INF5490 RF MEMS

L8: RF MEMS switches, II

S2008, Oddvar Søråsen

Department of Informatics, UoO

Today's lecture

- Design of RF MEMS switches
- Electromechanical design, II
- RF design
- Examples of implementations
- Structure
- Fabrication
- Performance
- Special structures and actuation mechanisms
- Some challenges

Electromechanical design, II

- Designer should take into account
- Stress \rightarrow
- Dynamics
- Damping
- How actuation voltage influences switch speed

Stress

- Stress induced during fabrication: high $\mathrm{T} \rightarrow$ low T
- Due to dissimilar properties of neighboring materials
- "Residual stress"
- Change of stress during operation due to temperature variations
- Dissimilar CTEs (Coefficient of Thermal Expansion)
- Ex. axial tensile stress
- Spring constant k_{z} increases
- k_{z} increases 20 x when tensile stress $0 \rightarrow 300 \mathrm{MPa}$
- Vpi increases 4.5 x when tensile stress $0 \rightarrow 300 \mathrm{MPa}$
- Tensile stress must be taken into account!
- Stress can be evaluated by misalignment measurements on test structures \rightarrow

Micro strain gauge with mechanical amplifier

Fig. 1. Schematic diagram of a strain gauge based on the mechanical amplifier.

Switch speed and damping

- Switch speed depends of damping
- Air, gas must be pushed/pulled
- "squeezed-film damping"
- Method of modeling from fluid dynamics
- How to reduce damping?
- Operate in vacuum
- Hermetic sealed packages
- Make holes in membrane
- Perforated membrane

Perforated membrane: UMICH

(a)

(b)

Figure 5.2. Photomicrograph of the university of Michigan low-voltage MEMS shunt switch. The number of meanders can be varied from 1 to 8 [7] (Copyright IEEE).

Perforated membrane: Raytheon

Figure 5.1. Photomicrograph of Raytheon MEMS capacitive shunt switch [2, 3] (Copyright IEEE).

Ex. On effect of perforation

\rightarrow Significant increased speed by use of perforated membrane!

	No holes	With holes
b	$1.3 \times 10^{-3} \mathrm{Pa.s}$	2.1×10^{-6} Pa.s
$\tau_{\text {sdown }}$	$80 \mu \mathrm{~S}$	$10.5 \mu \mathrm{~s}$

S. Pacheco, L.Katehi, Chapter in 'RF Technologies for Low Power Wireless Communications', Wiley, 2001.
Z.

Figure 12. Switching time of the TI capacitive coupling shunt s witch is of the order of $3.5-5.3 \mu \mathrm{~s}$ (from [30], Raytheon/TI).

Switch time for Raytheon/TIswitch

Switch speed

- Damping influences Q-factor
- Switch-speed depends of Q-factor
- High Q-factor means small damping
- \rightarrow increased switch speed
- Low Q-factor means large damping
- System is damping-limited when $\mathrm{Q} \leq 0.5$
[Castaner and Senturia]

Gap vs. Time for various Q-factors

Figure 3.3. Pull-down simulations for the Au and Al beams of Table 3.1 for an applied voltage of $42 \mathrm{~V}\left(V_{s}=1.4 V_{p}\right)$.
(For differences between Al and Au : later \rightarrow)

Gas damping
Dynamic response of cantilever beam

$$
\begin{gathered}
m \frac{d^{2} w}{d t^{2}}+b \frac{d w}{d t}+k \cdot w=F_{\text {ext }} \\
w=\text { displacement } \\
m=\text { mass } \\
b=\text { damping coefficient } \\
k=\text { spring constant } \\
\frac{W(j \omega)}{F(j \omega)}=\frac{1}{k} \frac{1}{\left.1-\left(\frac{\omega}{\omega_{0}}\right)^{2}+j \omega / / Q \omega_{0}\right)} \\
\omega_{0}=\sqrt{\frac{k}{m}}=\text { Resonance frequency } \\
Q=k /\left(\omega_{0} b\right)=\text { Q-factor } \quad Q=\left(\omega_{0} m\right) / b
\end{gathered}
$$

