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Today's lecture

Switches for RF and microwave

— Examples

— Performance requirements

— Technology

— Characteristics of RF MEMS switches
Basic switch structures

— Working principles

Important switch parameters

Design of RF MEMS switches
— Electromechanical design, |



Next lecture, L8

Design of RF MEMS switches, contd.

— Electromechanical design, Il
— RF design

Ex. of implementations
— Structure

— Fabrication

— Performance

Special structures and actuation mechanisms
Some challenges



Background

» Switch -relay

* Important component for RF systems

— Signal routing

« Re-directing of signals: antennas,
transmitter/receiver

— Connecting / selecting various system parts
 Choice of filter in filter bank
» Choice of network for impedance matching
» Choice of matching circuitry for amplifier

e Telecom is a dominant user



Ex. of switch applications
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Applications, contd.
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Performance requirements

 Good performance parameters are desired
— Low loss
— Good isolation
— Low cross-talk
— Short switching time
— Long lifetime
* Choice of switch technology is dependent of
— RF-signal frequency
— Signal level
— “Large power” capability
— Speed requirements



Technology choice

Traditional mechanical switches (relays)

— ala light switch
« Low loss, good isolation (+)
« Can handle high power (+)
« Slow (-)
« Mechanical degradation (-)
« Contact degradation, reduced lifetime (-)

Semiconductor switches (solid-state)

— Most used today

— FET (Field Effect Transistors), CMOS, PIN-diodes etc.
« High reliability (+)
* Integration with Si (+)
 FET degrades at high frequency (-)
« Large insertion loss, high resistive loss (-)
 Limited isolation (-)
 Limited “high power” capability (-)



High reliability technology: PIN-diode

« Varadan fig. 3.6

— PIN: p — insulator - n
— Forward biased: low R
— Reverse biased: low C due to isolator layer - high impedance Z
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PIN-diode used in system

« The biasing of the PIN-
diode determines the

Bias

Zl///ﬂ/// IS 5 2 SIS ISS SIS SN
/

switching L L
— Forward bias: low R
— Reverse bias: high Z 27 f///// . //A% ;W/’// ///l/////s
« Typical terms S
yp N

— Single-pole single-throw,
SPST

— Single-pole double-throw,
SPDT

« Varadan fig. 3.8
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RF MEMS switches

* A great need exists for having switches
with better performance!

— 2> MEMS switches:
* The first ex. of RF MEMS-components (78-2)

 Many implementations exist

— F.ex. in Gabriel M. Rebeiz: "RF MEMS — Theory, Design
and Technology” (Wiley 2003)

— Publications

 Most mature RF MEMS field
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Benefits and typical characteristics of RF MEMS switches

RF MEMS switch: key advantages and issues

+ Ultra low power consumption: 10-100nW

- Ultra-high isolation - airgap: low state C ~fF, 0.1-40GHz

- Low insertion loss - ~ -0.1dB, 0.1-40GHz

» Practically no intermodulation: very linear

. Low cost ~ simple technology, integrable with RF ICs
(problem = cost & performance of the fuli
packaged structure)

+ + + + +

- Speed limited by mechanical nature: 1-100us
« Power handling limited: <100mW
- Reliability: limited (today) ~10%-10° cycles
no reliable switch to handle ~few Watts
- Packaging: needs inert ambient & low humidity & low cost

lonescu, EPFL
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Comparing performance

TABLE 1.2. Performance Comparison of FETs, PIN Diode, and RF MEMS
Electrostatic Switches

Parameter RF MEMS PIN FET
Voltage (V) 20-80 +3-5 3-5
Current (mA) 0 3-20 0
Power consumption’ (mW) 0.05-0.1 5-100 0.05-0.1
Switching time 1-300 ps 1-100 ns 1-100 ns
C,p (series) (fF) 1-6 40-80 70-140
R, (series) (Q) 0.5-2 2-4 4-6
Capacitance ratio” 40-500° 10 n/a
Cutoff frequency (THz) 20-80 -4 0.5-2
Isolation (1-10 GHz) Very high High Medium
[solation (10-40 GHz) Very high Medium Low
Isolation (60-100 GHz) High Medium None
Loss (1-100 GHz) (dB) 0.05-0.2 0.3-1.2 0.4-2.5
Power handling (W) <1 <10 <10
Third-order intercept point (dBm) +66-80 +27-45 +27-45

“Includes voltage upconverter or drive circuitry,

"Capacitive switch only. A ratio of 500 is achieved with high-¢, dielectrics.

