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Section 2:
Scaling of Microoptics

Diffraction made simple -
Gaussian Beam propagation
Resolution of microscanners
and Spatial Light Modulator 
(projection displays)
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Diffraction

What is wrong with the concept of a light ray or 
collimated beam?

It is inconsistent with Maxwell’s Equations and Huygen’s 
principle 
It violates the second law of thermodynamics
It even violates energy conservation!

Conclusion:  All wave phenomena has diffraction, i.e. 
spreading of beams to larger cross sections as they 
propagate over long distances (over short distances, 
focusing is possible)

Light ray or collimated ( perfectly parallel) optical beam that 
propagates over infinite distance without changing its cross section
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Focused beams

Any physically realizable beam will have converging, and diverging regions, i.e. 
they go through a focus.  (Plane waves and Bessel beams are not physical)
What makes Gaussian beams special:

Lasers and waveguides have modes that can be approximated as Gaussian
The fundamental Gaussian beam has the smallest Δx•Δθ product
After long propagation, all beams are fundamental Gaussians
Any beam can be expressed as a sum of fundamental and higher order Gaussians
The mathematical description of Gaussian beam propagation is simple

Δθ

Δx

Focus

Convex wavefronts 
=> Diverging beam

Concave wavefronts => 
Converging beam
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Gaussian Beam Propagation
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Beam Waist and Beam Parameter
The Gaussian beam narrows to a minimum radius, ω0, called the 
beam waist
The the beam radius, radius of curvature, and far-field diffraction angle 
are expressed in terms of ω0, and z, the distance from the waist
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Rayleigh Length

ω0

20.5ω0

zR

Rmin

Rz
0

0

ω
ωπ
λθ =
⋅

=

λ
ωπ 2

0⋅
=RzRayleigh length:

Radius of curvature:

zR

20.5ω0

2

0 1)( ⎟
⎠

⎞
⎜
⎝

⎛
+=

Rz
zz ωω

Z
ZZzR R

2
)( +=

Beam radius: Diff. angle:

Confocal parameter: 2 zR



4

O.Solgaard
Stanford

©
os

, 2
/1

2/
20

08

Gaussian Beam Profile
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Gaussian Beams of Order m,l
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Higher-Order Beam Propagation
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Higher-Order Gaussian Profiles 
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Hermite Gaussian Modes

The Hermite Gaussian modes is a complete, orthogonal set of 
functions
Higher order modes have the same beam radius and curvature 
as the fundamental (but different phase)
Higher order modes occupy larger areas (same ω, but multiplied 
by higher order polynomial)
All modes propagate according to the simple rule 

q2= q1+z
The difference in phase means that different modes will have 
different frequencies in a laser cavity
An arbitrary optical field can be expanded on the Gaussians.  
Propagating the Gaussians and summing lets us find the effect 
of propagation on the original field
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Beam transformation in lenses
An ideal lens does not change the transverse distribution 
of an optical field, so a Gaussian will remain in the same 
order after passing through a lens
R(z) and ω(z) does change when passing through a lens
Only R(z) changes when passing through a thin lens
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Gaussians in Lens Systems
Repeated application of the 
propagation and lens laws
allow us to find the transformation of 
the beam through any lens system
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Gaussian Beam “Imaging”
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Gaussian vs. Geometrical optics

Gaussian

ω01
ω02

ff

Geometrical Optics

Collimated beam

Focus

Focus (small, 
but finite waist)

Soft focus
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Gaussian Beam Imaging

Gaussian

ω01

ω02

bmax=0.5 zRlens

a>f

Geometrical Optics 1/f=1/a +1/b
a

Focus (small, 
but finite waist)

Soft focus

b
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Summary
Gaussian beams are solutions to the paraxial wave 
equation
The diffraction angle is given by: 

Higher-order Gaussian beams (also solutions to the 
paraxial wave eq.)

