INF5490 RF MEMS

L7: RF MEMS switches, I

S2008, Oddvar Søråsen
Department of Informatics, UoO

Today's lecture

- Switches for RF and microwave
- Examples
- Performance requirements
- Technology
- Characteristics of RF MEMS switches
- Basic switch structures
- Working principles
- Important switch parameters
- Design of RF MEMS switches
- Electromechanical design, I

Next lecture, L8

- Design of RF MEMS switches, contd.
- Electromechanical design, II
- RF design
- Ex. of implementations
- Structure
- Fabrication
- Performance
- Special structures and actuation mechanisms
- Some challenges

Background

- Switch - relay
- Important component for RF systems
- Signal routing
- Re-directing of signals: antennas, transmitter/receiver
- Connecting / selecting various system parts
- Choice of filter in filter bank
- Choice of network for impedance matching
- Choice of matching circuitry for amplifier
- Telecom is a dominant user

Ex. of switch applications

Varadan, fig. 3.1

Applications, contd.

Choose channel

(d)

(e)

Varadan fig. 3.1

> Simulated return

Performance requirements

- Good performance parameters are desired
- Low loss
- Good isolation
- Low cross-talk
- Short switching time
- Long lifetime
- Choice of switch technology is dependent of
- RF-signal frequency
- Signal level
- "Large power" capability
- Speed requirements

Technology choice

- Traditional mechanical switches (relays)
- ala light switch
- Low loss, good isolation (+)
- Can handle high power (+)
- Slow (-)
- Mechanical degradation (-)
- Contact degradation, reduced lifetime (-)
- Semiconductor switches (solid-state)
- Most used today
- FET (Field Effect Transistors), CMOS, PIN-diodes etc.
- High reliability (+)
- Integration with $\mathrm{Si}(+)$
- FET degrades at high frequency (-)
- Large insertion loss, high resistive loss (-)
- Limited isolation (-)
- Limited "high power" capability (-)

High reliability technology: PIN-diode

- Varadan fig. 3.6
- PIN: p - insulator - n
- Forward biased: low R
- Reverse biased: low C due to isolator layer \rightarrow high impedance Z

PIN diode

PIN-diode used in system

- The biasing of the PINdiode determines the switching
- Forward bias: low R
- Reverse bias: high Z
- Typical terms
- Single-pole single-throw, SPST
- Single-pole double-throw, SPDT
- Varadan fig. 3.8

RF MEMS switches

- A great need exists for having switches with better performance!
$-\rightarrow$ MEMS switches:
- The first ex. of RF MEMS-components $(78 \rightarrow)$
- Many implementations exist
- F.ex. in Gabriel M. Rebeiz: "RF MEMS - Theory, Design and Technology" (Wiley 2003)
- Publications
- Most mature RF MEMS field

Benefits and typical characteristics of RF MEMS switches

FSRM

RF MEMS switch: key advantages and issues

+ - Ultra low power consumption: 10-100nW
+ - Ultra-high isolation \rightarrow airgap: low state $\mathrm{C} \sim \mathrm{fF}, 0.1-40 \mathrm{GHz}$
+ - Low insertion loss $\rightarrow \sim-0.1 \mathrm{~dB}, 0.1-40 \mathrm{GHz}$
+ - Practically no intermodulation: very linear
+ - Low cost \sim simple technology, integrable with RF ICs (problem \rightarrow cost \& performance of the full packaged structure)
- . Speed limited by mechanical nature: 1-100 $\mu \mathrm{s}$
- - Power handling limited: $<100 \mathrm{~mW}$
- - Reliability: limited (today) $\sim 10^{9}-10^{10}$ cycles no reliable switch to handle \sim few Watts
- • Packaging: needs inert ambient \& low humidity \& low cost

Comparing performance

TABLE 1.2. Performance Comparison of FETs, PIN Diode, and RF MEMS Electrostatic Switches