m for gas damping

- Q depends on the relationship between m, b, k
- m is "effective mass" ("dynamic mass")
- The effective mass is different from the physical mass since only the end/central part of the cantilever/beam is moving
- m_eff ~ 0.35-0.45 *m_total
- m_eff depends of
- Topology/ physical dimensions
- Spring constant, material choice
- Dynamics
- Will be calculated more accurately in a future lecture

b for gas-damping

- Q depends of $b=$ damping coefficient
- Damping, b, depends of viscosity
- Viscosity is internal resistance against gas transport
- Ex.: damping for rectangular parallel plate:

$$
b=\frac{3}{2 \pi} \cdot \frac{\mu \cdot A^{2}}{90^{3}}
$$

$$
A=\text { area } \quad g_{0}-\text { gap }
$$

$\mu=$ viscosity of gas

Q for gas damping

Gas damping influences Q-factor
Quantitative equations:

$$
\begin{aligned}
& Q=k /\left(\omega_{0} b\right) \rho=\text { density } \\
& Q_{\text {cantilure }}=\frac{\sqrt{E \rho} H^{2}}{\mu(W L)^{2}} g_{0}^{3} \\
& Q_{C c}=W \cdot L \rightarrow \frac{W \cdot L}{2}
\end{aligned}
$$

Switch speed for large damping

For a damping-limited system

$(Q \leq 0.5)$
Equation of motion $b \frac{d w}{d t}=F_{e x t}$

Vs = actuation voltage

Time response for various Q-factors

Figure 3.3. Pull-down simulations for the Au and Al beams of Table 3.1 for an applied voltage of $42 \mathrm{~V}\left(V_{s}=1.4 V_{p}\right)$.

Note: Au has higher density \rightarrow larger mass \rightarrow lower $\omega \rightarrow$ larger switch time (t_s)

Switch speed for increased Vs

- Switch-speed strongly depends of actuation voltage, Vs
- Vs is usually larger than Vpi
- Vs = const * Vpi (pull-in) = ("actuation voltage")
- Larger voltage gives larger electrostatic force
- \rightarrow increased switch speed

Time response vs. applied voltage

Figure 3.4. Pull-down simulations for the Au beam of Table 3.1 versus the applied voltage, and $Q=1$.

Switch speed for small damping
Electrostatic force

$$
F=\frac{\varepsilon_{0} A V^{2}}{2 g^{2}}
$$

"Acceleration limited" switch (b~0)

$$
m \frac{d^{2} w}{d t^{2}}+k \cdot w=-\frac{\varepsilon_{0} A v^{2}}{2 g_{0}^{2}} \quad(Q \geq 2)
$$

Actuation voltage

$$
V_{S}=\text { koust } \times V_{P_{i}}
$$

Switch time

$$
t_{s} \approx 3.67 \frac{V_{p i}}{V_{s} \cdot w_{0}}
$$

Acceleration limited switch

Figure 3.5. Simulated switching times for the Au beam given in Table 3.1. "AL" means acceleration-limited and is given by Eq. (3.23).

Note: The system becomes more acceleration limited when damping decreases (eg. Q-factor increases). High Vs/Vp is good.

RF design of MEMS switch

- Detailed electromagnetic modeling can be used
- 3 dim electromagnetic analysis of field distributions
- Detailed mechanical model
- Depends on material properties, boundary conditions etc.
$-\rightarrow$ Calculating field distributions and S-parameters
- Alternatively: use equivalent circuit models \rightarrow
- Simple models for analytic calculations
- Can be used to estimate RF performance

Electrical characterization of RF MEMS switches

- For "low" frequency
- Use impedance - admittance parameters
- Two-port with voltage and current (Kirchhoff's equations)
- For high frequency
- Use S-parameters
- S-parameters are measured/calculated when the line is terminated with its characteristic impedance
- S-parameters are small signal parameters
- RF power < DC power

Definition of S-parameters

- Calculating power:

$$
P_{n}=\frac{1}{2} \operatorname{Re}\left\{V_{n} I_{n}^{*}\right\}=\frac{1}{2}\left(\left|a_{n}\right|^{2}-\left|b_{n}\right|^{2}\right)
$$

S-parameters

$$
\left\{\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right\}=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}
$$