Same beam radius and curvature, but different phase shift 
compared to zero order
Provide means to solve general diffraction problems (not always 
practical)

Gaussian beam propagation through lenses
Same as for Geometrical optics, but consequences are 
dramatically different!
Collimation:  No such thing, just a “soft” focus
Focusing:  Maximum lens-waist distance
Imaging:  Imaging and FT regimes

0ωπ
λθ
⋅

=

O.Solgaard
Stanford

©
os

, 2
/1

2/
20

08

Mirror Resolution (far field)

Ideal flat mirror

Screen

Optical 
beam

1+=
res

rangeN
θ
θ

The number of resolvable 
spots on the screen is given 
by the ratio of the range of 
tilt angles to the diffraction 
angle of the beam 
The diffraction angle 
depends on the (application 
specific) definition of 
resolvability

Mirror curvature and the aperture effect 
reduce the resolution below this value

Θtilt

Θres
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Arbitrary (application 
specific) resolution criterion
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Diffraction (half) angle for arbitrary 
resolution criterion
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Mirror resolution (near field)
The resolution depends on 

Wavelength
mirror size 
resolution criterion 

The resolution does NOT depend on 
radius of curvature of the beam at the mirror 
(caused by either curvature of the mirror or a 
converging/diverging incident optical beam)  
lenses placed after the mirror

These two effects change the screen position 
that gives optimum resolution 
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Example:  Resolution of Scanning 
Displays (CRTs or scanning lasers)

0
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z
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diff
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FWHM
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Diffraction angle (FWHM):

Ideal mirror

Screen

Optical 
beamIn displays we say that two 

pixels are resolved when they 
are separated by their FWHM
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Scanner Resolution

1
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diff

tiltN

For a transverse Gaussian profile on an 
ideal flat, infinite mirror, the number of 
resolvable spots (pixel count) is: Optical 

beam
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λ
ω

λ
ωπ

m

mN

It is reasonable to assume that our lens 
technology can support angles up to 0.7 
radians

In the visible (λ=500nm), we see that 
a beam radius of 270 micron is 
sufficient for HDTV resolution!  A 
micromirror of a diameter of about 800 
micron can support this size beam 
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• Electrostatic instability
• Pure rotation

Traditional Micromirror Design
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N < 5 for t = 0.92 μm
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Video Display System Based on 
Microscanners (TV on  a chip)

Computer controls the laser 
diode and both scanning mirrors

The laser beam hits the 
fast scanning mirror,

... is imaged onto the slow 
scanning mirror,

…and the image is 
projected onto the screen

Surface micromachined,
flip-up scanning mirror

1f

1f
2f
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Projection Display

Micromirror 
array

Projection 
lens

Condensing 
lens

Color filter

Screen

Light 
source

Bistable micromirrors are 
used in projection 
displays (TI’s DLP 
technology)
Similar optical 
configurations are used in 
mask less lithography
Other applications include 
spectroscopy and 
confocal microscopy in 
which the mirror array is 
used as a programmable 
spatial mask
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Projection Display Resolution

Axis of rotation

t

( )

60nm1 t 1

:2Nm,0.5Display Projection
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In projection displays the 
contrast requirements are 
between -20 and -30 dB
Conservatively:  
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Aperture effect reduces resolution

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

(Optical angle)/1000 [rad]

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d

Aperture effect of the mirror in the far-field

250 μm radius (1/e2  ) beam 
waist incident upon

250 μm radius mirror  
mirror of infinite size

The finite size of the 
mirror causes expansion 
of the optical beam in the 
far-field compared to an 
infinite-sized mirror.
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Resolution vs. Mirror Bow
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Micromirror status and prospects
Micromirrors have unmatched resolution!

Challenges: Mirror quality (flatness, reproducibility), 
accuracy, speed, alignment (fiber coupling), packaging
High resolution requires high quality (DRIE of SOI) 
Applications: Integrated scanners, TV on a chip, Fiber 
switches

Micromirror arrays are well suited for traditional 
optical systems

Challenges: Multiplexing, Integration of MEMS & 
electronics
Applications: Projection displays, spectrometers, 
microscopy, lithography…..

With more MEMS foundries, applications will 
explode!


