INF 5490 RF MEMS

LN04: RF circuit design challenges

Spring 2008, Oddvar Søråsen Department of Informatics, UoO

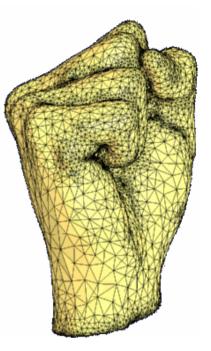
Lecture overview INF5490

- Basic topics
 - LN01: Introduction. MEMS in RF
 - LN02: Fabrication
 - LN03: Modeling, design and analysis (part 1, 2 of 3)

 Main topic of today's lecture: Some characteristics and challenges of RF circuit design

Today's lecture

- Modeling: 3. Analysis using Finite Element Methods
- RF circuit design
 - Electromagnetic waves
 - Skin depth
 - Passive components at high frequencies
- Transmission line theory
- Two-port networks
 - S-parameters
- Filters
- Q-factor


3. Finite Element Method analysis

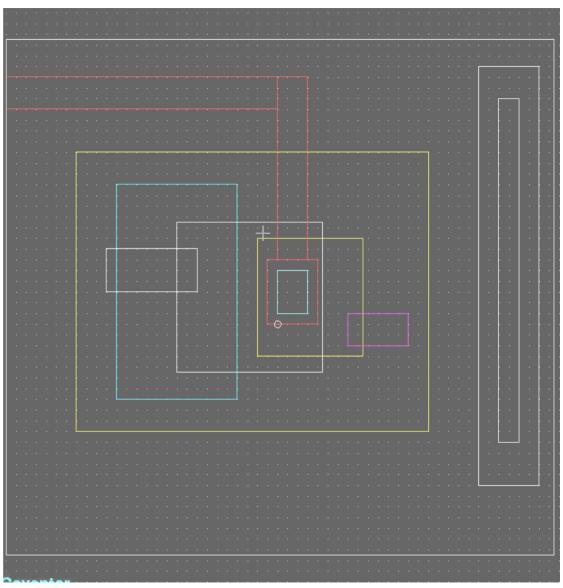
- Characteristics
 - Meshing the 3D model into smaller elements
 - Solve mathematical equations for interaction between elements
 - Many iterations needed before a stable solution is obtained
- + More realistic results
 - Simple mathematical models are approximations
 - Not accurate enough for complex structures
 - Ex. Beam deflection: non-uniform charge distribution $\leftarrow \rightarrow$ force
- Use of FEM-simulations
 - CoventorWare
 - Examples of bulk process modeling \rightarrow

Finite Element Methods

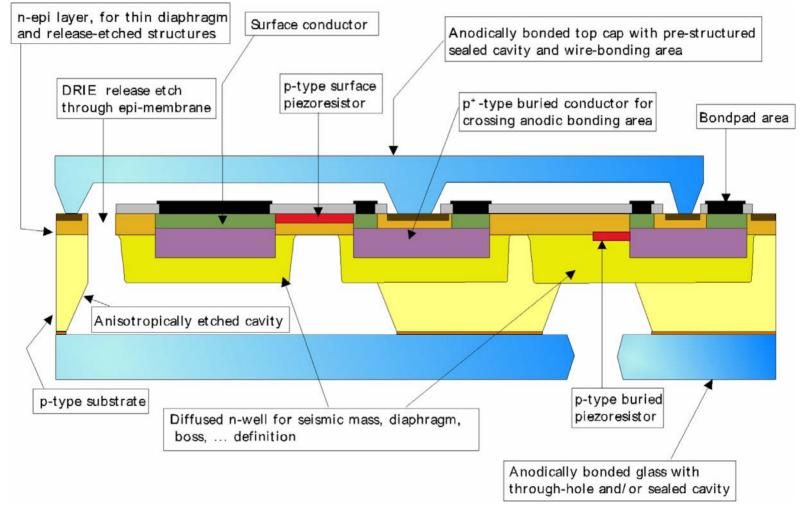
Features

- + Good precision
- + Coupled electrostatic/ mech interaction
- + Can cope with irregular topologies
- Insight into parameters influence is lost
- Only small parts are practical
- Critical issues
 - Proper system selection, building the 3D model
 - Partitioning (meshing), simulation parameters