Parameter	RF MEMS	PIN	FET
Voltage (V)	$20-80$	$\pm 3-5$	$3-5$
Current (mA)	0	$3-20$	0
Power consumption ${ }^{a}(\mathrm{~mW})$	$0.05-0.1$	$5-100$	$0.05-0.1$
Switching time	$1-300 \mu \mathrm{~s}$	$1-100 \mathrm{~ns}$	$1-100 \mathrm{~ns}$
$C_{\text {up }}($ series $)(\mathrm{fF})$	$1-6$	$40-80$	$70-140$
$R_{5}($ series $)(\Omega)$	$0.5-2$	$2-4$	$4-6$
Capacitance ratio	$40-500^{b}$	10	n / a
Cutoff frequency (THz)	$20-80$	$1-4$	$0.5-2$
Isolation $(1-10 \mathrm{GHz})$	Very high	High	Medium
Isolation $(10-40 \mathrm{GHz})$	Very high	Medium	Low
Isolation $(60-100 \mathrm{GHz})$	High	Medium	None
Loss $(1-100 \mathrm{GHz})(\mathrm{dB})$	$0.05-0.2$	$0.3-1.2$	$0.4-2.5$
Power handling (W)	<1	<10	<10
Third-order intercept point (dBm)	$+66-80$	$+27-45$	$+27-45$

${ }^{a}$ Includes voltage upconverter or drive circuitry.
${ }^{b}$ Capacitive switch only. A ratio of 500 is achieved with high- ε_{r} dielectrics.

Two basic switch configurations

Varadan fig. 3.2

Basic switch structures

- Series switch
- Contact switch, ohmic (relay) *
- Cantilever beam
- Capacitive switch ("contact less")
- RF-signals short-circuited via C ($Z=1 / j \omega C$)
- Impedance depends on value of C
- Shunt switch
- Shunt capacitive switch *
- clamped-clamped beam (c-c beam)
- Shunt contact switch

RF MEM switches: capacitive \& contact

Adrian Ionescu, EPFL. Europractice - STIMESI, Nov 2007

Series contact switch

- Cantilever beam switch

coplanar waveguide
Signal propagation into the paper plane

Signal propagates perpendicular to cantilever

Separate pull-down electrode Actuation voltage between beam and bottom electrode Separate "contact metal" at beam end

Working principle

Rebeiz fig.2.12

More realistic structure

Signal propagation along beam

Varadan fig. 3.13

Doubly supported cantilever beam

Varadan fig. 3.15

Cantilever beam switch: critical parameters

- Contact resistance for metal - metal
- Contact pressure
- Surface roughness
- Degradation due to increased resistance
- Soft vs hard metals (gold vs alloys)
- Actuation voltage vs spring constant
- Possibility of "stiction" ("stuck-at")
- Restoring spring force vs adhesion forces
- Reliability
- Aging
- Max. number of contact cycles
- High current is critical ("hot switching")
- melting, conductive metal damp \rightarrow "microwelding"
- Self actuation
- V_RF (RMS) > V_actuation

Series switch

- Ideal requirements - typical parameters
- "Open/short" transmission line (t-line)
- 0.1 to 40 GHz
- "Infinite" isolation (up)
- -50 dB to -60 dB at 1 GHz
- "Zero" insertion loss (down)
- -0.1 dB to -0.2 dB

Typical shunt switch

Figure 4.1. Illustration of a typical MEMS shunt switch shown in cross section and plan view. The equivalent circuit is also shown [6] (Copyright IEEE).

RF MEMS switch

Shunt capacitive switch, contd.

- Clamped-clamped beam (c-c beam)
- Electrostatic actuation $\leftarrow \rightarrow$ beam elasticity
- RF signal is modulating actuation voltage

- "overlaying"
- No direct contact between metal regions
- Dielectric (isolator) inbetween
- C_up / C_down important!

Shunt capacitive switch, contd.

- C_down / C_up should be > 100
- $C=\varepsilon A / d$
- C_down = C_large
- C_up = C_small
- Impedance $Z \sim 1 / j \omega C$
- For a given ω :
- C_small \rightarrow Z_large = Z_off
$-\rightarrow$ isolation
- C_large \rightarrow Z_small = Z_on
$-\rightarrow$ short circuiting of RF-signal to GND

Capacitive switch: design parameters

- Signal lines and switches must be designed for RF
- Suitable layouts
- "CPW - coplanar waveguide" (horizontal)
- "microstrip lines" (vertical)
- Switches should be compatible with IC-technology
- Not too high actuation voltage
- Proper spring constant
- Alternatives to electrostatic actuation:
- Piezoelectric actuation
- Reliability > 10£9 switching cycles before failure
- 10 E 9 is demonstrated

Capacitive switch: critical parameters

- Thickness and quality of dielectric
- Choice of dielectric material
- High dielectric constant:
- Gives high ratio C_down / C_up
- Charging of the surface of the dielectric
- C -degradation
- Possible "stiction"
- "Breakdown" of dielectric
- Becomes conductive \rightarrow disaster!

