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Today’s lecture

• Design of RF MEMS switches
– Electromechanical design, II
– RF design

• Examples of implementations
– Structure
– Fabrication
– Performance

• Special structures and actuation mechanisms
• Some challenges 
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Electromechanical design, II

• Designer should take into account 

– Stress 

– Dynamics
• Damping
• How actuation voltage influences switch speed
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Stress
• Stress induced during fabrication: high T low T

– Due to dissimilar properties of neighboring materials
• ”Residual stress”

• Change of stress during operation due to temperature 
variations
– Dissimilar CTEs (Coefficient of Thermal Expansion)

• Ex. axial tensile stress
– Spring constant increases
– increases 20x when tensile stress 0 300 MPa
– Vpi increases 4.5x when tensile stress 0 300 MPa

• Tensile stress must be taken into account!
• Stress can be  evaluated by misalignment 

measurements on test structures 

zk
zk
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Micro strain gauge with mechanical amplifier

Jmfr. ”skyvelær”

Lin et al, J of MEMS, 1997
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Switch speed and damping

• Switch speed depends of damping
– Air, gas must be pushed/pulled
– ”squeezed-film damping”
– Method of modeling from fluid dynamics

• How to reduce damping?
– Operate in vacuum

• Hermetic sealed packages
– Make holes in membrane

• Perforated membrane
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Perforated membrane: UMICH
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Perforated membrane: Raytheon

Rebeiz
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Ex. On effect of perforation

Significant increased speed by use of
perforated membrane!

Switch time for Raytheon/TI-
switch

Yao, 2000
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Switch speed

• Damping influences Q-factor
• Switch-speed depends of Q-factor

– High Q-factor means small damping
• increased switch speed

– Low Q-factor means large damping
• System is damping-limited when  Q ≤ 0.5 

[Castaner and Senturia]
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Gap vs. Time for various Q-factors

(For differences between Al and Au: later )
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Gas damping
Dynamic response of cantilever beam

w = displacement
m = mass
b = damping coefficient
k = spring constant

Resonance frequency

Q-factor

(

Q = (ω0 m)/b
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m for gas damping

• Q depends on the relationship between m, b, k
– m is ”effective mass” (”dynamic mass”)

• The effective mass is different from the physical mass since 
only the end/central part of the cantilever/beam is moving

• m_eff ~ 0.35 – 0.45 *m_total
• m_eff depends of 

– Topology/ physical dimensions
– Spring constant, material choice 
– Dynamics

– Will be calculated more accurately in a future lecture
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b for gas-damping

– Q depends of b = damping coefficient
– Damping, b, depends of viscosity

• Viscosity is internal resistance against gas transport

– Ex.: damping for rectangular parallel plate:

area

viscosity of gas

gap

Rebeiz
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Q for gas damping

Gas damping influences Q-factor

Quantitative equations:

density

for clamped-clamped beam
Rebeiz
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Switch speed for large damping

For a damping-limited system

Equation of motion

i
A quantitative
expression:

Vs = actuation voltage
Rebeiz
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Time response for various Q-factors

Note: Au has higher density larger mass 
lower ω larger switch time (t_s)
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Switch speed for increased Vs

• Switch-speed strongly depends of
actuation voltage, Vs

– Vs is usually larger than Vpi
– Vs = const * Vpi (pull-in) = (”actuation voltage”)

– Larger voltage gives larger electrostatic force
• increased switch speed
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Time response vs. applied voltage
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Switch speed for small damping

Electrostatic force

“Acceleration limited” switch (b~0)

Rebeiz

Actuation voltage

Switch time
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Acceleration limited switch

Note: The system becomes more acceleration limited 
when damping decreases (eg. Q-factor increases). 
High Vs/Vp is good.
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RF design of MEMS switch

• Detailed electromagnetic modeling can be 
used
– 3 dim electromagnetic analysis of field distributions

• Detailed mechanical model
• Depends on material properties, boundary conditions etc.