3D model building: process specification

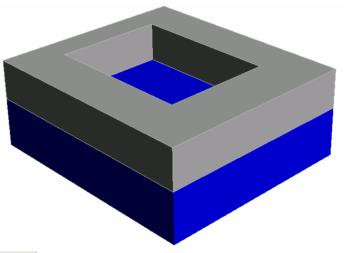

	o <mark>cessEdi</mark> Edit Vie		n_Files∖te	estproject1\De	evices\	nlayers_c	.proc				<u>_ ×</u>
	₩		ENR DISR]						
Step	Action	Туре	Layer Name	Material	Thic	Color	Mask Name/ Polarity	Depth	Offset	Sidewall Angle	Comment
0	Base		Substrate	SILICON	10.0	📒 blue	GND				
1	Etch	Back, Substr				📒 cyan	BETCH -	10.0	0.0	0.0	
2	Deposit	Stacked	Layer1	SILICON	0.01	📕 blue					
3	Deposit	Stacked	Layer2	SILICON	8.0	📒 blue					
4	Etch	Front, Last L				yellow	NOWEL -	8.0	0.0	0.0	
5	Deposit	Planar	Layer3	SILICON	0.0	📒 yellow					
6	Etch	Front, Partial				white	BUCON -	4.0	0.0	0.0	
7	Etch	Front, Partial				📕 pink	BURES -	1.0	0.0	0.0	
8	Deposit	Planar	Layer4	SILICON	0.0	white					
9	Etch	Front, Partial				📕 pink	BURES -	1.0	0.0	0.0	
10	Deposit	Planar	Layer5	SILICON	0.0	📕 pink					
11	Deposit	Stacked	Layer6	SILICON	3.0	📕 green					
12	Etch	Front, Last L				📒 oran	SUCON -	3.0	0.0	0.0	
13	Etch	Front, Partial				📕 mag	SURES -	1.0	0.0	0.0	
14	Deposit	Planar	Layer7	SILICON	0.0	eran					
15	Etch	Front, Partial				📕 mag	SURES -	1.0	0.0	0.0	
16	Deposit	Planar	Layer8	SILICON	0.0	📕 mag					
17	Etch	Front, By Depth				lemo	NOSUR -	1.0	0.0	0.0	
18	Deposit	Planar	Layer9	SILICON	0.0	📕 gray					
19	Deposit	Stacked	Layer10	THERM_OXIDE	2.0	📕 tan					
20	Etch	Front, Last L				dodg	COHOL -	2.0	0.0	0.0	
21	Etch	Front, Last L				📕 light	NOBOA -	2.0	0.0	0.0	
22	Deposit	Conformal	Layer11	ALUMINUM	1.0	E red					
23	Etch	Front, Last L				red	MCOND +	1.0	0.0	0.0	

 Specify a process file which matches an actual foundry process

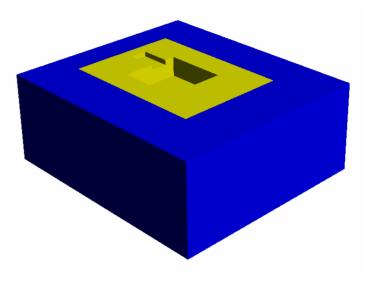

- simplifications
- realistic: essential process features included
- \rightarrow pseudo layers

3D model building: layout

Make accompanying layout

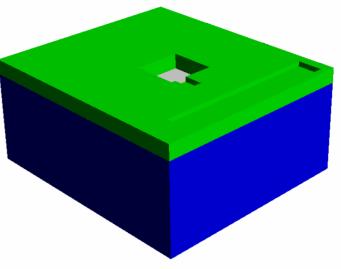


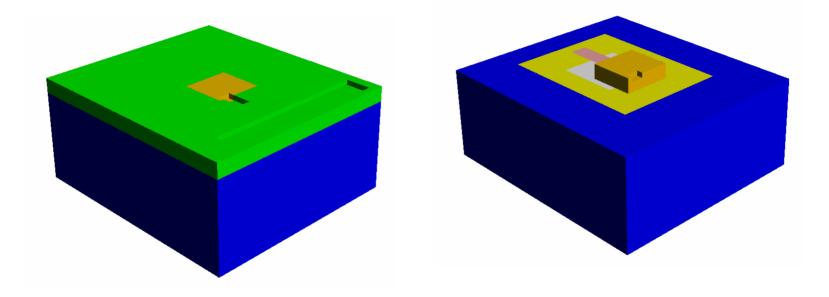
MultiMEMS, typical features


How to model the MultiMEMS bulk process in CoventorWare?

- Problem:
 - The process is not based on "stacking layers"
- Create a pseudo process!
 - Simplified, but matching
 - Transfer to a procedure of stacking layers
 - some layers with zero spacing
 - slicing the bulk material into sub-layers in contact
 - make etchings and re-fillings

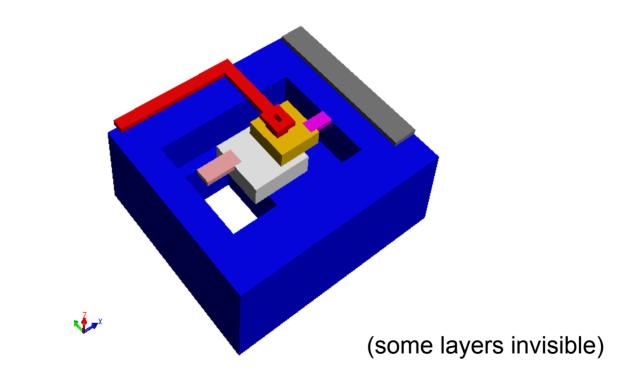
C Pr	ocessEdi	tor: M:\Design	n_Files\te	estproject1\De	vices	nlayers_c	.proc					
File	Edit Vie	w Help										
	-]							
			Layer				Mask Name/			Sidewall		
Step	Action	Туре	Name	Material	Thic	Color	Polarity	Depth	Offset	Angle	Comment	
0	Base		Substrate	SILICON	10.0	📒 blue	GND					
1	Etch	Back, Substr				📒 cyan	BETCH -	10.0	0.0	0.0		
2	Deposit	Stacked	Layer1	SILICON	0.01	📕 blue						
3	Deposit	Stacked	Layer2	SILICON	8.0	📕 blue						
4	Etch	Front, Last L				yellow	NOVVEL -	8.0	0.0	0.0		