Shunt switch

- Ideal requirements - typical parameters
- Shunt between t-line and GND
- 5 to 100 GHz
- "Zero" insertion loss (up)
- - 0.04 dB to -0.1 dB at $5-50 \mathrm{GHz}$
- "Infinite" isolation
- -20 dB to -30 dB at 10-50 GHz

Important switch parameters (varp.111)

- Actuation voltage
- Important parameter for electromechanical design!
- Desired: VLSI compatibility
- No problem for semiconductor components
- Switch speed
- 50\% control voltage \rightarrow 90\% (10\%) of RF-output port envelope
- Switch transients
- Voltage transients at input/output due to changes in actuation voltage
- Transition time
- Output RF signal $10 \rightarrow 90 \%$ or $90 \rightarrow 10 \%$

Important switch parameters, contd.

- Impedance matching
- Avoid reflections at both input and output port (for on or off)
- IL = "insertion loss"
- Defined for "on-state"
- Ratio between signal out (b2) versus signal in (a1)
- IL = inverse transmission coefficient = 1/S21 in dB
- $\mathrm{S} 21=\mathrm{b} 2 / \mathrm{a} 1$ when $\mathrm{a} 2=0$
- Design goal: minimize!
- RF MEMS has low IL at several GHz
- Much better than for semiconductor switches
- "Skin-depth" effect - increased loss, IL, at high frequencies

- Series resistance
- Relevant when interconnecting switches in series
- Gives lower signal level

Important switch parameters, contd.

- Isolation
- Defined in "off-state"
- The inverse ratio between signal out (b2) versus signal in (a1)
- Defined as $1 / \mathrm{S} 21 \mathrm{i} d B$
- Alternatively: The inverse ratio between signal transmitted back to the input (b1) versus signal in on the output port (a2)
- Defined as $1 / \mathrm{S} 12 \mathrm{idB}$
- Large value \rightarrow low coupling between terminals

Important switch parameters, contd.

- Bandwidth
- An upper limit is usually specified
- Resistances and parasitic reactances influence the value
- Resonance frequency
- Specifies the frequency where the switch "resonates"
- Resonance when potential and kinetic energy are "equal"
- $j \omega L=-1 / j \omega C$
- Reactances are of equal magnitude
- Frequency depends on k and $m \rightarrow 1 / C$ og L
- Operational bandwidth should be outside the frequency of natural resonance mode
- \rightarrow Limits minimum or maximum switching speed

Important switch parameters, contd.

- RF power capability
- Specifies linearity between output power and input power
- Possible degradation of switch for high power
- Phase and amplitude "tracking" and "matching"
- Specifies how well the signal keeps the "shape"
- Important for "multi-throw" switches
- Each branch may have different length and loss, giving phase and amplitude differences
- "Intercept" point
- Specifies when distortion of output power versus input power "starts"

Important switch parameters, contd.

- Life cycle and degradation
- Influences from the environment
- Fatigue fracture
- This aspect is important for all parts containing movable structures!

Design of RF MEMS switches

- Electromechanical design, I
- Remaining contents of today's lecture
- Design parameters determining pull-in
- Effect of dielectric
- Roughness
- Simplified analysis of cantilever beam
- Elasticity
- Deflection of beam
- Mechanical anchoring
- Folded springs
- Material choice

Electromechanical operation

- The operation is based on the pull-in effect
- Characteristics at pull-in
- Membrane/beam pulls in at $1 / 3$ of gap
- Pull-in voltage:

$$
V_{P I}=\sqrt{\frac{8 K}{27 \varepsilon_{0} W w} g_{0}^{3}}
$$

- Definition of parameters:
- K spring constant
- g0 initial gap
- $\mathrm{A}=\mathrm{W}^{*} \mathrm{w}=$ area

Discussion of design parameters

- Vpi
- Should be low for CMOS compatibility
- $A=W^{*} w$

$$
V_{P I}=\sqrt{\frac{8 K}{27 \varepsilon_{0} W w} g_{0}^{3}}
$$

- Should be large. Size requirement is a limitation (\rightarrow compactness)
- g0
- Should be small. Depending of fabrication yield. Must be traded against RF performance (return loss and isolation)
- K
- Low voltage when soft spring.

