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Today’s lecture
• Phase shifters

– Function
– Applications
– Technology
– Analog phase shifters
– Digital phase shifters

• Mechanical resonators
– Basic principles 
– Working principle for basic resonator structures
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Function
• A phase shifter is a 2-port

• Output signal is delayed relative to the input signal
• The effective ”path-length” of the transmission line can 

be changed
– Signal propagates a longer distance ”delayed” phase 

change
– Phase difference can be controlled by a DC bias

IN OUT

CNTRL
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Important (desired) properties

• Continuous tunability
• Low loss
• Impedance matching of signal
• High power signal capacity
• Low power control bias
• Fast response
• Low cost
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Applications 

• ”Phased array” antenna may 
have thousands of elements 
with a phase shifter for 
every element
– Antenna beam can be  

steered in space without 
physically moving the 
antenna

– Antenna beam can be 
shaped

• Use of MEMS phase shifters 
is a hot topic 
– Can be integrated with 

antenna elements on 
ceramic or quarts 
substrates

– Low-cost-antennas
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Classifications 

• Phase shifters are classified as 
– Analog

• Continuous phase shift
• Change of propagation speed

– Digital
• Phase shift in discrete steps
• Select different signal paths
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Technology 

• Different electronic controllable phase 
shifters exist

– Ferrite phase shifters
– Semiconductor (solid state) phase shifters

– MEMS phase shifters
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Ferrite phase shifters
• Phase shift set by change of external magnetic field

– Magnetic field interact with electron-spin and influences 
magnetic permeability = µ

– Propagation speed of electromagnetic waves are changed 

– gives variable phase shift

• + Good properties, high power capability
• - High cost, complex, not practical for high 

integration systems

µ
1

≈pv
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Semiconductor phase shifters

• Switching in/out different line segments by using 
IC switches
– PIN-diode, GaAs FET

• + Cheap, small, monolithic integration with 
amplifiers possible

• - Can not give continuous phase variation
• - Significant RF loss, high insertion loss
• - Poor power capability
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MEMS phase shifters
• A. Use of distributed, capacitive shunt-switches 

(analog)
– Change the effective capacitive load of transmission line
– Continuous phase change

• B. Based on MEMS switches (digital)
– Phase shift set by switching between different phase paths
– Discrete phase change

– MEMS switches have high performance!
• Better properties than semiconductor switches

• High-performance phase shifters are possible!
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Propagation in a transmission line

Voltage wave in positive z-direction

))((

)(

CjGLjRk

eVzV kz

ωω ++=

= −+

(R,L,G,C per length)

Lossless line

)cos(),(
)(

0

0 ztVtzV
eVzV

jLCjkGR
zj

βω

βω
β

−=
=

==⇒==
−+

C
LZ

LCLC
f

T
vTv

zz

pp

=

==⋅=⇒=⋅

==⇒=⋅

0

11212

22

ω
π

β
πλ

β
πλπβThe wave repeats in space when

Propagation velocity = 
phase velocity, Vp

Characteristic impedance



12

Analog phase shifters

• Phase velocity for a 
transmission line

– Variables are 
inductance and 
capacitance per unit 
length

• Idea: C-value can be 
controlled by a bias 
voltage
– For example by 

shunt capacitive 
loaded line

tt CLpv
⋅

= 1

De Los Santos

Ct = line capacitance
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Shunt capacitive loaded line
• Transmission line (TL)  periodic loaded with variable 

capacitors
• Working principle

– increases decreases

– It will take a longer time for the signal to propagate a given 
distance

• All C_switch capacitors change at the same time and 
continuously by tuning the bias voltage

• Challenge for analog phase shifters:
– Sensitive to noise on bias voltage line

tt CLpv
⋅

= 1
tC pv
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Distributed MEMS phase shifters

• Capacitive shunt switches loading the line
– Beam over centre electrode in a co-planar wave guide, CPW
– Beam pulled down by a electrostatic force controlled by DC 

voltage on the bottom electrode (< pull-down voltage!)
– Gap determines the distributed MEMS-capacitance

• ”loaded” TL-impedance changes
– Can be modeled by simple analytical expressions
– Good for broad bandwidth