Meaning of S-parameters

$$
\begin{equation*}
S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \equiv \frac{\text { reflected power wave at port } 1}{\text { incident power wave at port } 1} \tag{4.42a}
\end{equation*}
$$

$$
\begin{equation*}
S_{21}=\left.\frac{b_{2}}{a_{1}}\right|_{a_{2}=0} \equiv \frac{\text { transmitted power wave at port } 2}{\text { incident power wave at port } 1} \tag{4.42b}
\end{equation*}
$$

$$
\begin{equation*}
S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0} \equiv \frac{\text { reflected power wave at port } 2}{\text { incident power wave at port } 2} \tag{4.42c}
\end{equation*}
$$

$$
\begin{equation*}
S_{12}=\left.\frac{b_{1}}{a_{2}}\right|_{a_{1}=0} \equiv \frac{\text { transmitted power wave at port } 1}{\text { incident power wave at port } 2} \tag{4.42d}
\end{equation*}
$$

Measuring S-parameters

- S-parameters measured when lines are terminated with characteristic impedance

Figure 4-15 Measurement of S_{11} and S_{21} by matching the line impedance Z_{0} at port 2 through a corresponding load impedance $Z_{L}=Z_{0}$.

RF characterization

- Reflected and transmitted signals should be taken into account
- Important parameters calculated
- Insertion loss in ON-state (down) =
- Isolation i OFF-state (up) =
- Return loss (both up/down) =

RF characterization, contd.

"IL = Insertion loss" i "on-state"

$$
S_{21}=\left.\frac{b_{2}}{a_{1}}\right|_{a_{2}=0}=\frac{\text { transmitted, port } 2}{\text { incident, port } 1}
$$

The inverse value is used for IL
Specified in dB
Degrades with increased frequency

RF characterization, contd.

"Isolation" in "off-state"

$$
\begin{aligned}
& \frac{1}{S_{21}}=\left.\frac{a_{1}}{b_{2}}\right|_{a_{2}=0}= \\
& \text { (Varadan) }
\end{aligned}=\frac{\text { incident, port } 1}{\text { transmitted, port } 2} \quad \frac{1}{S_{12}}=\left.\frac{a_{2}}{b_{1}}\right|_{a_{1}=0}=\frac{\text { incident, port } 2}{\text { transmitted, port } 1}
$$

\rightarrow High isolation when output is small relative to input (or input is marginally influenced by output)
"Return loss" for both states

$$
S_{11}=\frac{b_{1}}{a_{1}}
$$

eg. Large loss for much reflected

S-parameters

- In UP-state: S21 is corresponding to isolation
- In DOWN-state: S_{21} is corresponding to insertion loss
- In UP-state: S_{11} is corresponding to return loss
- In DOWN-state: S_{11} is corresponding to return loss

Typical s-parameter measurements

Figure 3.25 Measured insertion loss and return loss RF MEMS switch. Reproduced from C.L. Goldsmith, Z. Yao, S. Eshelman and D. Denniston, 1998, 'Performance of low-loss MEMS capacitive switches', IEEE MW and Guided wave Letters 8(8): 269-271, by permission of IEEE, (c) 1998 IEEE

Equivalent circuit for capacitive shunt switch

Figure 4.1. Illustration of a typical MEMS shunt switch shown in cross section and plan view. The equivalent circuit is also shown [6] (Copyright IEEE).

Equivalent circuit, contd.
Switch shunt impedance

$$
\begin{aligned}
& Z_{s}=R_{s}+j \omega L+\frac{1}{j \omega C} \\
& C=C_{\mu} \text { ill } C_{d}
\end{aligned}
$$

At resonance

$$
\begin{aligned}
& \omega_{0} L=\frac{1}{\omega_{0} C} \\
& \omega_{0}=\sqrt{\frac{1}{L_{C}}}
\end{aligned}
$$

$\frac{1}{j \omega c}$ for $f \ll f_{0}$
$Z_{s}=R_{s} " \quad l=f_{0}$

$$
j w L{ }^{j} \quad f \gg f_{0}
$$

RF parasitics

- Simplified calculations for shunt switch:
- Use C only
- More accurate calculations:
- Include L
- Meander spring contributes to parasitics!
- Meanders give a softer spring
- Give lower Vpi
$-\rightarrow$ contribute to parasitic inductance
- \rightarrow influence RF-performance
- Accurate modeling should take into account parasitic inductance and parasitic resistance

Parasitic inductance

Figure 4.4. Simulated inductance for low-spring-constant MEMS bridges.