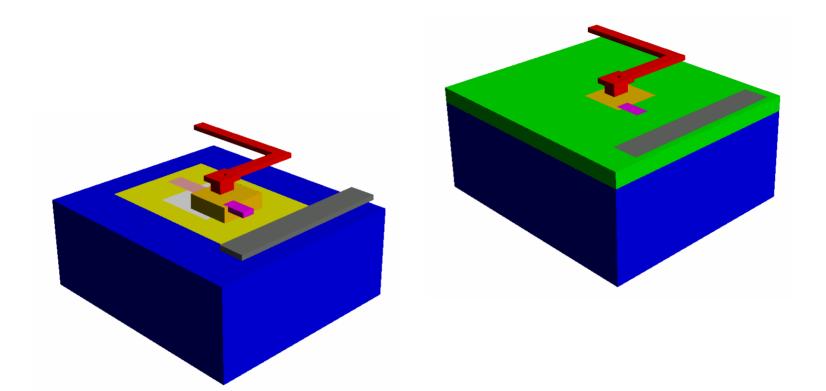

Two slices of the base material stacked. N-well opening


C Pra	cessEdi	tor: M:\Design	n_Files\te	estproject1\De	vices	nlayers_c	.proc					<u>- 🗆 ×</u>
File B	Edit Vie	w Help										
	♥	0 1		\Rightarrow $ \times $]							
Step	Action	Туре	Layer Name	Material	Thic	Color	Mask Name/ Polarity	Depth	Offset	Sidewall Angle	Comment	
0	Base		Substrate	SILICON	10.0	📒 blue	GND					
1	Etch	Back, Substr				📒 cyan	BETCH -	10.0	0.0	0.0		
2	Deposit	Stacked	Layer1	SILICON	0.01	📕 blue						
3	Deposit	Stacked	Layer2	SILICON	8.0	📕 blue						
4	Etch	Front, Last L				yellow	NOWEL -	8.0	0.0	0.0		
5	Deposit	Planar	Layer3	SILICON	0.0	yellow						
6	Etch	Front, Partial				white	BUCON -	4.0	0.0	0.0		
7	Etch	Front, Partial				📕 pink	BURES -	1.0	0.0	0.0		

N-well in-filling. Etching holes for **buried conductor** implant and **buried resistor** implant

-]						
Step	Action		Layer Name	Material	Thic	Color	Mask Name/ Polarity	Depth	Offset	Sidewall Angle	Comment
0	Base		Substrate	SILICON	10.0	📕 blue	GND				
1	Etch	Back, Substr				📒 cyan	BETCH -	10.0	0.0	0.0	
2	Deposit	Stacked I	Layer1	SILICON	0.01	blue					
3	Deposit	Stacked I	Layer2	SILICON	8.0	blue					
4	Etch	Front, Last L				yellow	NOVVEL -	8.0	0.0	0.0	
5	Deposit	Planar	Layer3	SILICON	0.0	- yellow					
6	Etch	Front, Partial				white	BUCON -	4.0	0.0	0.0	
7	Etch	Front, Partial				📕 pink	BURES -	1.0	0.0	0.0	
8	Deposit	Planar	Layer4	SILICON	0.0	white					
9	Etch	Front, Partial				📕 pink	BURES -	1.0	0.0	0.0	
10	Deposit	Planar	Layer5	SILICON	0.0	📕 pink					
11	Deposit	Stacked I	Layer6	SILICON	3.0	📕 green					
12	Etch	Front, Last L				eran	SUCON -	3.0	0.0	0.0	
13	Etch	Front, Partial				📕 mag	SURES -	1.0	0.0	0.0	
14	Deposit	Planar	Layer7	SILICON	0.0	eran					
15	Etch	Front, Partial				📕 mag	SURES -	1.0	0.0	0.0	
16	Deposit	Planar	Layer8	SILICON	0.0	📕 mag					
17	Etch	Front, By Depth		1		lemo	NOSUR -	1.0	0.0	0.0	

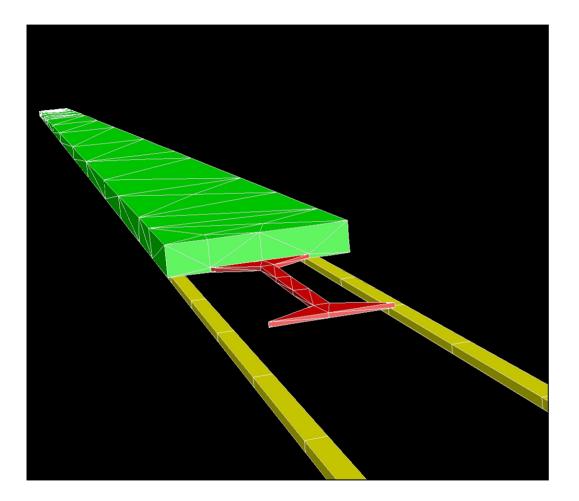

Add **epi-layer**. Etch holes for **surface conductor** and **surface resistor**, -fill in. Etch hole for n+ implant. (Implants are invisible)



Surface conductor is made visible

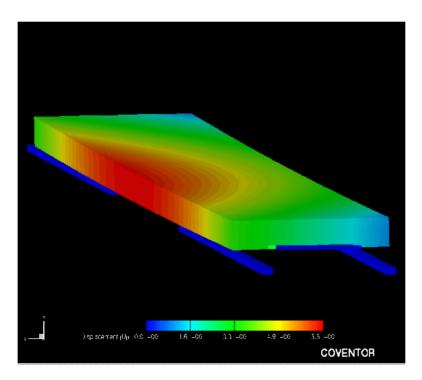
Epi-layer is invisible

3D model building: expansion

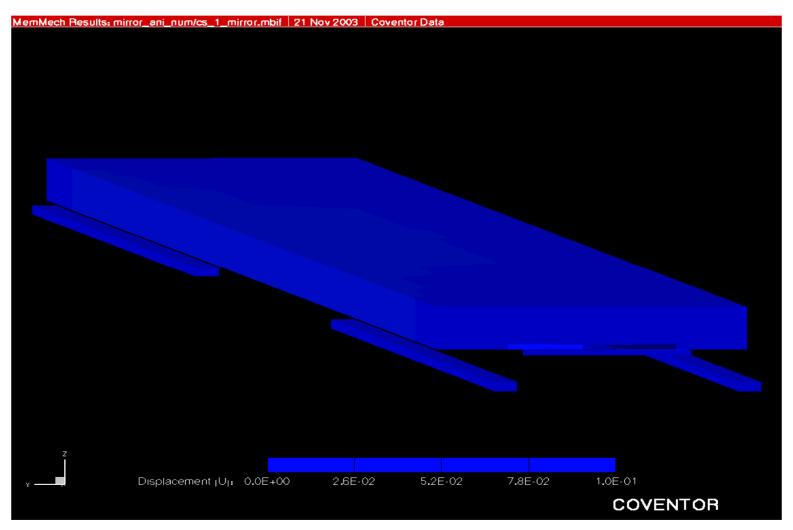


Complete structure with some layers made invisible

3D modeling procedure


- To introduce one diffusion:
 - Etch base material
 - Fill in implanted material
 - use "deposit planar" with thickness = 0
- To introduce multiple overlapping diffusions:
 - Etch base material with all diffusion masks (the deepest first)
 - Fill in the deepest implanted material
 - Re-etch the remaining diffusion openings
 - Fill in the next deepest implant etc.