Dependent on proper mechanical design. Make sure that the beam can be "released"!

Hysteresis

- A capacitive switch shows hysteresis when being switched on/off

Parallel plate capacitance for shunt switch

$$
C_{u p}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}
$$

$$
C_{u p}=\frac{1}{\frac{g}{\varepsilon_{0} A}+\frac{t_{d}}{\varepsilon_{0} \varepsilon_{r} A}}=\frac{\varepsilon_{0} A}{g+\frac{t_{d}}{\varepsilon_{r}}} \approx \frac{\varepsilon_{0} A}{g_{e f f}}
$$

Down-state

$$
C_{d}=\frac{\varepsilon_{0} \varepsilon_{r} A}{t_{d}} \quad \text { Fringe field negligible }
$$

Typical value 60-120

Electromechanical design of RF MEMS switch (2)

Hysteresis of capacitive switch (source: H. Tilmans)
$g_{0}=$ zero - voltage gap spacing

$$
\mathrm{g}=\mathrm{g}_{\mathrm{o}}-\mathrm{x}
$$

$$
\mathrm{g}_{\mathrm{eff}}=\mathrm{g}_{0}+\frac{\mathrm{g}_{\varepsilon}}{\varepsilon_{\mathrm{r}}} \approx \mathrm{~g}_{0}
$$

$$
\mathrm{F}_{\mathrm{el}}=\frac{\varepsilon_{0} \mathrm{AV}^{2}}{2 \mathrm{~g}^{2}}
$$

$$
\mathrm{F}_{\mathrm{s}}=\mathrm{k}\left(\mathrm{~g}_{\mathrm{o}}-\mathrm{g}\right)
$$

$$
\mathrm{C}_{\mathrm{up}}=\mathrm{C}(\mathrm{~V}=0)=\varepsilon_{0} \frac{\mathrm{~A}}{\mathrm{~g}_{\mathrm{eff}}}
$$

$$
\mathrm{C}_{\text {down }}=\mathrm{C}\left(\mathrm{~V}>\mathrm{V}_{\mathrm{PI}}\right)=\varepsilon_{0} \varepsilon_{\mathrm{r}} \frac{\mathrm{~A}}{\mathrm{~g}_{\varepsilon}}
$$

$$
\frac{C_{\text {down }}}{C_{u p}}=\frac{\varepsilon_{\mathrm{r}} \mathrm{~g}_{\mathrm{eff}}}{\mathrm{~g}_{\varepsilon}} \approx \frac{\varepsilon_{\mathrm{r}} \mathrm{~g}_{0}}{\mathrm{~g}_{\varepsilon}}
$$

Ionescu, EPFL

Thickness off dielectric

- Thickness of dielectric controls the capacitance ratio C_down/C_up
- Thin layer may give high Cd / Cu -ratio
- Beneficial for performance
- Problem with thin layer
- Difficult to deposit: "pinhole" problem
- In real life: min 1000 Å,
- Should sustain high voltage without breakdown, $20-50 \mathrm{~V}$
- Dielectric materials with higher \mathcal{E}_{r} give higher Cd/Cu-ratio
- ε_{r} from 7.6 for $\mathrm{SixNy} \rightarrow 40-200$ for strontium-titanate-oxide
- PZT: $\varepsilon_{r}>1000!$

Roughness

- Cd/Cu may decrease due to roughness
- Increased roughness reduces the ratio
- Metal-to-metal: roughness degrades contact
- Increased resistance in contact interface
- Var fig 3.26 shows effect of roughness \rightarrow