• Periodic loading by shunt capacitors gives a Bragg-
frequency limiting the maximal frequency of operation 
(“grating” effect)
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Formulas for lossless and loaded lines
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Challenges for MEMS shunt-switch phase shifters

• Low switch speed (µs)
• High actuation voltage, Vs = 20 – 100 V

– Vs reduced by reducing the gap
• Complex fabrication (yield)
• Parasitic up-state capacitance contributes significantly 
• More sensitive to pull-in

– Vs reduced by using materials with lower Youngs modulus
• Use  polymers (E = 5 GPa, metals have 50 – 100 GPa)
• Polymers can give 1/3 actuation voltage compared with metals
• How to use micro stereo lithography to fabricate such structures is 

described in Varadan (not syllabus)

• Good enough properties for phased array 
antennas
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Digital phase shifters with series-switches

• Working principle
– Different line paths connected in/out
– Interconnections through switches

• Switches for ”180°, 90°, 45°, 22.5°, 11.25° -sections in a cascade 
arrangement

• Several bits used
– Controlling line sections individually
– F.ex. 3 bits: 45/90/180° give phase shift 0, 45, 90, 135, … , 315°
– 3 bit and 4 bit phase shifters have been demonstrated
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Main types of digital phase shifters (De Los Santos)
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Digital phase shifters, contd.
• Switched line

– Single-pole double throw (SPDT)
– Differential phase shift given by 

• Loaded line
– Switchable stubs introduced

• Give contribution to phase shift
– Each stub is terminated by a switch 

to ground
• Phase shift depending of the 

existing/non-existing ground 
connection

( )shortlong ll −=∆ βϕ
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Digital phase shifters, contd.

• Switched LP/HP –filter
– Use  dual lumped LC-circuits
– Choose between two circuits with 

different phase delays
• LP = phase delay
• HP = phase advance
• Input/output impedance can be  

chosen to Z0

– Phase shift between the two 
settings can be calculated

– Compact implementation possible
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Reflection type phase shifters
• Two ports terminated in short 

circuited transmission lines with 
electrical length 

– If two MEMS switches are 
connected to ground: The 
termination will reflect the signal 
with a smaller delay than if the 
switches were open 

– Two equal terminations and the 
lines are balanced

• A special  Lange coupler is used
– The signals are reflected and 

added in phase at the output port 
(”short circuit termination”)

2/ϕ∆
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Reflection type phase shifter, N-bit



23

Reflection type phase shifters, contd.

• Properties
– Electric distance between switches is half the lowest 

bit resolution

– Reflection type phase shifters have small dimensions
• Give double phase delay per unit length compared to 

switched line topology
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Rockwell’s 35 GHz MEMS phase shifter
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2 bit distributed phase shifter

Choose upper and/or 
lower section

Each section implemented
by shunt capacitive line
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Digital MEMS phase shifters

• Based on MEMS switches 
• MEMS switches have high performance

– Negligible actuation power 
– Negligible standby power consumption
– Low insertion loss
– High isolation
– Limited speed, 1 – 30 µs

• Not always critical
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Today’s lecture
• Phase shifters

– Functionality
– Applications
– Technology
– Analog phase shifters
– Digital phase shifters

• Mechanical resonators
– Basic principles
– Working principle for basic resonator structures
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Mechanical resonators

• Basic principles
• Various types of resonators
• Typical properties

• Working principle for 
– Comb-resonator
– Clamped-Clamped beam resonator
– ”free-free beam” resonator
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Basic principles
• Simple oscillating mechanical system: mass/spring with damping

– Amplitude increases when f fr
• Large oscillations close to the natural resonance frequency 

(non-damped resonance frequency)
– Limited by damping
– Electrical equivalents, 2 types: series or parallel combination of C, L and R 

(small)
– Resonance when reactances cancel each other
– Can calculate resonance frequency from the s-polynomial for the oscillating 

circuit
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Q-factor for oscillating circuits

• Q-factor limited by resistive loss
• High Q gives large displacement at resonance frequency

– Higher peak, smaller bandwidth
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Status of today