Meander spring increases inductance

Shunt configuration

$$
Z_{s}=R+j \omega L+\frac{1}{j \omega C}
$$

$$
\begin{aligned}
& S_{11}=S_{22}=\Gamma=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}=\frac{z_{s} / / z_{0}-z_{0}}{z_{s} / / z_{0}+z_{0}}=\frac{-z_{0}}{2 z_{s}+z_{0}} \\
& S_{12}=S_{21}=1+\Gamma=1+\frac{-z_{0}}{2 z_{S}+z_{0}}=\frac{2 z_{S}}{2 z_{s}+z_{0}}
\end{aligned}
$$

Shunt switch
Return loss (up-state) $\quad Z_{s} \approx \frac{1}{j w c}$

$$
\begin{aligned}
& S_{11}=\frac{-z_{0}}{2 z_{s}+z_{0}}=\frac{-z_{0}}{2 \cdot \frac{1}{j \omega C}+z_{0}}=\frac{-j \omega C z_{0}}{2+j \omega C z_{0}} \\
& \left|S_{11}\right|^{2}=S_{11} \cdot S_{11}^{*}=\frac{\left(\omega C z_{0}\right)^{2}}{4+\left(\omega C z_{0}\right)^{2}} \\
& \frac{\text { Rectum loss }}{(\text { down - state })} \quad z_{s}=R+j \omega L+\frac{1}{j \omega C} \\
& S_{11}=\frac{-z_{0}}{2 Z_{s}+z_{0}}=\frac{-z_{0}}{2\left(R+j \omega L+\frac{1}{j \omega C}\right)+z_{0}}=\frac{-j \omega C Z_{0}}{\left(2-2 \omega^{2} L C\right)+j \omega\left(2 R+C Z_{0}\right)} \\
& \left|S_{11}\right|^{2}=S_{11} \cdot S_{11}^{*}=\frac{\left(\omega C Z_{0}\right)^{2}}{\left(2-2 \omega^{2} L C\right)^{2}+\left(2 \omega R+\omega C Z_{0}\right)^{2}}
\end{aligned}
$$

Shunt switch
insertion loss (down-state)

$$
\begin{aligned}
S_{12}=S_{21} & =\frac{2 z_{s}}{2 z_{s}+z_{0}}=\frac{2\left(R+j \omega L+\frac{1}{j \omega C}\right)}{2\left(R+j \omega L+\frac{1}{j \omega C}\right)+z_{0}} \\
& =\frac{\left(2-2 \omega^{2} L C\right)+j 2 \omega R C}{\left(2-2 \omega^{2} L C\right)+j\left(2 \omega R C+\omega C Z_{0}\right)} \\
\left|S_{12}\right|^{2}=\left|S_{21}\right|^{2} & =S_{21} * S_{21}^{*}=\frac{\left(2-2 \omega^{2} L C\right)^{2}+(2 \omega R C)^{2}}{\left(2-2 \omega^{2} L C\right)^{2}+\left(2 \omega R C+\omega C Z_{0}\right)^{2}}
\end{aligned}
$$

Series contact cantilever switch
OFF (up-state)

$$
Z_{s}=j \omega L+\frac{1}{j \omega c}
$$

$$
\begin{aligned}
& S_{11}=S_{z_{2}}=\Gamma=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}=\frac{\left(z_{\mathrm{S}}+z_{0}\right)-z_{0}}{\left(z_{\mathrm{s}}+z_{0}\right)+z_{0}}=\frac{z_{\mathrm{s}}}{2 z_{0}+z_{\mathrm{s}}} \\
& S_{12}=S_{z_{1}}=1-\Gamma=1-\frac{z_{\mathrm{s}}}{2 z_{0}+z_{\mathrm{S}}}=\frac{2 z_{0}}{2 z_{0}+z_{\mathrm{s}}}
\end{aligned}
$$