Rebeiz
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Two basic switch configurations

Series Shunt
switch switch
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Basic switch structures

 Series switch

— Contact switch, ohmic (relay) *
 Cantilever beam

— Capacitive switch (“contact less”)
* RF-signals short-circuited via C ( Z=1/jwC )

— Impedance depends on value of C

* Shunt switch
— Shunt capacitive switch *
 clamped-clamped beam (c-c beam)
— Shunt contact switch

* most used

15



RF MEM switches: capacitive & contact
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Adrian lonescu, EPFL. Europractice — STIMESI, Nov 2007
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Series contact switch

Cantilever beam switch

Cantilever beam OFF

Low loss Pull-down G Contact GND
substrate electrode electrode

coplanar waveguide

Signal propagation into the paper plane

17



Signal propagates perpendicular to cantilever

Top
electrode Cantilever

Bottom
electrode

Separate pull-down electrode
Actuation voltage between beam and bottom electrode
Separate “contact metal” at beam end

Varadan fig. 3.14, top view
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Rebeiz fig.2.12

Working principle

Electrod Metal
ectrode
P contact
' |
' |
' |
' I
Dielectric
Transmission
line
(a)
Dielectric Metal

Anchor ; _contact
| onramn |

| =\

‘Electrodes

(b)
19



More realistic structure

) ) Upper actuation Contact Upper contact
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Signal propagation along beam

‘Co-planar’ , ‘Microstrip’ /' 'Co-planar’
mode ¢ mode J mode
¥ i/

Varadan fig. 3.13
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Doubly supported cantilever beam

Bottom

Signal

Top electrode =
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Varadan fig. 3.15
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22



Cantilever beam switch: critical parameters

Contact resistance for metal — metal
— Contact pressure
— Surface roughness

— Degradation due to increased resistance
« Soft vs hard metals (gold vs alloys)

Actuation voltage vs spring constant
Possibility of ”stiction” ("stuck-at”)

— Restoring spring force vs adhesion forces
Reliability

— Aging

— Max. number of contact cycles

— High current is critical ("hot switching”)

* melting, conductive metal damp - "microwelding”

Self actuation
— V_RF (RMS) > V_ actuation
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Series switch

 |deal requirements — typical parameters

— "Open/short” transmission line (t-line)
* 0.1 to 40 GHz

— "Infinite” isolation (up)
« -50 dB to -60 dB at 1 GHz

—"Zero” insertion loss (down)
 -0.1dBto-0.2 dB
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Typical shunt switch
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Figure 4.1. Illustration of a typical MEMS shunt switch shown in cross section and plan
view. The equivalent circuit is also shown [6] (Copyright IEEE).
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RF MEMS switch
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Shunt capacitive switch, contd.

* Clamped-clamped beam

(C-C beam) ti ﬂ ﬂ Movabile metal
_ _ Electrostatic Elasti
— Electrostatic actuation . T & membrane (M2
<> beam elasticity <l Qﬂ s
. . . I
 RF signal is modulating | 7
: Low loss Lower eleclrodgiyed metal ejectrode
actuation voltage substrate _ Signal (CPW)
— "overlaying”

* No direct contact
between metal regions

— Dielectric (isolator) in-
between
— C_up/ C_down important!
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Shunt capacitive switch, contd.

