INF5490 RF MEMS

LN03: Modeling, design and analysis

Spring 2008, Oddvar Søråsen Department of Informatics, UoO

Today's lecture

- MEMS functional operation
 - Transducer principles
 - Sensor principles
- Methods for RF MEMS modeling
 - 1. Simple mathematical models
 - 2. Converting to electrical equivalents
 - (3. Analyzing using Finite Element Methods)
 - \rightarrow LN04

Transducers for (RF) MEMS

- Electromechanical transducers
 - − Transforming
 electrical energy ← → mechanical energy
- Transducer principles
 - Electrostatic
 - Electromagnetic
 - Electro thermal
 - Piezoelectric

Transducer principles

Electrostatic transducers

- Principle: Forces exist between electric charges
 - "Coulombs law"
- Stored energy when mechanical or electrical work is performed on the unit can be converted to the other form of energy
- The most used form of electromechanical energy conversion
- Fabrication is simple
- Often implemented using a **capacitor** with movable plates
 - Vertical movement: parallel plates
 - Horizontal movement: Comb structures

Electrostatic transducers

- + Beneficial due to simplicity
- + Actuation controlled by voltage
 - voltage \rightarrow charge \rightarrow attractive force \rightarrow movement
- + Movement gives current
 - movement → variable capacitor → current when voltage is constant: Q = V C and i = dQ/dt = V dC/dt
- ÷ Need environmental protection (dust)
 - Packaging required (vacuum)
- ÷ Transduction mechanism is non-linear
 - Gives distortions (force is not proportional to voltage)
 - Solution: small signal variations around a DC voltage

Transducer principles, contd.

Electromagnetic transducers

 Magnetic windings pull the element

Electro thermal actuators

- Different thermal expansions on different locations due to temperature gradients
 - Large deflections can be obtained
 - Slow

Transducer principles, contd.

Piezoelectric transducers

- In some anisotropic crystalline materials the charges will be displaced when stressed → electric field
 - stress = "mechanical stress" (Norw: "mekanisk spenning)
- Similarly, strain results when an electric field is applied
 - strain = "mechanical strain" (Norw: "mekanisk tøyning")
- Ex. PZT (lead zirconate titanates) ceramic materials
- (Electrostrictive transducers
 - Mechanical deformation by electric field
- Magnetostrictive transducers
 - Deformation by magnetic field)

Comparing different transducer principles

Table 1.4 Comparison of electromechanical transducers

Table 1.4	comparison of electromeenamear transducers				
Actuator	Fractional stroke (%)	Maximum energy density (J cm ⁻³)	Efficiency	Speed	
Electrostatic	32	0.004	High	Fast	
Electromagnetic	50	0.025	Low	Fast	
Piezoelectric	0.2	0.035	High	Fast	
Magnetostrictive	0.2	0.07	Low	Fast	
Electrostrictive	4	0.032	High	Fast	
Thermal	50	25.5	Low	Slow	

Source: Wood, Burdess and Hariss, 1996.

Sensor principles

Piezoresistive detection

Capacitive detection

Piezoelectric detection

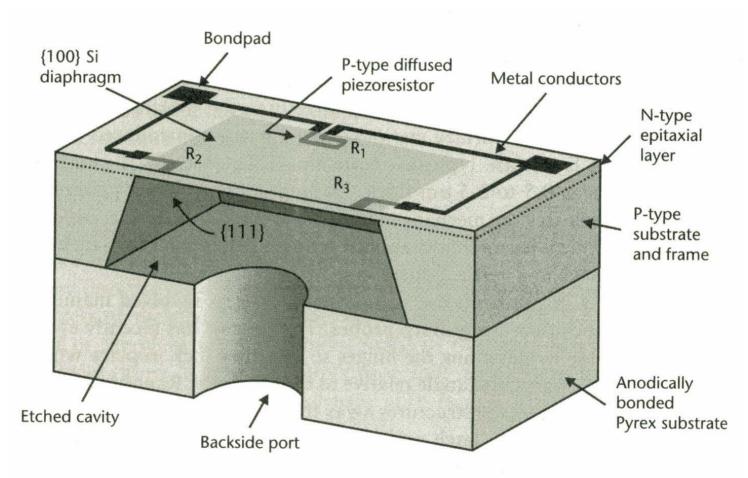
Resonance detection

Sensor principles

Piezoresistive detection

- Resistance varies due to external pressure/stress
- Used in pressure sensors
 - deflection of membrane
- Piezoresistors placed on membrane where strain is maximum
- Resistor value is proportional to strain
- Performance of piezoresistive micro sensors is temperature dependent

Pressure sensor



Sensor principles, contd.

