L, I(z+A2)
V)| G=C J‘  V(z+Az2)
vi Ry L, % I :
Z z+Az

Figure 2-3 Partitioning an electric line into small elements Az over which
Kirchhoff's laws of constant voitage and current can be applied.



The line is divided into infinitesimal sub-units

I(_z]}}g I 4 I(z + Az)

A 3
f A

V(z) G=C=F V(z+A2)
: :

Figure 2-17 Segment of a transmission line with voltage loop and current node.
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Use Kirchhoff's laws

« Will give 2 coupled 1.order diff-equations

(R + joL)I(2)Az+ V(z+Az) = V(2) (2.26)
: V(z+Az)-V(z)\ _ dV(z) _ LT .
AIZHBO(- Az )  dz (R+joL)(z) 2:27)
_V(@) _ (R + joL)I(2) | (2.28)

dz
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1(z) - V(z + AZ2)(G + joC)Az = I(z+ Az)

I(z+A2)-1(2) _ dI(z)

i (G+](DC)V(Z)
Alzl—>0 Az “dz
V@ 2y () = 0
dz

k =k, + jk;= J(R+ joL)(G+ joC)

d’l (z)
d7*

—kI()-'O

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

48



Solution: 2 waves

* The solution is waves in a positive and negative
direction

V(z) = Ve 4 v et (2.34)
I(2) = I'e ™™+ 1™ (2.35)
I _ k + —kz ,— +kz
(z) = T +ij)(V e -Ve™) (2.36) (Jmfr.2.27)
+ o
Characteristic line-impedance: z; = Z: =
g I
_(R+joL) _ [(R+joL) |
Z, = =
0 k (G + joC) \2:57)
49




Impedance for lossless transmission line

Z, = JL/C

z=-] 0

Figure 2-23 Terminated transmission line at location z = 0.
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Reflection

* How to avoid reflections and have good
signal propagation?

 Definition of reflection coefficient -

L Z Z

Z

S
C

1 |
z=-] 0

Figure 2-23 Terminated transmission line at location z = 0.
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Reflection coefficient

I = V- < definition of reflection coefficient forz =0
0~ VE
V(z) =V (e +T,-e")
\VARSS
I (Z) _ Z_(e kz _Fo .e+k2)

0

Impedance for z = 0O:

(O)_w 01+F0_ . = load impedance
1(0) 1-T,
FOZZL_ZO
L, +Z,




Various terminations

_ Z —Z,
P Z,+2,
Open line _ B
- reflection with equal polarity L =0=1I,=1
Short circuit
- Reflection with inverse polarity Z =0=1I;=-1
No reflection when: Z,=2, =T,=0

-2 "MATCHING”
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Standing waves

 Short circuiting gives standing waves (Z, =0)

1
0.8
06
04r

ot =12n+27
’ 2 of = 3/87 + 27

ot=1/8n+27nn

027 Wt =27n
0

-0.27
-04r
0.6
0.8

-1

@Y7’y

ot =1/4n+2

0 0.5 ' 1.5 2n 2.5m 3 3.5m
Bd

Figure 2-25 Standing wave pattern for various instances of time.
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RF-circuits

* A high frequency circuit may be viewed as

— a finite number of
transmission line sections
Interconnected with

discrete active and passive components
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Two-port network

* Beneficial using two-port-description

— Circuits may be divided into simple parts
e two-ports

— May be used to simplify analysis of complex networks
 Different types of two-ports

— Z, Y, h-matrix
« Each one has different properties when interconnected
« Z - series, Y = parallel, hybrid

— Figure -
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Multiport-network

+ o——] + O—— | €— o+
v, One-port W Two-port v
Network : Network 2
— O - O——f —0 —
LN <&
+ o——— ——o-
Port 1 M v-*, V?a_ Port 2
- =W
> ’ —0
Port3 Vs Multiport Va,_ Port4
. ~ Network .
i . i3 i
N~ <X
Pot N—1 "y ] vy ' PortN
e O—— frrr——r— __

Figure 4-1 Basic voltage and current definitions for single- and
multiport network.
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Ex. Z-matrix

Zn Zyp v Zyy
Ly Ly - Zyy

{V} = [Z{I}

_ZNI Zyy ZNN_ ]

(4.2)

(4.3)
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ABCD network

L= et

+C ! f n H —°+
port1l v [éﬂ g,] Vi v [é." gn] v} port 2

Figure 4-9 Cascading two networks.

{vi} rVII}= A’B,{v2'}= A’B,{vl”}
ll \ ll’ Cl DI _izl Cl Dr il”

H

(4.21)

P'A, B’:l IiA” B”jl{ Vz”}
" D’}|C” D" -i,”} Cascade coupling made easy
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ABCD-parameters for "useful” 2-ports

Table 4-1 ABCD-Parameters of Some Useful Two-Port Circuits.