– Calculating field distributions and S-parameters

• Alternatively: use equivalent circuit models
– Simple models for analytic calculations

• Can be used to estimate RF performance
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Electrical characterization of RF MEMS switches

• For ”low” frequency
– Use impedance – admittance parameters

• Two-port with voltage and current (Kirchhoff´s equations)

• For high frequency
– Use S-parameters
– S-parameters are measured/calculated when the line is 

terminated with its characteristic impedance
– S-parameters are small signal parameters 

• RF power < DC power
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Definition of S-parameters
• Calculating power:
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Meaning of S-parameters
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Measuring S-parameters
• S-parameters measured when lines are 

terminated with characteristic impedance



27

RF characterization

• Reflected and transmitted signals should 
be taken into account

• Important parameters calculated
– Insertion loss in ON-state (down) = 
– Isolation i OFF-state (up) =
– Return loss (both up/down) =
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RF characterization, contd.

”IL = Insertion loss” i ”on-state”
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The inverse value is used for IL

Specified in dB

Degrades with increased frequency
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RF characterization, contd.

”Isolation” in ”off-state”

1,
2,1

01

2

12
1

portdtransmitte
portincident

b
a

S a

==
=2,

1,1

02

1

21
2

portdtransmitte
portincident

b
a

S a

==
=

(Varadan)  (most common def)

High isolation when output is small relative to input
(or input is marginally influenced by output)

”Return loss” for both states
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S-parameters
• In UP-state: S21 is corresponding to isolation

• In DOWN-state: S21 is corresponding to insertion loss

• In UP-state: S11 is corresponding to return loss

• In DOWN-state: S11 is corresponding to return loss
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Typical s-parameter measurements

Varadan
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Equivalent circuit for capacitive shunt switch

Rebeiz
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Equivalent circuit, contd.
Switch shunt impedance

At  resonance



34

RF parasitics
• Simplified calculations for shunt switch:

– Use C only
• More accurate calculations:

– Include L
– Meander spring contributes to parasitics!

– Meanders give a softer spring
• Give lower Vpi

– contribute to parasitic inductance
• influence RF-performance

• Accurate modeling should take into account parasitic 
inductance and parasitic resistance
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Parasitic inductance

Meander spring increases inductance
Rebeiz
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Shunt configuration
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Ionescu, EPFL
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Examples of implemented switches

• Series-switch
– Structure
– Fabrication
– Performance

– Ex. of contact-switches
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Cantilever beam with electrostatic actuation

Ionescu, EPFL
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Rockwell series-switch

Sketch of principle

Rebeiz
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Rockwell series-switch, contd.
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Motorola

Rebeiz
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Motorola, contd.

Rebeiz
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Lincoln
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Lincoln, contd.
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Examples of implemented switches

• Shunt-switches

– Structure
– Fabrication
– Performance

– Ex. of capacitive shunt-switches



52

Fabrication of capacitive switch

Ionescu, EPFL
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Raytheon

Rebeiz
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Raytheon, contd.

Rebeiz
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Univ of Michigan

Rebeiz
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Fabrication, ”Michigan switch”

Rebeiz
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Univ of Michigan

Rebeiz
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Special switch structures
• 3 electrodes can also be used

– Top-electrode used to ”clamp” the active electrode to the top
– Important for systems experiencing large accelerations

Ionescu, EPFL
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Liquid/metal contact-switch

• May solve reliability problem of solid state – solid 
state contacts 
– Use liquid-to-solid state

• Mercury (Hg) is candidate due to good 
properties

• Low contact resistance
• No signal ringing
• No contact degradation

– Electrostatic actuation
• Actuation voltage 100 – 150 V

– Liquid not accepted in IC-industry!
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Mercury switch

Mercury switch sphere moves

Planar prosess, foto, JHU, Appl Physics Lab
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Mercury switch

Figure shows switch from above

Varadan
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Mercury switch, contd.

Varadan
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Thermal actuation

Varadan

Thermo sensitive
magnets
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Some challenges in switch design

• High electric field in small dimensions
– Parts of metal surface may melt
– Liquid metal damp conducts when switch is turned off
– ”Break-down” in dielectric

• Self actuation
– If RF-signal modulates a DC voltage the beam can 

self actuate
• May be beneficial to have separate pull-down electrodes

• Integration of switch with IC
– (more on this in a future lecture)
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Challenge: System-on-Chip (SoC)
Switch integrated on IC:

Saias et al, 2003
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Comparing performance

Saias et al, 2003
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