• Quarts crystals used a lot
– Q 10,000

• RCL-resonators
– Q < 1,000
– Resistive, parasitic loss
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Different resonator types

Ionescu, EPFL

We focus on real vibrating resonators!
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Typical properties

• Vibrating resonators can be scaled down to micrometer 
lengths
– Analogy with IC-technology

• Reduced dimensions give mass reduction and increased 
spring constant increased resonance frequency

• Vibrating MEMS resonators can give high Q-factor
– Reduced insertion loss (BP-filters)
– Reasons for Q degradation for MEMS

• Energy loss to substrate via anchors
• Air/gas damping
• Intrinsic friction
• Small dimensions (low stored energy compared with energy loss)
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Typical properties, contd.
• MEMS resonators can be used for basic circuit functions

– Frequency reference: oscillator
• Can be realized without external discrete passive components!
• Relevant frequencies for MEMS resonators

– 0.8 – 2.5 GHz for front-end wireless systems
– 500 kHz for IF frequency

– Filtering
– Mixing and filtering (”mixlers”, Nguyen)

• MEMS resonators with high Q over a large bandwidth 
and integrated with electronics enable effective 
miniaturization of complete systems!
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Vibrating MEMS resonators

• Classification (De Los Santos)

– One-port: same electrode used for excitation 
and detection of beam vibration

– Two-port: separate electrodes for excitation 
and detection of the vibrating beam structure
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Lateral and vertical movement

• Lateral movement
– Parallel to substrate
– Ex.: Folded beam comb-structure

• Vertical movement
– Perpendicular to substrate
– Ex.: clamped-clamped beam (c-c beam)
– ”free-free beam” (f-f beam)
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Working principle for basic resonator 
structures

• Resonator using folded beam comb-structure
– Developed at UoC, Berkeley
– One of the earliest resonator designs fabricated

• Comb-structures are in general used in many 
types of MEMS systems
– For example used for accelerometer, gyro, variable

capacitance



38

Comb-resonator
• Fixed comb + movable, suspended comb 
• Using folded springs, compact layout
• Total capacitance between combs can be varied
• Applied voltage (+ or -) generates electrostatic force between left anchor comb and 

”shuttle”-comb. Plate pulled left laterally controlled by drive voltage
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Comb-resonator, summary

• Summary of modeling:
• Force: Fe = ½ dC/dx V ^2 (force is always attractive)

– Input signal Va * cos (ωt)
– Fe ~ Va^2 * ½ [1 + cos (2ωt)]
– Driving force is 2x input frequency + DC: NOT DESIRABLE

• Add DC bias, Vd
– Fe ~ Vd ^2 + 2 Vd * Va * cos ω t + negligible term (2ωt)
– Linear AC force-component ~ Vd * Va, has same frequency as 

Va: ω. Is emphasized!
• C increases when finger-overlap increases

– ε * A/d        (A = comb thickness * overlap-length)
• dC/dx = constant for a given design (linear change, C is 

proportional to length variation)
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Comb-resonator, output current

• A time varying capacitance at the output comb is 
established
– Calculating of output current when Vd is constant and 

C is varying
• I0 = d/dt (Q) = d/dt (C*V) = Vd * dC/dt = Vd * dC/dx * dx/dt
• I0 = Vd * dC/dx * ω * x_max
• I0 plotted versus frequency, shows a BP -characteristic

– Detailed modeling in next lecture!
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Comb-resonator, spring constant

• Spring constant for 
simple c-c beam 
deflected to the side
– k_beam = 4* ¼ * E * t * 

(w/L) ^3
• E = Youngs

modulus, t = 
thickness, w = width, 
L = length

• eg. 4 folded= 4 *¼
(¼ for each 
cantilever)

• In figure k_total = 2 * 
k_beam
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Comb-resonator, mass
• m-contributions to resonance frequency

– Spring moves less than shuttle mass
– Beam mass is partly added to shuttle mass
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Some numbers
• Standard SMM process 