Circuit ABCD-Parameters
n ]% I
R A= 1 B=Z
i i C=0 D=1
L L
A= 1 B=0
" | i}' "2 =Y D= |
4 ZyZy
V4 Z, - ZA B= Z Lo+ ——
ty 4 . <2 A l+Zc AtZp Ze
Y Zc Vi l
C: p— — _B
= 5 Ze D Z.
1
B= —
i, B b A= 1+?—B Y-
C
v X rw Y Pp=lgca
C= Yy+Yp+—5 2 Y
C
l > &
= - A= cosf! B= jZ,sinpl
vy Z, B vy _}SIHBI
S S— Sislaw D= cospl
1 | 0
SIS T A N B=0
§§ i 1
Vv v A D= I
1 | 2 C 0 N




Conversion between different 2-port types

Table 4-2 Conversion between Different Network Representations

[Z] [Y] [h] [ABCD]
Zyp Zy AZ Zi Zn AZ
Zl Zy 4y, AZ AZ Zy Zy Zy Zy,
Za Zn Za Zu Zn 1 1 Zy
AZ AZ Zy Zy Zyy Zy
Yy Yy 1 Yo Y 1
[Yj AY AY Y, Y Yn Yp Yy Yy
Y Yy Yo Y Yy Ay Ay Yy
AY AY Y, ¥y Yy, Yy
Ak hi 1 _An Py
[l hy  hy hyy oy hyy hyp hyy by
Py 1 ha1 AR hyy by By 1
hyy hyp hyy hy hy hy
A AABCD D AABCD B AABCD
[ABCD] C C B B D D A B
1 D 1A 1 c CD
C C B B D D

determinant
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S-parameters

« 2-port used for definition of S-parameters
 "Power waves” defined as

a, = (V,+2Z,1,) (4.36a)
JT) ’
b, = V,-2Z,l, .
a, a,
[S]
b<l_+|_ I_——o _H?E

Figure 4-14 Convention used to define S-parameters for a two-port network.
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Definition of S-parameters

* The power is:

2 2

P =1iRe{V I }=1(

d,

D,

)

S-parameters

i 7] a a,

521 S
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Interpretation of S-parameters

a2=0

a, =0

al a,
-t o—— D .(_H_‘
[S]

E;T‘H— o—— —o —H—;l

_ reflected power wave at port 1
" incident power wave at port 1

_ transmitted power wave at port 2
~incident power wave at port 1

_ reflected power wave at port 2

. ~ incident power wave at port 2

_ transmitted power wave at port 1
~  incident power wave at port 2

(4.42a)

(4.42b)

(4.42¢)

(4.424d)
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Measuring S-parameters

« S-parameters are measured when lines are
terminated with their characteristic
iImpedances

Z,

>

&,

J—o—

[S]

<y,

s>

: , . 7 at
Fiqure 4-15 Measurement of S;; and S,;by matching the line impedance £,
? port 2 through a corresponding load impedance Z, = 4.
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Filters
Different filter types

o, dB - o, dB
4 | A
Qo = o oL —> 00
! |
I 1
| [
Low-pass filter | High-pass filter
' i R L RN
I I | |
I I I > )
0 Q9 e 0 GO,
Bandpass filter Bandstop filter

Figure 5-1 Four basic filter types.



Ex. of 3 different filter types

Butterworth

1
Binominal filter

Chebysheyv filter

» ()

0

1
Elliptic filter

Figure 5-2 Actual attenuation profile for three types of low-pass filters.
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Filter parameters

W .. Passband
insertiml,, ngBi ' ¢ ripple

loss 0 \ /( > (2
jlﬂ]dﬂjy f da%

‘)‘13 dﬁlm':' f;dﬂjy;:
Figure 5-3 Generic attenuation profile for a bandpass filter.

Rejection -
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Q-factor

» Definition of Q-factor

pdverage stored energy
energy loss per cycle

average stored energy
power loss

0=

i'.l?l:(ﬂllr

 Different definitions of the Q-factor exist
— The definitions are equivalent

fe i

O1p = 3@ =@ =
3dB
fv —-fi BW
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Unloaded — loaded Q

Vaé Filter

Figure 5-4
R i( power loss in filter
Orp w\ average stored energy
1 1
— + L e
Qrp Or E

)

=0

r

1
+

al

E]z,,

Filter as a two-port network connected to an RF source and load.

)

()

power loss in load
average stored energy
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Q-factor is important for frequency stability

Achieving High Oscillator Stability

OD_&B I"(J
Frequency-Selective //- [\ \ e
Tank Element I/ Yo t
e
Loaaa
Gt/ High-Q
0°+A6
] A
_ °F ~ (e.g. LC orrin of (e.g. crystal
% 2L Q=10 \ c?scillators)g g .f Q=1000 oscillators)
E I :Ez - Af=4kHz
6 - -40 :
;.' ;.m 950 W 1080 1100
60 |- B0 _Aj Freq. [MHz]
g a e s o SO
g 0 % Q,:
£ F £ oL
wf wl .

®High tank Q = high frequency stability

\'— C. T.-C. Nguyen Univ. of M:'ckigan-“‘
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