Series suritch
Rehum loss (up-state)

$$
\begin{gathered}
s_{11}=s_{2_{2}}=\frac{z_{s}}{2 z_{0}+Z_{s}}=\frac{j \omega L+\frac{1}{j \omega C}}{2 Z_{0}+\left(j \omega L+\frac{1}{j \omega C}\right)}=\frac{1-\omega^{2} L C}{\left(1-\omega^{2} L C\right)+j 2 \omega C Z_{0}} \\
\left|s_{11}\right|^{2}=s_{11} \cdot s_{11}^{*}=\frac{\left(1-\omega^{2} L C\right)^{2}}{\left(1-\omega^{2} L C\right)^{2}+\left(2 \omega C Z_{0}\right)^{2}}=\frac{1}{1+\left(2 \omega C Z_{0}\right)^{2}} \\
\quad=0
\end{gathered}
$$

Isolation (up-state)

$$
\begin{aligned}
& S_{12}=S_{21}=\frac{2 z_{0}}{2 Z_{0}+Z_{s}}=\frac{2 z_{0}}{2 Z_{0}+\left(j \omega L+\frac{1}{j \omega C}\right)}=\frac{j 2 \omega C Z_{0}}{\left(1-\omega^{2} L C\right)+j 2 \omega C Z_{0}} \\
&\left(\left.S_{12}\right|^{2}=S_{12}-S_{12}^{*}=\frac{\left(2 \omega C Z_{0}\right)^{2}}{\left(1-\omega^{2} L C\right)^{2}+\left(2 \omega C Z_{0}\right)^{2}}\right.=\frac{\left(2 \omega C z_{0}\right)^{2}}{1+\left(2 \omega C Z_{0}\right)^{2}} \\
& \xlongequal{1}=0
\end{aligned}
$$

Seres switch
Retumn loss (down-state)

$$
\begin{aligned}
& S_{11}=\frac{z_{s}}{2 z_{0}+z_{s}}=\frac{j \omega L+R}{2 z_{0}+j \omega L+R} \\
& \begin{array}{ll}
\left(S_{11}\right)^{2}=S_{11} \cdot S_{11}^{*}=\frac{R^{2}+(\omega L)^{2}}{\left(2 z_{0}+R\right)^{2}+(\omega L)^{2}} & =\frac{R^{2}}{\left(2 z_{0}+R\right)^{2}} \\
\text { insertion loss (down-state) } & =0
\end{array} \\
& S_{12}=\frac{2 z_{0}}{2 z_{0}+z_{s}}=\frac{2 z_{0}}{2 z_{0}+j \omega L+R} \\
& \left|s_{12}\right|^{2}=s_{12} \cdot s_{12}^{*}=\frac{\left(2 z_{0}\right)^{2}}{\left(2 Z_{0}+R\right)^{2}+(\omega L)^{2}}=\frac{2 z_{0}^{2}}{\rho} \frac{\left(2 z_{0}+R\right)^{2}}{}
\end{aligned}
$$

FSRM

\geq

RF MEMS switch vs. frequency

Equivalent circuit
G. Reheiz, "Short course on RF-MEMS". Dec. 2003
H. Tilmans, Microwave week. 2004 .

Ohmic Shunt
Limited by ground inductance

Ohmic Series

Examples of implemented switches

- Series-switch
- Structure
- Fabrication
- Performance
- Ex. of contact-switches \rightarrow

Cantilever beam with electrostatic actuation

J.J. Yao, M.F. Chang, Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers ' 95.

Switch architecture:

- suspended SiO_{2} cantilever arm
- platinum-to-gold electrical contact
- electrostatic actuation

Performance:

- DC to RF range of frequency
- $\mathrm{R}_{\mathrm{DC}}=0.22 \Omega$
- Pull in voltage $=28 \mathrm{~V}$, max current $=200 \mathrm{~mA}$
- speed: $30 \mu \mathrm{~s}$
- -50 dB isolation and 0.1 dB insertion loss @ 4GHz
- monolithic integration with IC because of the low temperature budget of the process

Rockwell series-switch

Figure 5.8. SEM of the Rockwell Scientific MEMS series switch [24] (Copyright IEEE).