(”surface-m-m”)
• Resonator made of poly

– t = 2µm, w = 2µm, L = 185µm
– k = 0.65 N/m, m = 5.7 * 10 exp 

(-11) kg
– fr = 17 kHz

– L = 33µm fr = 300 kHz
– Q = 50,000 in vacuum, Q = 50 

for 1 atm

– L = 10µm, w = 0.2µm, single 
crystalline Si-beam 

• fr = 14 MHz
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Feedback oscillator 

• Structure can have 
2 output ports
– Feedback is 

isolated from any 
variation of output 
load

– Ex. 16.5 kHz 
oscillator, Q = 
50.000 in vacuum

Nguyen, 1995
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Micro resonator oscillator

Nguyen, 1993
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Design parameters for comb-structure

• To achieve high resonance frequency
– Total spring constant should increase
– Or dynamic mass should decrease

• Difficult, since a given number of fingers are needed for electrostatic 
actuation

– k and m depend on material choice, layout, dimensions
• E/ρ expresses the spring constant relative to mass

– Frequency can increase by using a material with larger E/ρ ratio 
than Si

• Aluminium and Titanium has E/ρ lower than for Si
• Si carbide, poly diamond has E/ρ higher than for Si (poly diamond 

is a relevant research topic)

• Use of other structures 
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Beam-resonator
• Obtain higher resonance frequency than comb structure 

– Mass must be reduced more beam resonator
• Studied in detail at UoMichigan

– Commercialized by Discera, Inc., Ann Arbor, Michigan
• Produces reference frequency oscillators substituting quarts crystals in 

mobile phones

• Benefits of beam-resonators
– Simple structure
– Smaller dimensions, smaller mass higher resonance frequency
– Can have many frequency references on one single chip
– More linear frequency variation with respect to temp over a larger 

interval
– Integration with electronics possible reduced cost
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Clamped-clamped beam
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Beam-resonator, contd.
• Electrode under beam, electrostatic actuation
• Plate attracted for both positive and negative wave. Actuated with double 

frequency
– Need a polarization voltage, Vd, between beam and actuation electrode
– As for ”lateral shuttle”: When Vd is combined with ac-signal, then beam 

oscillates with same frequency as ac signal
– At resonance the amplitude is maximum
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Beam-resonator, contd.

• Detection of output signal
– Mechanical vibrations establish a time 

varying capacitance with constant voltage, 
Vp, on the beam

– Q = Vp * C will then vary
– A displacement current is generated 

• i0 ~ dC/dx * dx/dt
• I0 versus frequency shows a BP -behaviour

– Q ~ 10,000 in vacuum
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Ex. On parameters, frequency, Q-factor

• Poly beam
– l = 41 µm, w = 8 µm, t = 1.9 µm
– g = 130 nm, Vd = 10 V, va = 3 mV
– fr = 8.5 MHz
– Deflection amplitude = 4.9 nm at beam centre
– Q = 8,000 at 9 Pa
– Q < 1,000 at 1 atm

• Reduction of Q at 1 atm!

• c-c beam can be used as a reference-oscillator 
or HF/VHF filter/mixer
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Loss in c-c-beam
• c-c-beam has loss via anchors
• Stiffness of a given resonator beam has to be 

increased for higher resonance frequency
– More energy pr cycle leaks to substrate via anchors
– Q-factor decreases when frequency increase

• c-c-beam is not the best structure for high 
frequencies!
– Eks. Q = 8,000 at 10 MHz, Q = 300 at 70 MHz

• ”free-free beam” can be used to reduce 
substrate loss via anchors!
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”free-free-beam”
• f-f-beam is suspended with 4 

support-beams in width-
direction
– Torsion-springs
– Suspension points at nodes

for beam ”flexural mode”
• Support-dimension is a 

quarter-wavelength of f-f-
beam resonance frequency
– The impedance seen at the 

nodes is infinite preventing 
energy propagating along 
the beam to the anchor 

– Beam is free to vibrate as it 
was not anchored

– Beneficial for reducing 
energy loss via anchors to 
substrate

Nguyen, 1999
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”free-free-beam”
• Higher Q can be obtained with f-f-beams

– Ex. Q= 20,000 at 10 – 200 MHz
– Used as reference oscillators, HF/VHF-filters/mixers

Other structures, vibrating discs, in a future lecture
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