Meshed model



- Mirror meshed by tetrahedrons
 - 23 µm, 3 µm
- Electrodes meshed by Manhatten bricks
 - 5 µm
- Rather coarse dim due to pullin analysis

Mirror deflection, snapshot

Simulation: pull-in

Today's lecture

- Modeling: 3. Finite Element Method analysis
- RF circuit design
 - \rightarrow "Multidisciplinary"
 - Electromagnetic waves
 - Skin depth
 - Passive components at high frequencies
- Transmission line theory
- Two-port networks
 - S-parameters
- Filters
- Q-factor

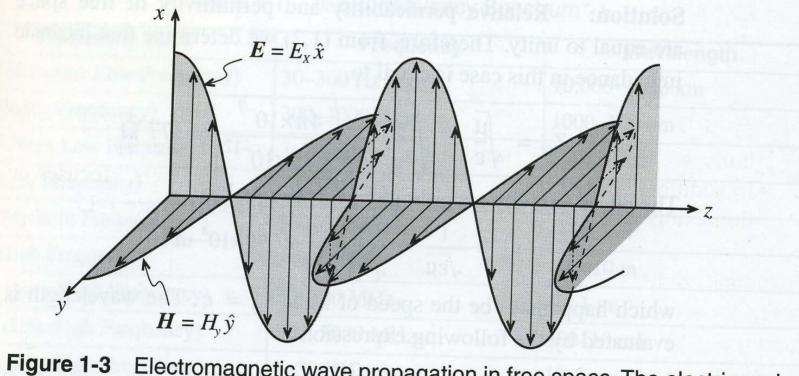
RF- and microwave design is multidisciplinary

Theoretical fundament

- Electromagnetism
- Signal processing

• Technology, practical aspects

- Circuit theory
- Kirchhoff's laws for current and voltage


- Some topics in today's lecture is also covered in INF5480
 - "RF-circuits, theory and design" (Tor Fjeldly, fall semester)
 - Here: → Critical issues covered in one lecture!

RF circuit design

- Important questions
 - How do circuits behave at high frequencies?
 - Why do component functionality change?
 - At what frequencies is standard circuit analysis not valid?
 - What "new" circuit theory is needed?
 - How can this theory come into practical use?
 - \rightarrow Figures and equations from R. Ludwig et al: "RF Circuit Design"

Electromagnetic waves

• Electric and magnetic fields

Figure 1-3 Electromagnetic wave propagation in free space. The electric and magnetic fields are recorded at a fixed instance in time as a function of space (\hat{x}, \hat{y}) are unit vectors in *x*- and *y*-direction).

Important wave parameters:

Electric field $E_x = E_{0x} \cos(\omega t - \beta z)$ Magnetic field $H_y = H_{0y} \cos(\omega t - \beta z)$

Angular frequency: ω Propagation constant: β

Wave is periodic, repeating when: $\beta \cdot z = 2\pi$

Wavelength:
$$z = \lambda = \frac{2\pi}{\beta}$$

The wave propagates a distance λ during the time T = period

Propagation velocity:
(in vacuum: c)

$$v_p \cdot T = \lambda$$

 $v_p = \lambda \cdot \frac{1}{T} = \lambda \cdot f = \frac{2\pi}{\beta} \cdot \frac{\omega}{2\pi} = \frac{\omega}{\beta}$

Important wave parameters, contd.

For a position z = constant, the wave repeats after a period T:

 $\omega T = 2 \pi$ and $\omega = 2 \pi / T = 2 \pi f$

in which f = frequency

Frequency and wavelength

• In vacuum: $\lambda * f = c$

 Increasing frequency → decreasing wavelength

At high frequencies (RF) is the wavelength comparable to the circuit dimensions
 - →

Frequency Band	Frequency	Wavelength		
ELF (Extreme Low Frequency)	30–300 Hz	10,000–1000 km		
VF (Voice Frequency)	300–3000 Hz	1000–100 km		
VLF (Very Low Frequency)	3–30 kHz	100–10 km		
LF (Low Frequency)	30–300 kHz	10–1 km		
MF (Medium Frequency)	300-3000 kHz	1–0.1 km		
HF (High Frequency)	3-30 MHz	100–10 m		
VHF (Very High Frequency)	30-300 MHz	10–1 m		
UHF (Ultrahigh Frequency)	300-3000 MHz	100–10 cm		
SHF (Superhigh Frequency)	3-30 GHz	10–1 cm		
EHF (Extreme High Frequency)	30-300 GHz	1–0.1 cm		
Decimillimeter	300-3000 GHz	1–0.1 mm		
P Band	0.23–1 GHz	130–30 cm		
L Band	1–2 GHz	30–15 cm		
S Band	2–4 GHz	15–7.5 cm		
C Band	4-8 GHz	7.5–3.75 cm		
X Band	8–12.5 GHz	3.75–2.4 cm		
Ku Band	12.5–18 GHz	2.4–1.67 cm		
K Band	18–26.5 GHz	1.67–1.13 cm		
Ka Band	26.5-40 GHz	1.13–0.75 cm		
Millimeter wave	40-300 GHz	7.5–1 mm		
Submillimeter wave	300-3000 GHz	1–0.1 mm		