Sketch of principle

(a)

Fill with contact metal

(b)

(c)

(d)

Figure 6.6. The fabrication process of the Rockwell Scientific series switch [8, 9].

Rockwell series-switch, contd.

TABLE 5.6. Parameters for the Rockwell Scientific DC-Contact MEMS Series Switch

Parameter	Value	Parameter	Value
Length $[\mu \mathrm{m}]$	250	Actuation area $\left[\mu \mathrm{m}^{2}\right]$	$75 \times 75(\times 2)$
Width $[\mu \mathrm{m}]$	150	Actuation voltage $[\mathrm{V}]$	$50-60$
Height $[\mu \mathrm{m}]$	$2-2.5$	Switch time $[\mu \mathrm{s}]$	$8-10$
Cantilever type	Oxide, Au	Switch resistance $[\Omega]$	$0.8-2$
Thickness $[\mu \mathrm{m}]$	$2,0.25$	$C_{u}[\mathrm{fF}]$	$1.75-2$
Residual stress $[\mathrm{MPa}]$	Low	Inductance $[\mathrm{pH}]$	$40-60$
Spring constant $[\mathrm{N} / \mathrm{m}]$	15	Isolation $[\mathrm{dB}]$	$-50(4 \mathrm{GHz})$
Holes in cantilever	Yes	Isolation $[\mathrm{dB}]$	$-30(40 \mathrm{GHz})$
Sacrificial layer	Polyimide	Isolation $[\mathrm{dB}]$	$-20(90 \mathrm{GHz})$
Bridge release	Plasma etch	Loss $[\mathrm{dB}]$	$-0.1(0.1-50 \mathrm{GHz})$

Motorola

Figure 5.9. Photomicrograph of the Motorola DC-contact MEMS series switch and cross sections in the up- and down-state positions (Copyright IEEE).

Motorola, contd.

TABLE 5.7. Parameters for the Motorola DC-Contact MEMS Series Switch

Parameter	Value	Parameter	Value
Length $[\mu \mathrm{m}]$	140	Actuation area $\left[\mu \mathrm{m}^{2}\right]$	100×80
Width $[\mu \mathrm{m}]$	100	Actuation voltage $[\mathrm{V}]$	$40-60$
Height $[\mu \mathrm{m}]$	$2-3$	Switch time $[\mu \mathrm{s}]$	$2-4$
Cantilever type	Oxide, Au	Switch resistance, $R_{s}[\Omega]$	$1-2$
Thickness $[\mu \mathrm{m}]$	$1.3,0.3$	$C_{u}[\mathrm{fF}]$	2
Residual stress $[\mathrm{MPa}]$	Low	Inductance $[\mathrm{pH}]$	20
Spring constant $[\mathrm{N} / \mathrm{m}]$	$35-40$	Isolation $[\mathrm{dB}]$	$-44(2-4 \mathrm{GHz})$
Holes in cantilever	Yes $(8 \mu \mathrm{~m})$	Loss $[\mathrm{dB}]$	$-0.15(0.1-6 \mathrm{GHz})$
Sacrificial layer	Polyimide		
Bridge release	Plasma etch		

[^0]
Lincoln

Figure 5.12. SEM of the Lincoln Laboratory in-line DC-contact MEMS series switch [31] (Copyright IEEE).

Figure 5.13. Cross section of the DC-contact (a) and capacitive-contact (b) Lincoln Laboratory inline switch (Copyright IEEE).

Lincoln, contd.