Effect of roughness

Simplified analysis of cantilever beam

- Look at interaction between elastic and electrostatic properties
- Starting with some elasticity \rightarrow
- Slides from Arlington

Axial Stress And Strain

Stress: force applied to surface
$\sigma=F / A$
measured in $\mathrm{N} / \mathrm{m}^{2}$ or Pa
compressive or tensile
Strain: ratio of deformation to length
$\varepsilon=\Delta l / l$
measured in \%, ppm, or microstrain

Young's Modulus:
$E=\sigma / \varepsilon$
Hooke's Law;
$K=F / \Delta l=E A /$

Shear Stress And Strain

Shear Stress: force applied parallel to surface
$\tau=F / A$
measured in $\mathrm{N} / \mathrm{m}^{2}$ or Pa

Shear Strain: ratio of deformation to length
$\gamma=\Delta l / l$

Shear Modulus:

$G=\tau / \gamma$

Poisson's Ratio

Tensile stress in x direction results in compressive stress in y and z direction (object becomes longer and thinner)

Poisson's Ratio:

$$
\begin{aligned}
v & =-\varepsilon_{y} / \varepsilon_{x} \\
& =- \text { transverse strain / longitudinal strain }
\end{aligned}
$$

Metals: $v \approx 0.3$
Rubbers: $v \approx 0.5$
Cork: $\quad v \approx 0$

Deflection of beam

- Suppose the following approximations:
- Actuation electrode is not deflected
- Electrostatic force concentrated at the end of the flexible beam with length L

$$
\begin{aligned}
w(x) & =\text { vertical displacement } \\
W & =\text { width }
\end{aligned}
$$

Euler beam equation $\frac{d^{2} w}{d x^{2}}=-\frac{M}{E \cdot I}$
I = (area) moment of inertia

$$
I=\frac{1}{12} W \cdot H^{3}
$$

Beam equation $\quad \frac{d^{2} w}{d x^{2}}=-\frac{M}{E \cdot I}$
Moment of inertia $\quad I=\frac{1}{12} W \cdot H^{3}$
$\underset{\text { (force } * \operatorname{arm} \text {) }}{\operatorname{Bending} \text { moment }} \quad M(x)=-F(L-x)$

$$
\frac{d^{2} W(x)}{d x^{2}}=\frac{F}{E \cdot I}(L-x)
$$

$$
\begin{aligned}
& w(0)=0 \quad \text { Boundary conditions } \\
& \frac{d \omega(0)}{d x}=0
\end{aligned}
$$

Suppose a solution

$$
\begin{aligned}
& w(x)=A+B x+C x^{2}+D x^{3} \\
& \frac{d w(x)}{d x}=B+2 C x+3 D x^{2} \\
& \frac{d^{2} w(x)}{d x^{2}}=2 C+6 D x
\end{aligned}
$$

Boundary conditions

$$
\begin{gathered}
w(0)=0 \quad \Rightarrow \quad A=0 \\
\frac{d w(0)}{d x}=0 \quad \Rightarrow \quad B=0 \\
w(x)=\frac{F L}{2 E I} x^{2}\left(1-\frac{x}{3 L}\right)
\end{gathered}
$$

$$
w(x)=\frac{F L}{2 E I} x^{2}\left(1-\frac{x}{3 L}\right)
$$

Max. deflection at $\mathrm{x}=\mathrm{L}$

$$
w(L)=\frac{L^{3}}{3 E I} \cdot F
$$

Beam stiffness represents a spring with spring constant k_cantilever

Compare with

$$
\begin{aligned}
& F=k_{\text {cantilum }} \cdot \underbrace{\Delta W}_{w_{\max }} \\
& k_{\text {countiluen }}=\frac{F}{W(L)}=\frac{3 E I}{L^{3}}=\frac{1}{4} E \cdot W\left(\frac{H}{L}\right)^{3}
\end{aligned}
$$

Spring constant

$$
k_{\text {candiluan }}=\frac{F}{w(L)}=\frac{3 E I}{L^{3}}=\frac{1}{4} E \cdot W\left(\frac{H}{L}\right)^{3}
$$