Table 1-1 IEEE Frequency Spectrum

Two important laws

• Faradays law

- Varying magnetic field induces current

Amperes law

- Current is setting up a magnetic field

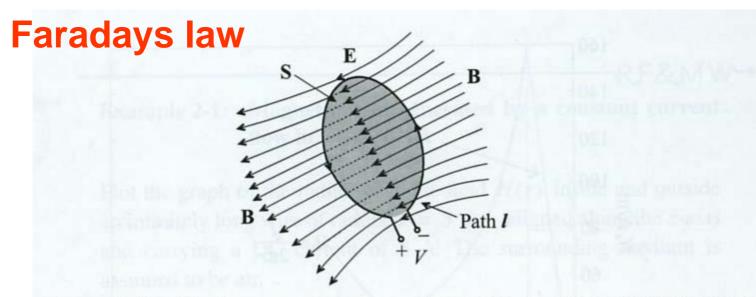


Figure 2-15 The time rate of change of the magnetic flux density induces a voltage.

$$\oint \overline{E} \cdot d\overline{l} = -\frac{d}{dt} \iint \overline{B} \cdot d\overline{S}$$

$$\overline{B} = magnetic \quad flux - density$$

$$\overline{B} = \mu \cdot \overline{H}$$

$$\mu = permeability = \mu_0 \cdot \mu_r$$

$$\overline{H} = magnetic \quad field$$

Amperes law

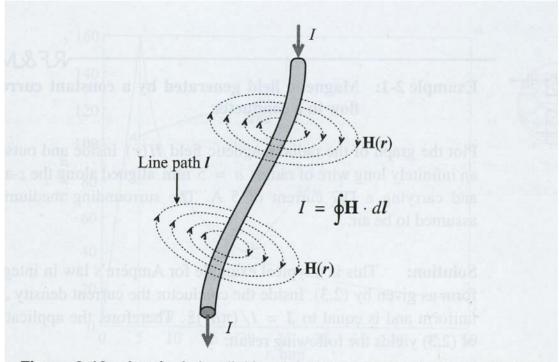
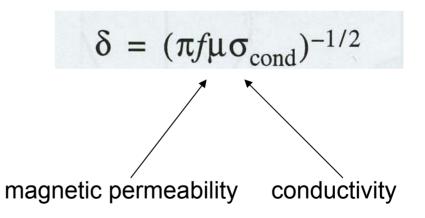
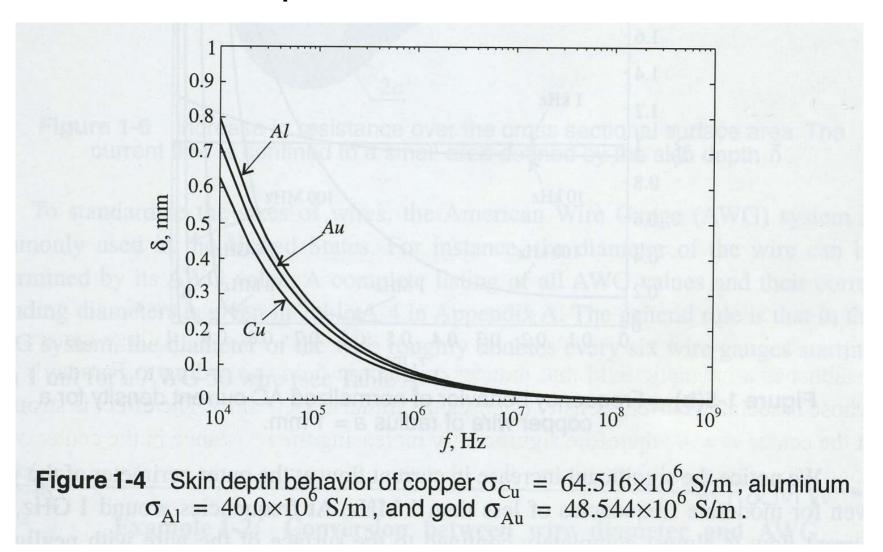


Figure 2-13 Ampère's law linking the current flow to the magnetic field.


$$I = \oint \overline{H} \cdot d\overline{l} = \iint \overline{J} \cdot d\overline{S}$$

"Skin depth"


- Signal transmission at increasing frequency
 - DC signal:
 - Current is flowing in whole cross section
 - AC signal (arguments for the operation):
 - Varying current induces an alternating magnetic field (Amperes law)
 - Magnetic field strength higher for small radius
 - Increased time variation of magnetic field in centre
 - Varying magnetic field induces an electric field (Faradays law)
 - Induced electric field (opposing the original one) increases in strength towards the centre of the conductor

Skin depth, contd.