 C _down/ C_up should be > 100
« C=¢A/d
 C_down = C_large
e C up=C_small

* Impedance Z~ 1/j wC

— For a given w:
 C _small> Z large = Z_off
— —> isolation
e C large 2 Z small = Z on

—=» short circuiting of RF-signal to GND

28



Capacitive switch: design parameters

Signal lines and switches must be designed for RF

— Suitable layouts
» "CPW - coplanar waveguide” (horizontal)
* "microstrip lines” (vertical)

Switches should be compatible with IC-technology
— Not too high actuation voltage
— Proper spring constant

Alternatives to electrostatic actuation:
— Piezoelectric actuation

Reliability > 10e9 switching cycles before failure
— 10€e9 is demonstrated

29



Capacitive switch: critical parameters

Thickness and quality of dielectric

Choice of dielectric material
— High dielectric constant:
— Gives high ratio C_down / C_up

Charging of the surface of the dielectric
— C -degradation

— Possible "stiction”

"Breakdown” of dielectric

— Becomes conductive - disaster!

30



Shunt switch

 |deal requirements — typical parameters

— Shunt between t-line and GND
* 5t0 100 GHz

—"Zero” insertion loss (up)
* -0.04 dB to -0.1 dB at 5-50 GHz

— "Infinite” isolation
e -20 dB to -30 dB at 10-50 GHz
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Important switch parameters warp.111)

« Actuation voltage

— Important parameter for electromechanical design!
» Desired: VLSI compatibility
» No problem for semiconductor components

« Switch speed

— 50% control voltage = 90% (10%) of RF-output port
envelope

« Switch transients

— Voltage transients at input/output due to changes in
actuation voltage

 Transition time
— QOutput RF signal 10 = 90% or 90 - 10%
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Important switch parameters, contd.

Impedance matching

— Avoid reflections at both input and output port (for on or off)

IL ="insertion loss”

Defined for "on-state”

Ratio between signal out (b2) versus signal in (a1)
IL = inverse transmission coefficient = 1/S21 in dB

« S21=Db2/a1whena2=0
Design goal: minimize!
 RF MEMS has low IL at several GHz

* Much better than for semiconductor
switches

« "Skin-depth” effect — increased loss, IL,
at high frequencies

Series resistance
— Relevant when interconnecting switches in series
— Gives lower signal level

a
o—

e —
b,

[S]
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Important switch parameters, contd.

 |solation

Defined in " off-state”

The inverse ratio between signal out (b2) versus signal in (a1)

 Defined as 1/S21idB

Alternatively: The inverse ratio between signal transmitted back
to the input (b1) versus signal in on the output port (a2)

 Defined as 1/S12i dB

Large value - low coupling between terminals

[S]
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Important switch parameters, contd.

« Bandwidth

— An upper limit is usually specified
» Resistances and parasitic reactances influence the value

- Resonance frequency

— Specifies the frequency where the switch “resonates”

— Resonance when potential and kinetic energy are “equal”
. jwL =-1/jwC

Reactances are of equal magnitude

Frequency depends on kand m - 1/C og L

Operational bandwidth should be outside the frequency of natural
resonance mode

—> Limits minimum or maximum switching speed
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Important switch parameters, contd.

 RF power capability
— Specifies linearity between output power and input power
— Possible degradation of switch for high power

 Phase and amplitude "tracking” and "matching”
— Specifies how well the signal keeps the "shape”
— Important for "multi-throw” switches
— Each branch may have different length and loss, giving phase
and amplitude differences
* "Intercept” point

— Specifies when distortion of output power versus input power
“starts”

36



Important switch parameters, contd.

» Life cycle and degradation
— Influences from the environment
— Fatigue fracture

— This aspect is important for all parts
containing movable structures!

37



Design of RF MEMS switches

» Electromechanical design, |

 Remaining contents of today's lecture
— Design parameters determining pull-in
— Effect of dielectric
— Roughness

— Simplified analysis of cantilever beam
 Elasticity
 Deflection of beam
— Mechanical anchoring
» Folded springs
» Material choice

38



Electromechanical operation

* The operation is based on the pull-in effect

— Characteristics at pull-in
 Membrane/beam pulls in at 1/3 of gap

« Pull-in voltage:
8K ;
Vi = '
" \/ 276w

» Definition of parameters:
— K spring constant
— g0 initial gap
— A=W*w = area



Discussion of design parameters

Vpi
~ Should be low for CMOS compatibility |y \/ e
A=W*w
— Should be large. Size requirement is a
limitation (= compactness)

g0
— Should be small. Depending of
fabrication yield. Must be traded

against RF performance (return loss
and isolation)

K

— Low voltage when soft spring.
Dependent on proper mechanical
design. Make sure that the beam can
be “released’!