Capacitive detection

- Exploiting capacitance variations
- Pressure \rightarrow electric signal
 - Detected by change in C: influencing oscillation frequency, charge, voltage (V)
- Potentially higher performance than piezoresistive detection
 - + Better sensitivity
 - + Can detect small pressure variations
 - + High stability

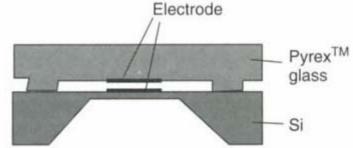


Figure 1.19 Capacitive sensing structure

Sensor principles, contd.

Piezoelectric detection

- Electric charge distribution changed due to external force \rightarrow electric field \rightarrow current

Resonance detection

 Analogy: stress variation on a string gives strain and is changing the "natural" resonance frequency

Methods for modeling RF MEMS

- 1. Simple mathematical models

 Ex. parallel plate capacitor
- 2. Converting to electrical equivalents

 3. Analysis using Finite Element Methods

1. Simple mathematical models

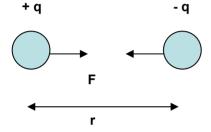
- Use equations, formulas describing the physical phenomena
 - Simplification, approximations
 - Explicit solutions for simple problems
 - linearization around a bias point
 - Numerical solution of the set of equations
 - Typical differential equations
- + Gives the designer insight/ understanding
 - How the performance changes by parameter variations
 - May be used for initial estimates

Ex. On mathematical modeling

- Important equations for many RF MEMS components:
 - \rightarrow Parallel plate capacitor!
 - Study electrostatic actuation of the capacitor with one spring-suspended plate
 - Calculating "pull-in"
 - Formulas and figures \rightarrow

Electrostatics

Electric force between charges: Coulombs law



$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2}$$

Electric field = force pr. unit charge $\overline{E} = \frac{\overline{F}}{q_0}$

Work done by a force = change in potential energy

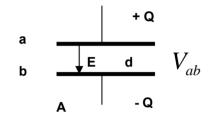
$$W_{a\to b} = \int_{a}^{b} \overline{F} \cdot d\overline{l} = U_a - U_b$$

Potential, V = potential energy pr. unit charge

$$V = \frac{U}{q_0}$$

$$V_a - V_b = \int_a^b \overline{E} \cdot d\overline{l}$$

Capacitance



Definition of capacitance

$$C = \frac{Q}{V_{ab}}$$

Surface charge density = σ

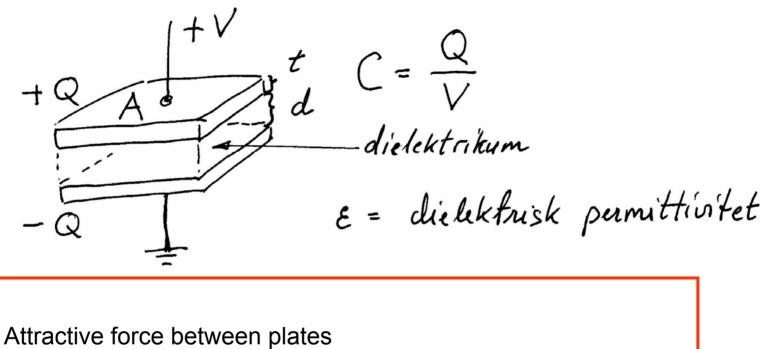
Voltage

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A} \cdot \frac{1}{\varepsilon_0} \qquad \qquad V_{ab} = E \cdot d = \frac{Q}{A\varepsilon_0} \cdot d$$
$$C = \frac{Q}{V_{ab}} = \varepsilon_0 \frac{A}{d}$$

Energy stored in a capacitor, C, that is charged to a voltage V₀ at a current $i = \dot{Q} = C \frac{dV}{dt}$

$$U = \int v \cdot i \cdot dt = \int v \cdot C \frac{dv}{dt} \cdot dt = C \int_{0}^{V_{0}} v \cdot dv = \frac{1}{2} C V_{0}^{2} = \frac{\varepsilon_{0} A}{2d} V_{0}^{2}$$

Parallel plate capacitor

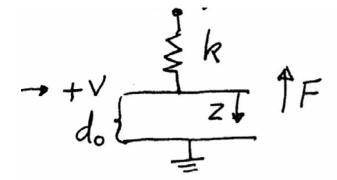


$$F = -\frac{\partial U}{\partial d} = -\frac{\partial}{\partial d} \left(\frac{\varepsilon A}{2d}V^2\right) = \frac{\varepsilon AV^2}{2d^2}$$