- Resistance R increases towards centre of conductor
 - Current close to surface at increasing frequency
 - Formula: "skin-depth" \rightarrow
 - Current density reduced by a factor 1/e
- What does this mean for practical designs? →

"Skin-depth"

Current density for various frequencies

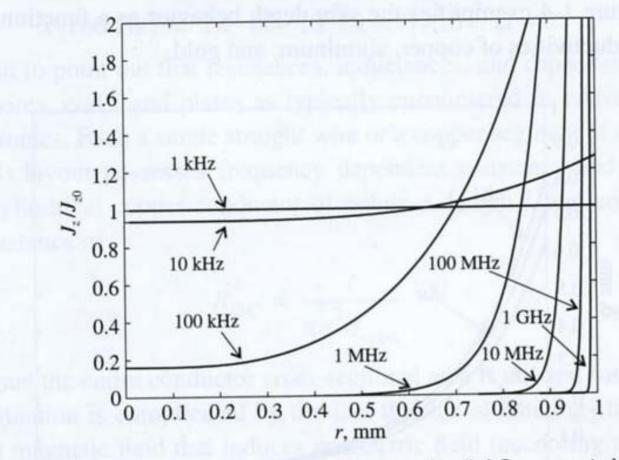
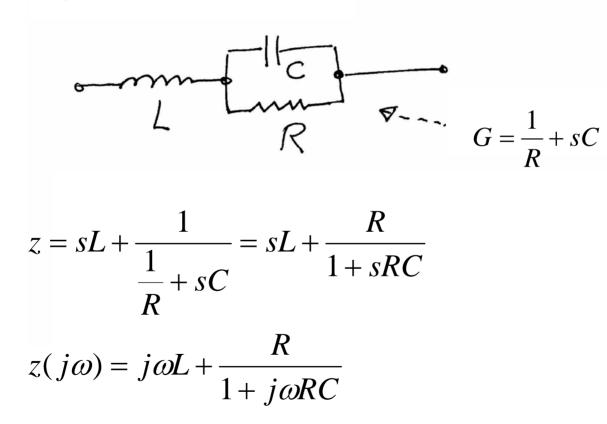
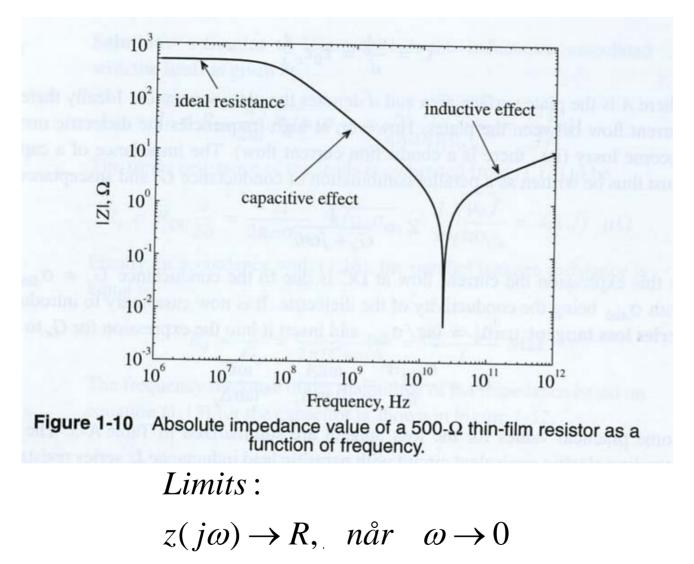



Figure 1-5(b) Frequency behavior of normalized AC current density for a copper wire of radius a = 1 mm.


Passive components at high frequencies

Equivalent circuit diagram for resistor



Calculating resistor-impedance

Simplified model:

Impedance versus frequency

Resonance when terms cancel

$$sL = -\frac{R}{1+sRC}$$
$$LRCs^{2} + Ls + R = 0$$
$$s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0$$
$$s = -\frac{1}{2RC} \pm j\sqrt{\frac{1}{LC} - \frac{1}{4R^{2}C^{2}}}$$

High frequency capacitor

• Equivalent circuit

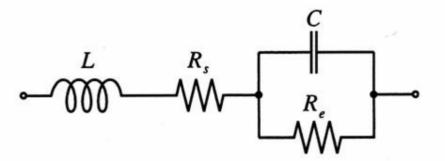


Figure 1-11 Electric equivalent circuit for a high-frequency capacitor.

Impedance versus frequency

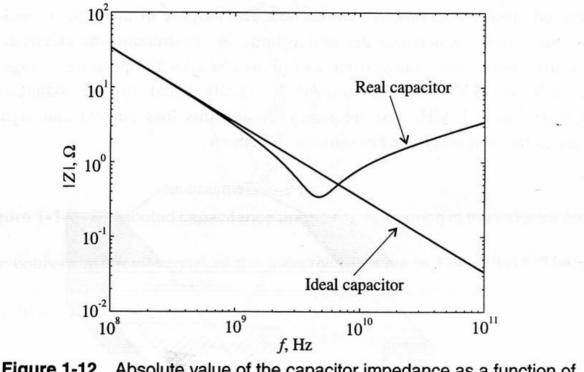


Figure 1-12 Absolute value of the capacitor impedance as a function of frequency.

High frequency inductor

• Equivalent circuit

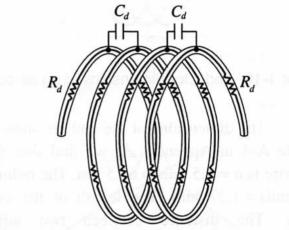


Figure 1-14 Distributed capacitance and series resistance in the inductor coil.

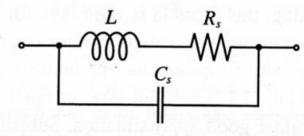
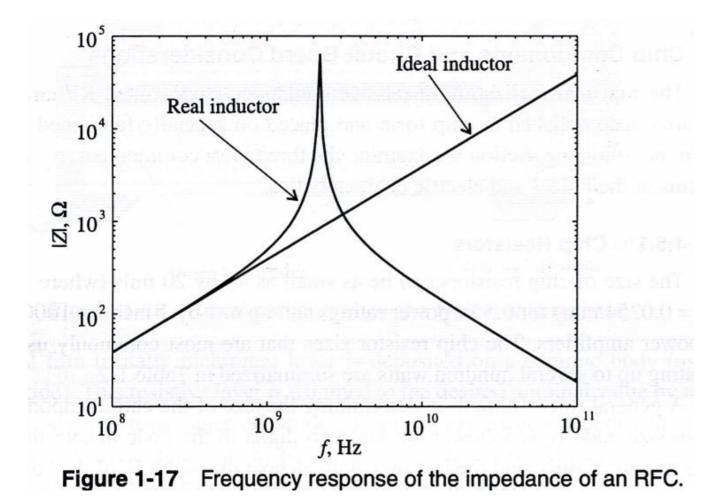



Figure 1-15 Equivalent circuit of the high-frequency inductor.