40



* A capacitive
switch shows
hysteresis when
being switched
on/off

Varadan fig. 3.18

Hysteresis
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Parallel plate capacitance for shunt switch

J { o Dielektrieum,  (Dielectric)
Yz
4 —F
— C A A
1 C\ Ci=6—.C, =68 —
‘I 2 9 |
7 _ 11 N 1
sC, SC, sC,
1 3 1 A gA
Cw=T1 1 Co=g 1, T 47
=4 = + - d Lod Ge
C, GC, EA  &,6 A g,
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Down-state £,6. A

C

Down-state / up-state

Typical value 60 - 120

r

Fringe field negligible

td
EoE A
Cd _ td ~ grgeff ~ Erg
C:up EOiA + Cf td td

Oest I

Fringe field effect
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Electromechanical design of RF MEMS switch (2)
Hysteresis of capacitive switch (source: H. Tilmans)

g, = zero —voltage gap spacing
g = go —-X C o s e s

F
Spring £ =
geff=go+%i=go pring %I Area A

r — P +
AV T y Airgapgl vE, Txi

= Hysteresis A
Y C [pF] ¥ :
Fs =k(g, -g) T -L Dielectric (g,)
C,y, =C(V =0) =g —
Ser
A
Cdown = C(V > VPI) =EpE, — "‘;‘;”
€ V, V]
Cdown - € 8efr - £8¢ 3
Cup gz ge V _ i kg Cff
Pl T 4f 27 o A
lonescu, EPFL 0 29
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Thickness off dielectric

« Thickness of dielectric controls the capacitance ratio
C_down/C_up

— Thin layer may give high Cd / Cu —ratio
» Beneficial for performance
— Problem with thin layer
« Difficult to deposit: "pinhole” problem
* In real life: min 1000 A,
« Should sustain high voltage without breakdown, 20 — 50V

— Dielectric materials with higher &, give higher Cd/Cu-ratio
« &, from 7.6 for SixNy = 40-200 for strontium-titanate-oxide
« PZT: &,>1000!
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Roughness

« Cd/Cu may decrease due to roughness
— Increased roughness reduces the ratio

« Metal-to-metal: roughness degrades contact
— Increased resistance in contact interface

« Var fig 3.26 shows effect of roughness -
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Effect of roughness
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Roughness [A]
Varadan fig. 3.26 47



Simplified analysis of cantilever beam

* Look at interaction between elastic and
electrostatic properties

« Starting with some elasticity =
— Slides from Arlington
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Axial Stress And Strain

F

Stress. force applied to surface 1 S
T a1
o= F/4 N
measured in N/m? or Pa
compressive or tensile
Strain: ratio of deformation to length wood
e=Al/1
measured in %, ppm, or microstrain e
) f oAl Young's Modulus:
..1-!1--. . E — CT;JE
y S Hooke's Law:

K=F/Al =E A/

Texas Christizn University Diepartment of Enginesring Ed Kaolesar




Shear Stress And Strain

Shear Stress: force applied parallel to surface
T=F/A
measured in N/m? or Pa

Shear Strain: ratio of deformation to length

y=Al/l
A
\ e F
alf
AN Shear Modulus:
’ " G=1/y

L

Texas Chrstian University Depariment of Enginesring Ed Kolesar

50



Poisson’s Ratio

Tensile stress in x direction results in compressive
stress in y and z direction (object becomes longer
and thinner)

Poisson’s Ratio:
Vv =-¢&/6&
= - transverse strain / longitudinal strain

Metals: v~ 0.3
Rubbers: v= 0.5
Cork: va ()