Movable capacitor plate

- Assumptions for calculations:
 - Suppose air between plates
 - Spring attached to upper plate
 - Spring constant: k
 - Voltage is turned on
 - Electrostatic attraction
 - At equilibrium
 - Forces up and forces down are in balance \rightarrow

Force balance



k = spring constant

deflection from start position

d0 = gap at 0V and zero spring straind = d0 - zz=d0 - d

Force on upper plate at V and d:

$$F_{nef} = -\frac{\varepsilon A V^2}{2 d^2} + k (d_0 - d) = 0 \text{ at equilibrium}$$

Two equilibrium positions

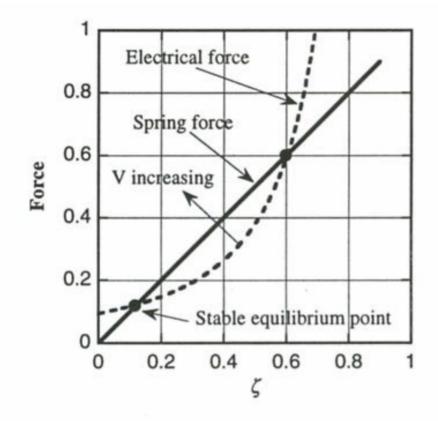


Figure 6.7. Electrical and spring forces for the voltage-controlled parallel-plate electrostatic actuator, plotted for $V/V_{PI} = 0.8$.

$$\varsigma = 1 - d/d0$$
 Senturia

Stability

- How the forces develop when d decreases
 - Suppose a small perturbation in the gap at constant voltage

$$\begin{aligned} SF_{net} &= \frac{\Im F_{net}}{\Im d} \Big| \cdot Sd \\ V \\ SF_{net} &= \left(\frac{\varepsilon A V^2}{d^3} - k\right) Sd \end{aligned}$$

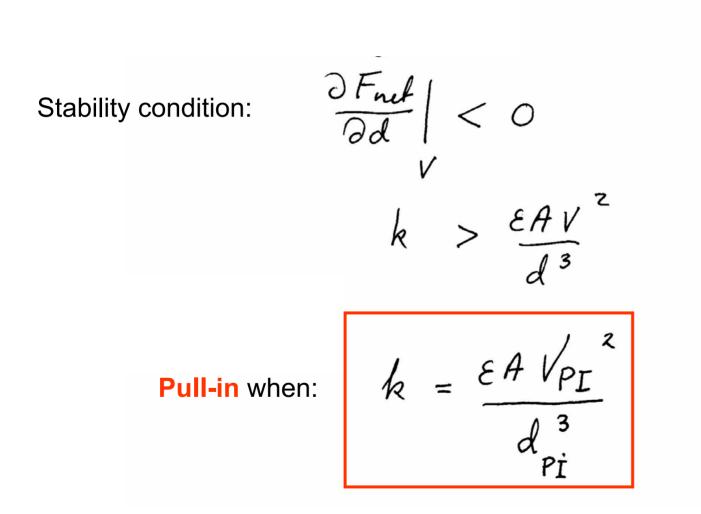
Suppose the gap decreases

 $\delta d < 0$

If the upward force also deceases, the system is **UNSTABLE!**

SFnel < 0

Stability, contd.



Pull-in

 $F_{net} = 0$ $\frac{EAV_{PI}}{2d_{PI}^{2}} = k \left(d_{o} - d_{PI} \right)$ $\int_{=}^{2} \frac{EAV_{PI}^{2}}{4\sqrt{3}}$ $d_{PI} = \frac{2}{3} d_o$ Pull-in when: $8 k do^3$ ⊲

Pull-in

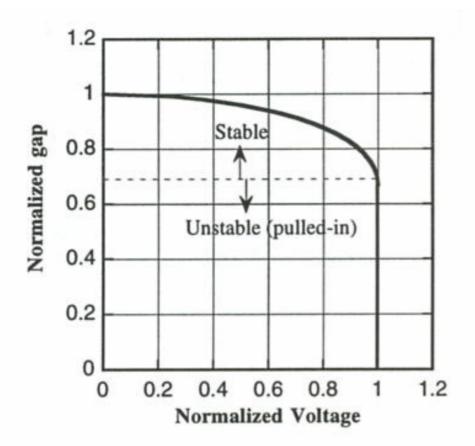


Figure 6.8. Normalized gap as a function of normalized voltage for the electrostatic actuator.

Senturia

2. Converting to electrical equivalents

- Mechanical behavior can be modeled using electrical circuit elements
 - Mechanical structure → simplifications → equivalent electrical circuit
 - ex. spring/mass \rightarrow R, C, L
 - Possible to "interconnect" electrical and mechanical energy domains
 - Simplified modeling and co-simulation of electronic and mechanical parts of the system
 - Proper analysis-tools can be used
 - Ex. SPICE

Converting to electrical equivalents, contd.