Impedance versus frequency

Transmission line theory

- Frequency increases \rightarrow wavelength decreases (λ)
- When λ is comparable with component dimensions, there will be a voltage drop over the component!!

Current and voltage are not constant

- Voltage and current are waves that propagate along conductors and components
 - Position dependent value \rightarrow
 - Signal should propagate along transmission lines
 - Reflections, characteristic impedances must be controlled

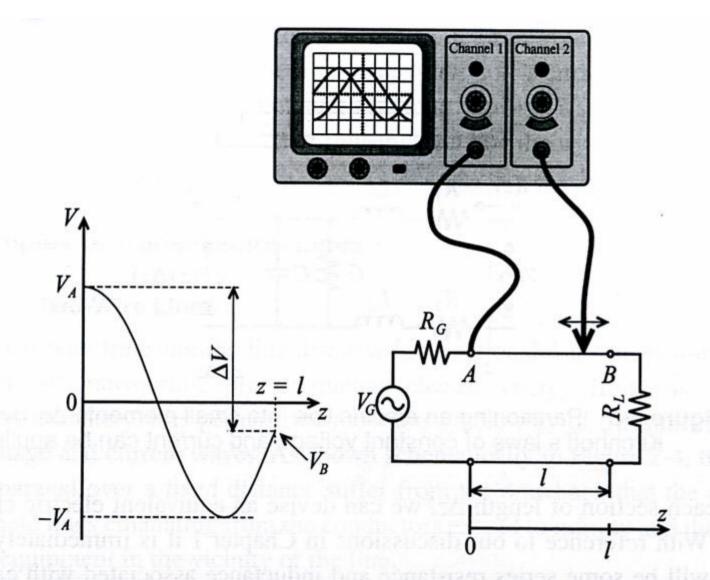
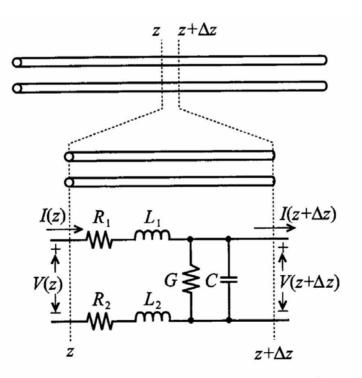



Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning (location A) and somewhere in between a wire connecting load to source.

Transmission line

• A conductor has to be modeled as a transmission line

Figure 2-3 Partitioning an electric line into small elements Δz over which Kirchhoff's laws of constant voltage and current can be applied.

The line is divided into infinitesimal sub-units

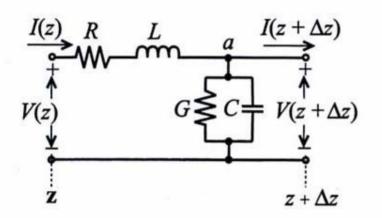


Figure 2-17 Segment of a transmission line with voltage loop and current node.

Use Kirchhoff's laws

• Will give 2 coupled 1.order diff-equations

$$(R + j\omega L)I(z)\Delta z + V(z + \Delta z) = V(z)$$
(2.26)

$$\lim_{\Delta z \to 0} \left(-\frac{V(z + \Delta z) - V(z)}{\Delta z} \right) = -\frac{dV(z)}{dz} = (R + j\omega L)I(z)$$

$$\frac{-\frac{dV(z)}{dz}}{-\frac{dV(z)}{dz}} = (R + j\omega L)I(z)$$
(2.28)

$$I(z) - V(z + \Delta z)(G + j\omega C)\Delta z = I(z + \Delta z)$$
(2.29)

$$\lim_{\Delta z \to 0} \frac{I(z + \Delta z) - I(z)}{\Delta z} = \frac{dI(z)}{dz} = -(G + j\omega C)V(z)$$
(2.30)

$$\frac{d^2 V(z)}{dz^2} - k^2 V(z) = 0$$
(2.31)

$$k = k_r + jk_i = \sqrt{(R + j\omega L)(G + j\omega C)}$$
(2.32)

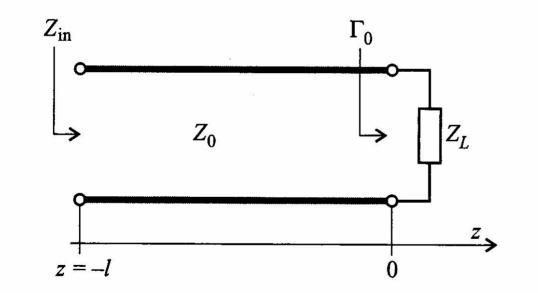
$$\frac{d^2 I(z)}{dz^2} - k^2 I(z) = 0$$
(2.33)

Solution: 2 waves

 The solution is waves in a positive and negative direction

 $V(z) = V^{+}e^{-kz} + V^{-}e^{+kz}$ $I(z) = I^{+}e^{-kz} + I^{-}e^{+kz}$ (2.34)
(2.35)

$$I(z) = \frac{k}{(R+j\omega L)} (V^+ e^{-kz} - V^- e^{+kz})$$
 (2.36) (Jmfr.2.27)


Characteristic line-impedance: $Z_0 = \frac{V^+}{I^+} = -\frac{V^-}{I^-}$

$$Z_0 = \frac{(R + j\omega L)}{k} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

(2.37)

Impedance for lossless transmission line

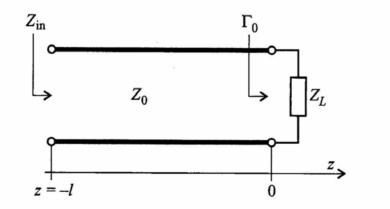

$$Z_0 = \sqrt{L/C}$$

Figure 2-23 Terminated transmission line at location z = 0.