TABLE 5.10. Parameters for the Lincoln Laboratories Inline MEMS Series Switch

Parameter	Value	Parameter	Value
Length ${ }^{\text {a }}$ [$\mu \mathrm{m}$]	55/200	Actuation area $\left[\mu \mathrm{m}^{2}\right]$	45×50
Width [$\mu \mathrm{m}$]	50	Actuation voltage ${ }^{b}[\mathrm{~V}]$	$30-80$
Height [$\mu \mathrm{m}$]	2-15	Switch time ${ }^{b}[\mu \mathrm{~s}]$	$1-20$
Cantilever type	Oxide, Al, oxide	Switch resistance, $R_{s}[\Omega]$	1-2
Thickness [$\mu \mathrm{m}$]	$0.2,0.5,0.2$	$C_{u}[\mathrm{fF}]$	4-6
Residual stress	Very high	Inductance [pH]	Negligible
Holes in cantilever	No	Isolation [dB]	-40 (4GHz)
Sacrificial layer	Polyimide	Isolation [dB]	-22 (30 GHz)
Bridge release	Freeze Drying	Loss [dB]	-0.15 (0.1-40 GHz)
Dielectric ${ }^{c}(\AA)$	$\mathrm{SiO}_{2}(1000)$		
${ }^{a}$ Capacitive switch: 2 ${ }^{b}$ Capacitive switch: 30 'Above pull-down ele	$\mu \mathrm{m}$. DC-contact s -40 V and $20 \mu \mathrm{~s}$; D trode only.	tch: $55 \mu \mathrm{~m}$. contact switch: $60-80 \mathrm{~V}$ and	

Examples of implemented switches

- Shunt-switches

- Structure
- Fabrication
- Performance
- Ex. of capacitive shunt-switches \rightarrow

Fabrication of capacitive switch

Raytheon

Figure 5.1. Photomicrograph of Raytheon MEMS capacitive shunt switch [2, 3] (Copyright IEEE).

Raytheon, contd.

TABLE 5.1. Parameters for the Raytheon Capacitive MEMS Shunt Switch

Parameter	Value	Parameter	Value
Length $[\mu \mathrm{m}]$	$270-350$	Actuation area $\left[\mu \mathrm{m}^{2}\right]$	80×100
Width $[\mu \mathrm{m}]$	$50-200$	Actuation voltage $[\mathrm{V}]$	$30-50$
Height $[\mu \mathrm{m}]$	$3-5$	Switch time $[\mu \mathrm{s}]$	$3 / 5(\mathrm{D} / \mathrm{U})$
Membrane type	Aluminum	$C_{d}[\mathrm{pF}]$	$1-6$
Thickness $[\mu \mathrm{m}]$	0.5	Capacitive ratio	$80-120$
Residual stress $[\mathrm{MPa}]$	$10-20$	Inductance $[\mathrm{pH}]$	$5-10$
Spring constant $[\mathrm{Nm}]$	$6-20$	Resistance $[\Omega]$	$0.25-0.35$
Holes $[\mu \mathrm{m}]$	Yes $(3-5)$	Isolation $[\mathrm{dB}]$	$-20(10 \mathrm{GHz})$
Sacrificial layer	Polyimide	Isolation $[\mathrm{dB}]$	$-35(30 \mathrm{GHz})$
Bridge release	Plasma etch	Intermodulation	+66 dBm
Dielectric (\AA)	$\mathrm{Si}_{3} \mathrm{~N}_{4}(1000)$	Loss $[\mathrm{dB}]$	$-0.07(10-40 \mathrm{GHz})$

Univ of Michigan

(a)

(b)

Figure 5.2. Photomicrograph of the university of Michigan low-voltage MEMS shunt switch. The number of meanders can be varied from 1 to 8 [7] (Copyright IEEE).

Fabrication, "Michigan switch"

Figure 6.7. The fabrication process of the Michigan all-metal series switch [10, 11] (Copyright IEEE).

Rebeiz

Univ of Michigan

TABLE 5.2. Parameters for the University of Michigan Low-Voltage MEMS Capacitive Shunt Switch

Parameter	Value	Parameter	Value
Length [$\mu \mathrm{m}$]	500-700	Actuation area $\left[\mu \mathrm{m}^{2}\right]$	$200 \times 200(\times 2)$
Width [$\mu \mathrm{m}$]	200-250	Actuation voltage ${ }^{a}$ [V]	6-20
Height [$\mu \mathrm{m}$]	4-5	Switch time ${ }^{a}[\mu \mathrm{~s}]$	20-40 (D)
Membrane type	Nickel	$C_{d}[\mathrm{pF}]$	1-3
Thickness [$\mu \mathrm{m}$]	2-2.5	Capacitive ratio	30-50
Residual stress [MPa]	20-100	Inductance [pH]	1-2
Spring constant [N / m]	1-10	Resistance [Ω]	0.2-0.3
Holes [$\mu \mathrm{m}$]	Yes (10)	Isolation [dB]	-25 (30 GHz)
Sacrificial layer	Polyimide	Intermodulation	N/A
Bridge release	Plasma etch	Loss [dB]	-0.1 (1-40 GHz)
Dielectric (\AA)	$\mathrm{Si}_{3} \mathrm{~N}_{4}(1000-1500)$		

${ }^{a}$ Depends on number of meander support.