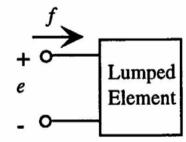
- We will discuss:
 - Needed circuit theory
 - Conversion principles
 - effort flow
 - Example of conversion
 - Mechanical resonator
 - In a future lecture:
 - Co-existence and coupling between various energy domains

Circuit theory

- Basic circuit elements: R, C, L
- Current and voltage equations for basic elements (low frequency)
 - Ohms law, C and L-equations
 - V = RI, I = C dV/dt, V = L dI/dt
 - Laplace transformation
 - From differential equations to algebraic (s-polynomial)
 - → Complex impedances: R, 1/sC, sL
- Kirchhoffs equations
 - Σ current into nodes = 0, Σ voltage in a loop = 0

Effort - flow

- Electrical circuits are described by a set of variables: conjugate power variables
 - Voltage V: across or effort variable
 - Current I: through or flow variable
 - An effort variable drives a flow variable through an impedance, Z
- Circuit element is modeled as a **1-port** with terminals
 - Same current (f = flow) in and out and through the element
 - Positive flow into a terminal defining a positive effort



Energy-domains, analogies

- Various energy domains exist

 Electric, elastic, thermal, for liquids etc.
- For every energy domain it is possible to define a set of conjugate power variables that may be used as basis for lumped component modeling using equivalent circuits elements
- Table 5.1 Senturia ->

Ex. of conjugate power variables

Energy Domain	Effort	Flow	Momentum	Displacement
Mechanical translation	Force F	Velocity \dot{x}, v	Momentum p	Position x
Fixed-axis rotation	Torque $ au$	Angular velocity ω	Angular momentum J	Angle θ
Electric circuits	Voltage V, v	Current I, i	•••	Charge Q
Magnetic circuits	Magnetomotive force MMF	Flux rate $\dot{\phi}$	Baover , i pa nk	Flux Ø
Incompressible fluid flow	Pressure P	Volumetric flow Q	Pressure momentum Γ	Volume V
Thermal	Temperature T	Entropy flow rate \dot{S}	na sanan anya na sanan u mi pake o babba i	Entropy S

Conjugate power variables: e,f

- Assume conversion between energy domains were the energy is conserved!
- Properties
 - e * f = power
 - e / f = impedance
- Generalized **displacement** represents the state, f. ex. position or charge

$$f(t) = \dot{q}(t) \qquad q(t) = \int_{t_0}^t f(t)dt + q(t_0)$$

e * q = energy

Generalized momentum

$$p(t) = \int_{t_0}^t e(t)dt + p(t_0)$$

- Mechanics: "impulse"
 - F*dt = mv mv0

– General: p * f = energy

Ex.: Mechanical energy domain

$$e = F (kraft)$$
force

$$f = v, \dot{x} (hashighuf)$$
velocity

$$q = x (posisjon) = \int \dot{x} dt$$
position

$$P = P (momentum) = \int F dt$$
momentum

$$(kraft x hid)$$
force x time

$$e \cdot d \rightarrow F \cdot \dot{x} = \frac{F \Delta x}{\Delta t} = \frac{arbuid}{trd} = effekt$$
work/time = power

$$e \cdot q \rightarrow F \cdot \dot{x} = kraft x vu' = arbuid = energi$$
force*distance = work =

$$e \cdot q \rightarrow F \cdot \dot{x} = kraft x vu' = arbuid = energi$$
force*distance = work =

$$e \cdot q \rightarrow F \cdot \dot{x} = mv \cdot v = mv^2 = energi$$
energy

Ex.: Electrical energy domain

36

$e \rightarrow V$ - convention

Senturia and Tilmans use the e→V –convention

- Ex. electrical and mechanical circuits
 - $-e \rightarrow V$ (voltage) equivalent to F (force)
 - $f \rightarrow I$ (current) equivalent to v (velocity)
 - $-q \rightarrow Q$ (charge) equivalent to x (position)
 - e * f = "power" injected into the element

H. Tilmans, Equivalent circuit representation of electromagnetical transducers:

I. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996

Other conventions

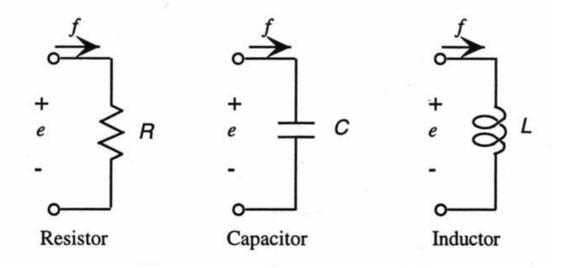
 Different conventions exist for defining throughor across-variables