Texas Christizn Universify Department of Enginesring Ed Kolesar
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Deflection of beam

« Suppose the following approximations:
— Actuation electrode is not deflected
— Electrostatic force concentrated at the end of the flexible beam

with length L
Bjelkee

beam

S

Euler beam equation

| = (area) moment of inertia

point load
F - /)un/u{-v/ao/
H . .
) M(x) = Bending momentin x
L—x
w(x) = vertical displacement
W = width
dw M
Ax? E-I

I'- -‘ W.H3

/ 52



d'w - M
Beam equation Ax? E-T

Moment of inertia I - 1 w.ps

Bending moment M(,() = - (L—-x)

(force * arm)

Zl
d w(x) F_ (L)
olx® &l
w’[o) =0 Boundary conditions

dw [o)_
dx
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Suppose a solution
wix) B1+8x +Cx®+ Dx?

du(x) . B+2Cx+3Dx"
dx

AZwr(x)_
i 2C + 6Dx

Boundary conditions

w—(o) = O = M=o
d«u)‘ o)
e e
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3L

Max. deflection at x =L

L - :
u)’('—) - . = B_eam s’gffness represents.a spring
S3ET with spring constant k_cantilever

Compare with

&= Acam‘»'(um ) M

w-
maqx

o LT V)
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Spring constant

k ._F . 3er r
Cond Lo IAJ'(L.) | 3 ~ Z/'FW )

For a double clamped beam we have (Varadan p. 132)

by = I €W (2)
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Beam egi,ua%bn fé”' d&r’s/ﬁuﬂuﬂd ,%S;.u,
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£
g cxt Fo w'(t_)= wil) =o
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Mechanical anchoring

» Folded springs are often used
« Why?

— To obtain low actuation voltage (< 5V) for mobile
communication systems

« - Folded spring gives low K on a small area
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Reduced actuation voltage

« Actuation voltage
— "pull-down” needed
— Should be < tens of
Vv

« Membrane should
not be too stiff
— Use meanders

— Folded spring has
|OW€F k Signal line

— Area effective!

Ground Ground

60



Rebeiz fig. 2.10

D|fferent folded springs
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Electromechamcal design of RF MEMS switch (3)
- Suspension (arm) folded design

Low voltage operation (<5V) for mobile communication applications
requires folded suspension design: low-k in small area

+ W

4 Ls: span beam length
Lc L.: connector beam length
Anchor Y w : width
—>y t: metal thickness

E: Young's modulus
v. Poisson’s ratio

3 . . 3
, Approximation )
[E‘HJ{IJ pp o _u_]
1
I

3 X
!
=|, . —> 2EW| — -
.5 o L\. I.f"'

2
L . I+v j
T4 =] +12 v | k, = 2Ei| —
Lot k T I+(w/t)" | Independent of v . L

lonescu, EPFL

30
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Spring materials?

« Metal or polysilicon: case study (one) serpentine spring
| s=220um, Lc=18um, t=2um, w=6um

Au Al Polysilicon
E,,~80GPa EA~70GPa Esiooy~170GPa
Vﬁu "‘022 vA|”D 3 __E'ﬂl? 0 3

Elastic constant K,( = 4k,)
K,,,~0.721N/m K,A=0.631N/m K poy=1-533N/m
Elastic constant K,
Koa,=1.19x10*N/m K 4= 1.04x10*N/m K= 2.52x10*N/m
Elastic constant K,
K,au=6.49N/m K,A=5.68N/m Kzpoy=13-79N/m
Estimated Vj, (area = 100x100 / 20x20 ur'n2 2um-gap):
Vpia,= 4.4VI21.9V  Vp,=4.1VI20.6V  Vp,,,=6.4V/32V

lonescu, EPFL



Spring materials, contd.

* Summary

— Metal seems to be a better choice for RF
MEMS spring structures than polySi
« Low actuation voltage (+)
* Metal has lower resistivity (+)

— BUT: PolySi is stiffer

» Higher actuation voltage (+)

* Mechanical release force larger (+)
— Avoids ”"stiction”
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