Special switch structures

- 3 electrodes can also be used
- Top-electrode used to "clamp" the active electrode to the top
- Important for systems experiencing large accelerations

Liquid/metal contact-switch

- May solve reliability problem of solid state - solid state contacts
$-\rightarrow$ Use liquid-to-solid state
- Mercury (Hg) is candidate due to good properties
- Low contact resistance
- No signal ringing
- No contact degradation
- Electrostatic actuation
- Actuation voltage 100 - 150 V
$\rightarrow \rightarrow$ Liquid not accepted in IC-industry!

Mercury switch

Mercury switch sphere moves

Planar prosess, foto, JHU, Appl Physics Lab

Mercury switch

Figure 3.33 Schematic diagram of the mercury contact micro relay. Reproduced from S. Saffer, J. Simon and C.J. Kim, 1996, 'Mercury contact switching with gap-closing microcantilever', Proceedings of SPIE, 2882: 204-209, by permission of SPIE

Figure shows switch from above

Mercury switch, contd.

Figure 3.34 Process flow at cross-section AA^{\prime} of Figure 3.33. Note: MCNC, Microelectronics Center of North Carolina. Reproduced from S. Saffer, J. Simon and C.J. Kim, 1996, 'Mercury contact switching with gap-closing microcantilever', Proceedings of SPIE, 2882: 204-209, by permission of SPIE

Thermal actuation

Figure 3.38 Principle of operation of thermally controlled magnetization micro relay. (a) without heat; (b) with heat. Note: N, north; S, south. Reproduced from E. Hashimoto, H. Tanaka, Y. Suzuki, Y. Uensishi and A. Watabe, 1994, 'Thermally controlled magnetic actuator (TCMA) using thermo sensitive magnetic materials', in Proceedings of IEEE Microelectromechanical Systems Workshop, 1994, IEEE, Piscataway, NJ, USA: 108-113, by permission of IEEE, © 1994 IEEE

Some challenges in switch design

- High electric field in small dimensions
- Parts of metal surface may melt
- Liquid metal damp conducts when switch is turned off
- "Break-down" in dielectric
- Self actuation
- If RF-signal modulates a DC voltage the beam can self actuate
- May be beneficial to have separate pull-down electrodes
- Integration of switch with IC
- (more on this in a future lecture)

Challenge: System-on-Chip (SoC)

Switch integrated on IC:

An Above IC MEMS RF Switch

Daniel Saias, Philippe Robert, Samuel Boret, Christophe Billard, Guillaume Bouche, Didier Belot, and Pascal Ancey

Fig. 9. Switch and driver die Micrograph.

Fig. 1. SEM view of the microswitch.

Comparing performance

TABLE II
 RF SWITChing Devices Conpared Performance

	FET switch [2]	SOI CMOS TxiAx Switch High Resistivity substrate [3]	Stand alone MENS solution [4]	Integrated MEMS (this work)
Incertion Loes	26 ¢60Hz	0.782 .50 Hz	0.15 -10GHz	0.466 HHz
Igolation (dB)	$-20.96 \mathrm{~Hz}$	-50 ¢ 2.50 Hz	$-15910 \mathrm{~Hz}$	-40 646Hz
F* series [Ohm]				2
Gup series (tF)				1
Size (um x um)	$m 1 \mathrm{~mm}{ }^{3}$	$0.02 \mathrm{~mm}{ }^{2}$	120×260	300×900
Switching time	10 ns	10 ns	5305	-250us
Actuation	-	-	Electrostatio	Thermal + Elegtrostatio
Driver	-	-	External	Internal (300umx300um)
Ir*iegration	GaHa embedded	SOI design. Separnte Chip	Separate chip	embedded

Saias et al, 2003

[^0]: Rebeiz