Convention	Across Variable	Through Variable	Product	Principal Use	
$e \rightarrow V *$	e	f	power	electric circuit elements	
$f \rightarrow V$ alternativt f		е	power	mechanical circuit elements	
Thermal	Т	Ż	Watt-Kelvin	thermal circuits	
HDL	q	e	energy	HDL circuit representation of mechanical elements	

Table 5.2.	Different conventions	for assigning	circuit variables.
------------	-----------------------	---------------	--------------------

Generalized circuit elements

- One-port circuit elements
 - R, dissipating element
 - C, L, energy-storing elements
 - Elements can have a general function!
 - Can be used in various energy domains



Generalized capacitance

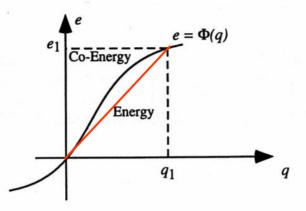
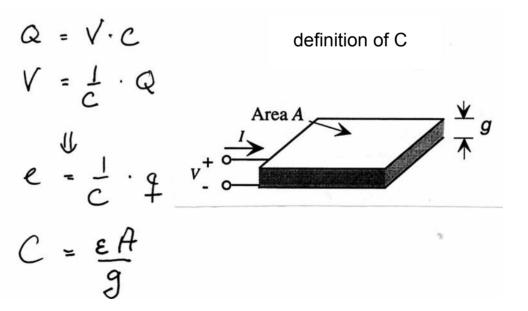


Figure 5.5. Illustrating energy and co-energy for a generalized capacitor.

Compare with a **simplified case:** - a **linear** capacitor



Generalized capacitance, contd.

Capacitance is associated with stored potential energy

$$\mathcal{W}(q_{1}) = \int_{0}^{q_{1}} e \, dq = \int_{0}^{q_{1}} \Phi(q) \, dq \qquad (5.10)$$
Co-energy:

$$\mathcal{W}^{*}(e) = eq - \mathcal{W}(q) \qquad (5.11)$$

$$\mathcal{W}^{*}(e_{1}) = \int_{0}^{e_{1}} q \, de = \int_{0}^{e_{1}} \Phi^{-1}(e) \, de \qquad (5.12)$$

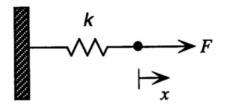
Energy stored in parallel plate capacitor

Energy:
$$W(Q) = \int_{0}^{Q} e \cdot dq = \int_{0}^{Q} \frac{q}{C} \cdot dq = \frac{Q^2}{2C}$$

Co-energy:
$$W^*(V) = \int_0^V q \cdot de = \int_0^V C \cdot v \cdot dv = \frac{CV^2}{2}$$

 $W^*(V) = W(Q)$ for linear capacitance

Mechanical spring



Hook's law: $F = k \cdot x$

Stored energy
$$W(x_1) = \int_0^{x_1} F(x) dx = \frac{1}{2} k x_1^2$$
 (5.18)

Compare with capacitor $W(Q) = \frac{1}{2} \cdot \frac{1}{C} \cdot Q^2$

Q displacementx1 displacement

 \rightarrow 1/C equivalent to k

"Compliance"

• "Compliance" = "inverse stiffness"

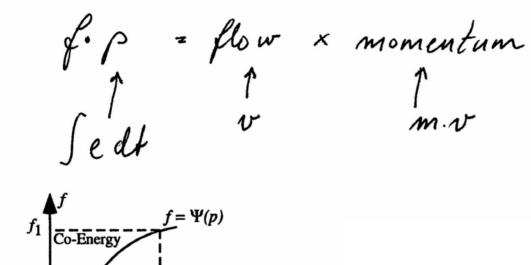
$$C_{spring} = \frac{1}{k}$$

- Stiff spring → small capacitor
- Soft spring → large capacitor

Generalized inductance

Energy also defined as:

Energy



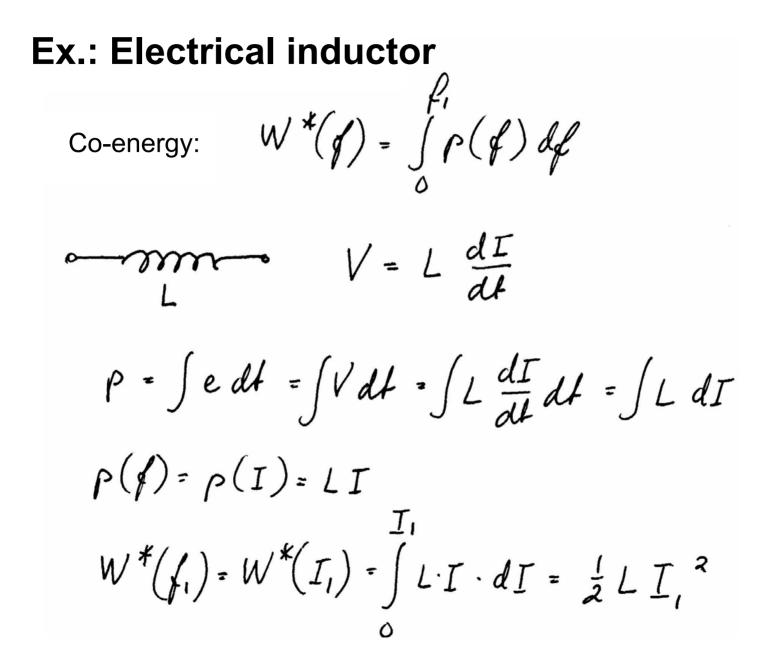
p

Energy = stored kinetic energy

 $W(p_i) = \int_{-\infty}^{p_i} f(p) dp$

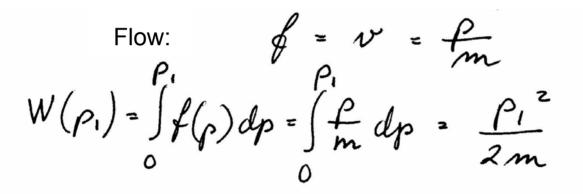
p₁

45



Analogy between mass (mechanical inertance) and inductance L

A mechanical system has **linear momentum**: p = mv



Co-energy:

$$W^{*}(v_{1}) = \int_{0}^{0} p(v) dv = \int_{0}^{0} (mv) dv = \frac{1}{2} m v_{1}^{2}$$

Analogy between m and L

$$W^{*}(f_{1}) = W^{*}(I_{1}) = \int_{0}^{I_{1}} L \cdot I \cdot dI = \frac{1}{2} L \cdot I_{1}^{2}$$

Compare with: $W^{*}(v_{1}) = \frac{1}{2} m v_{1}^{2}$
 $I_{1} = flow$
 $v_{1} = -n -$

L is equivalent to m

m = **L** inertance

Mechanical inertance = mass m is analog to inductance L

Interconnecting elements

- $e \rightarrow V$ follows two basic principles
 - Elements that share a common flow, and hence a common variation of displacement, are connected in series
 - Elements that share a common effort are connected in parallel

Ex. of interconnection:

"Direct transformation"

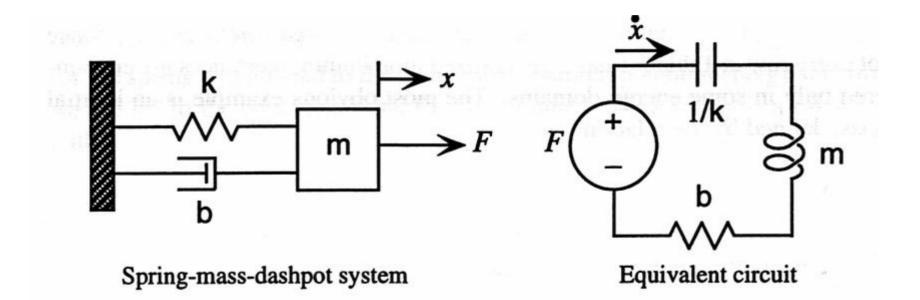
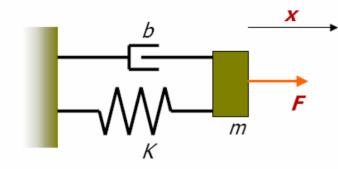
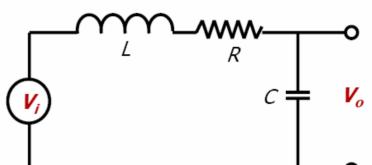


Figure 5.9. Translating mechanical to electrical representations.