For a double clamped beam we have (Varadan p. 132)

$$
k_{c c}=16 E \cdot W\left(\frac{H}{L}\right)^{3}
$$

Beam equation for distributed force

$$
q_{0}=\frac{F}{L}
$$

$$
E I \cdot \frac{d^{4} \omega(x)}{d x^{4}}=q_{0}
$$

$$
\begin{aligned}
& w(0)=w^{\prime}(0)=0 \\
& w^{\prime \prime}(L)=w^{\prime \prime \prime}(L)=0
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow w(x)=\frac{q_{0}}{24 E I} x^{2}\left(x^{2}+6 L^{2}-4 L x\right) \\
w(L)=\frac{q_{0}}{8 E I} L^{4}=\frac{F}{8 E I} L^{3} \\
k_{\text {cantilever }} \approx \frac{F}{w(L)}=\frac{8 E I}{L^{3}}=\frac{2}{3} E W\left(\frac{H}{L}\right)^{3}
\end{gathered}
$$

$$
c-c-\text { beam }
$$

$$
\begin{aligned}
& E I \cdot \frac{d^{4} w(x)}{d x^{4}}=q_{0} \quad w(0)=w^{\prime}(0)=0 \\
& \Rightarrow w(L)=\frac{q_{0}}{24 E I} x^{2}\left(x^{2}-2 L x+L^{2}\right) \\
& w\left(\frac{L}{2}\right)=\frac{q_{0}}{24 E I} \cdot \frac{L^{4}}{8}=\frac{F}{24 E I} \cdot \frac{L^{3}}{8} \\
& k_{c-c}=\frac{F}{w\left(\frac{L}{2}\right)}=\frac{24 \cdot 8 \cdot E I}{L^{3}}=16 E W\left(\frac{H}{L}\right)^{3}
\end{aligned}
$$

Mechanical anchoring

- Folded springs are often used
- Why?
- To obtain low actuation voltage (<5V) for mobile communication systems
- \rightarrow Folded spring gives low K on a small area

Reduced actuation voltage

- Actuation voltage
- "pull-down" needed
- Should be < tens of V
- Membrane should not be too stiff
- Use meanders
- Folded spring has lower k

- Area effective!

Different folded springs

Rebeiz fig. 2.10

Electromechanical design of RF MEMS switch (3)

- Suspension (arm) folded design

Low voltage operation ($<5 \mathrm{~V}$) for mobile communication applications requires folded suspension design: low-k in small area

L_{s} : span beam length
L_{c} : connector beam length
w: width
t : metal thickness
E : Young's modulus
v : Poisson's ratio

$$
k_{z}=\left.\left.\frac{\left(\frac{E w}{2}\right)\left(\frac{t}{L_{C}}\right)^{3}}{1+\frac{L_{S}}{L_{C}}\left[\left(\frac{L_{S}}{L_{C}}\right)^{2}+12 \frac{1+v}{1+(w / t)^{2}}\right]}\right|^{\text {Approximation }}\right|_{L_{s} \gg L_{C}} \rightarrow 2 E w\left(\frac{t}{L_{S}}\right)^{3},
$$

$$
\begin{aligned}
& k_{x}=2 E t\left(\frac{w}{L_{c}}\right)^{3} \\
& k_{y}=2 E t\left(\frac{w}{L_{S}}\right)^{3}
\end{aligned}
$$

Ionescu, EPFL

Spring materials?

- Metal or polysilicon: case study (one) serpentine spring Ls=220um, Lc=18um, t=2um, w=6um

Au	Al	Polysilicon
$\mathrm{E}_{\mathrm{Au}} \sim 80 \mathrm{GPa}$	$\mathrm{E}_{\mathrm{Al}} \sim 70 \mathrm{GPa}$	$\mathrm{E}_{\text {Si-poly }} \sim 170 \mathrm{GPa}$
$v_{\mathrm{Au}} \sim 0.22$	$v_{\mathrm{Al}} \sim 0.3$	$v_{\text {Si-poly }} \sim 0.3$

Spring materials, contd.

- Summary
- Metal seems to be a better choice for RF MEMS spring structures than polySi
- Low actuation voltage (+)
- Metal has lower resistivity (+)
- BUT: PolySi is stiffer
- Higher actuation voltage (-)
- Mechanical release force larger (+)
- Avoids "stiction"