Mechanical / Electrical Systems





Input : external force F Output : displacement x $m\ddot{x}(t) + b\dot{x}(t) + Kx(t) = F$ m mass, b damping, K stiffness Transfer function :

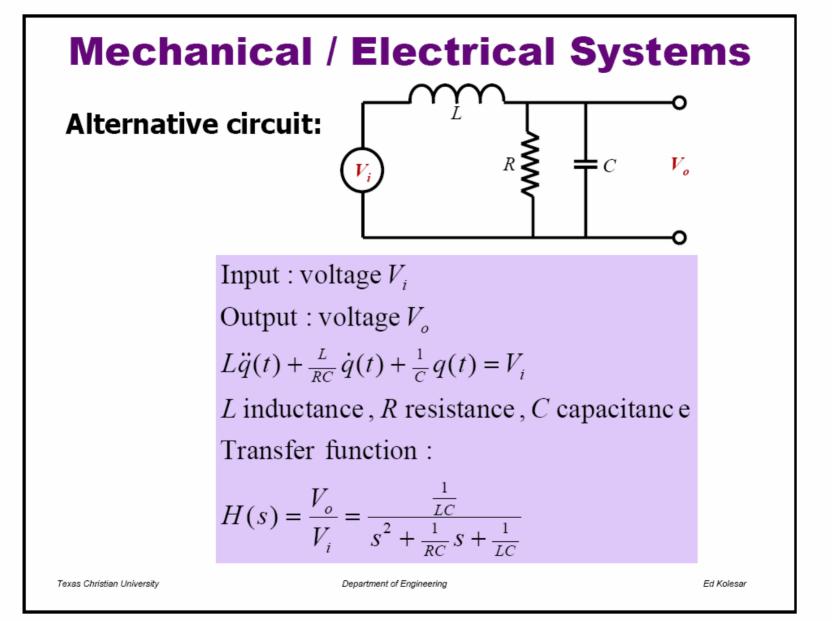
$$H(s) = \frac{x}{F} = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{K}{m}}$$

Input : voltage V_i Output : voltage V_o $L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = V_i$ L induct., R resist., C capacit. Transfer function : $H(s) = \frac{V_o}{V_i} = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$

Texas Christian University

Department of Engineering

Ed Kolesar



Resonators

- Analogy between mechanical and electrical system:
 - Mass *m* inductivity *L*
 - Spring K capacitance C
 - Damping b resistance R (depending where R is placed in circuit)
- Solution to 2nd order differential equation:

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

$$\omega_0 = 2\pi f_0 \text{ natural frequency}$$

$$\omega_0 = \sqrt{\frac{K}{m}} \text{ mechanical system, } \omega_0 = \sqrt{\frac{1}{LC}} \text{ electrical system}$$

 $Q \text{ quality factor}$

Texas Christian University

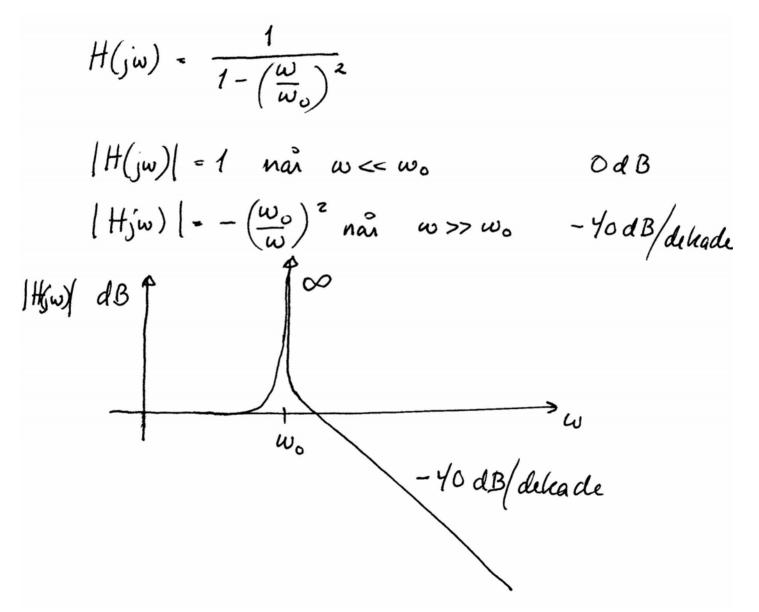
Department of Engineering

Ed Kolesar

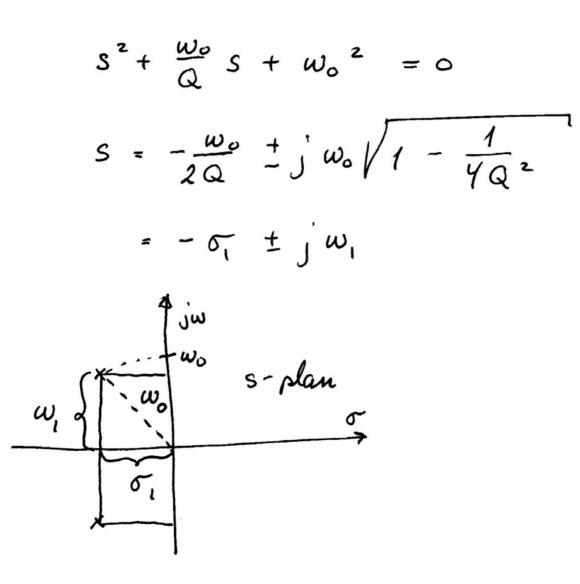
System without damping (b=0, R=0)

 $H(s) = \frac{w_0^2}{s^2 + w_0^2} = \frac{w_0^2}{(s+jw_0)(s-j'w_0)}$ + tjuo s-plan $|H(iw_0)| = \infty$ k-jwo $\omega_0 = \sqrt{\frac{1}{LC}}, \omega_0 = \sqrt{\frac{k}{m}}$ $H(j\omega) = \frac{1}{1 - \left(\frac{\omega}{\omega_0}\right)^2}$

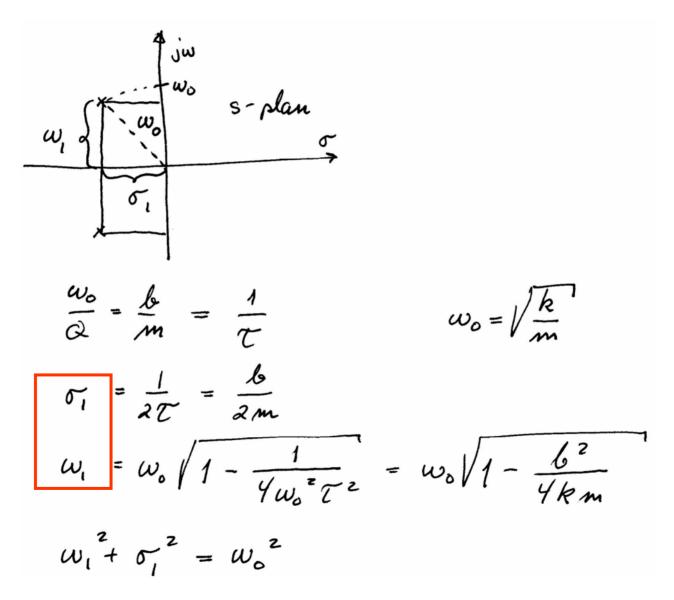
System without damping, contd.



With damping



Damped system, contd.



Mechanical Resonator

• Frequency and phase shift under damping:

• Energy dissipation:

$$x(t) = Ae^{-t/2\tau} \cos(\omega_1 t + \varphi)$$

$$\tau = \frac{m}{b} \text{ damping time}$$

$$\omega_1 = \omega_0 \sqrt{1 - \frac{1}{4\omega_0^2 \tau^2}} = \omega_0 \sqrt{1 - \frac{b^2}{4Km}}$$

$$\varphi \text{ phase shift}$$

$$E(t) = E_0 e^{-t/\tau}$$

Texas Christian University

Department of Engineering

Ed Kolesar

What is the meaning of "damping time"?

$$T = damping fine$$

$$e^{-\frac{t}{2T}} = e^{-\frac{t}{2}} = \frac{1}{\sqrt{e^{1}}}$$

$$t = T$$

Power

$$\begin{aligned} & E ffehhm \\ & |x(t)|^2 | = \frac{1}{e} \\ & t = t \end{aligned}$$

$$x(t) = A e^{-\frac{t}{2}t} \cos(w, t + \varphi)$$

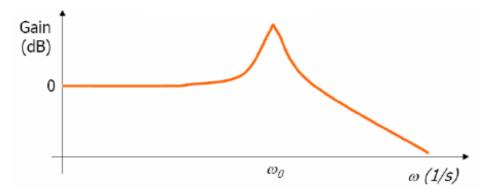
$$x(o) = A \cdot \cos \varphi \qquad inihial behingular initial conditions$$

59

Q-factor and damping time

Generall hänning General equation $s^2 + \frac{w_o}{\rho}s + w_o^2 = 0$ $\Rightarrow s^2 + \frac{1}{7}s + w_0^2 = 0$ $Q = w_o T$ $T = \frac{M}{b}$ mechanical $T = \frac{L}{R}$ elektrisk electrical $Q_{mek} = \frac{\omega_o m}{k}$ Qd= w.L.

Amplitude at resonance for forced vibrations



$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

$$H(j\omega) = \frac{\omega_0^2}{(\omega_0^2 - \omega^2) + j} \frac{\omega\omega_0}{Q}$$

$$H(j\omega_0) \left| = \left| \frac{\omega_0^2}{0 + j} \frac{\omega_0^2}{Q} \right| = Q$$