Reflection

- How to avoid reflections and have good signal propagation?
- Definition of reflection coefficient →

Figure 2-23 Terminated transmission line at location z = 0.

Reflection coefficient

 $\Gamma_{0} = \frac{V^{-}}{V^{+}} \quad \leftarrow \text{ definition of reflection coefficient for } z = 0$ $V(z) = V^{+}(e^{-kz} + \Gamma_{0} \cdot e^{+kz})$ $I(z) = \frac{V^{+}}{Z_{0}}(e^{-kz} - \Gamma_{0} \cdot e^{+kz})$

Impedance for z = 0:

$$Z(0) = \frac{V(0)}{I(0)} = Z_0 \frac{1 + \Gamma_0}{1 - \Gamma_0} = Z_L \quad \text{= load impedance}$$
$$\Gamma_0 = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Various terminations

$$\Gamma_0 = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Open line
→ reflection with equal polarity

 \rightarrow Reflection with inverse polarity

$$Z_L = \infty \Longrightarrow \Gamma_0 = 1$$

$$Z_L = 0 \Longrightarrow \Gamma_0 = -1$$

No reflection when:

$$Z_0 = Z_L \Longrightarrow \Gamma_0 = 0$$

→ "MATCHING"

Standing waves

• Short circuiting gives standing waves $(Z_L = 0)$

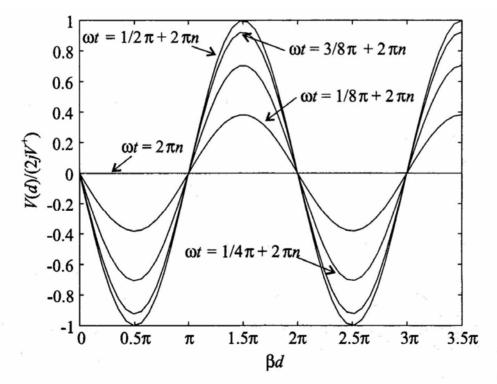


Figure 2-25 Standing wave pattern for various instances of time.

RF-circuits

A high frequency circuit may be viewed as

 a finite number of
 transmission line sections
 interconnected with
 discrete active and passive components

Two-port network

- Beneficial using two-port-description
 - Circuits may be divided into simple parts
 - two-ports
 - May be used to simplify analysis of complex networks
- Different types of two-ports
 - Z, Y, h-matrix
 - Each one has different properties when interconnected
 - $Z \rightarrow$ series, $Y \rightarrow$ parallel, hybrid
 - Figure \rightarrow

Multiport-network

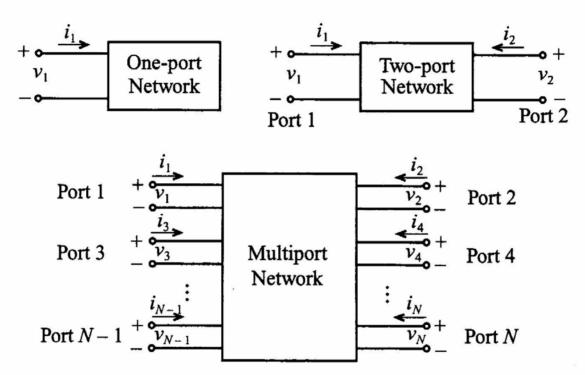


Figure 4-1 Basic voltage and current definitions for single- and multiport network.

Ex. Z-matrix

$$\begin{cases} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{cases} = \begin{bmatrix} Z_{11} & Z_{12} & \cdots & Z_{1N} \\ Z_{21} & Z_{22} & \cdots & Z_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{N1} & Z_{N2} & \cdots & Z_{NN} \end{bmatrix} \begin{cases} i_{1} \\ i_{2} \\ \vdots \\ i_{N} \end{cases}$$
(4.2)
$$\{\mathbf{V}\} = [\mathbf{Z}]\{\mathbf{I}\}$$

ABCD network

$$\begin{vmatrix} v_1 \\ i_1 \end{vmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{cases} v_2 \\ -i_2 \end{cases}$$
(4.10)

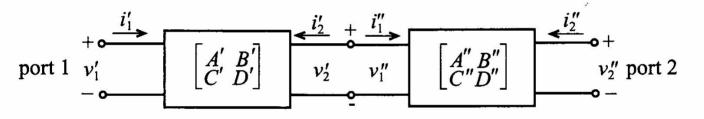


Figure 4-9 Cascading two networks.

ABCD-parameters for "useful" 2-ports

Circuit	ABCD-Parameters		
$ \begin{array}{c} $	$\begin{array}{l} A=1\\ C=0 \end{array}$	<i>B</i> = <i>Z</i> <i>D</i> = 1	
$ \begin{array}{c} \underbrace{i_1}{} & \underbrace{i_2}{} \\ \underbrace{v_1}{} & \underbrace{y}{} & \underbrace{v_2}{} \\ \end{array} $	$\begin{array}{l} A=1\\ C=Y \end{array}$	B=0 $D=1$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A = 1 + \frac{Z_A}{Z_C}$ $C = \frac{1}{Z_C}$	$B = Z_A + Z_B + \frac{Z_A Z_B}{Z_C}$ $D = 1 + \frac{Z_B}{Z_C}$	
$ \begin{array}{c} \underbrace{i_1} & \underbrace{Y_B} & \underbrace{i_2} \\ \underbrace{v_1} & \underbrace{Y_L} & \underbrace{Y_C} & \underbrace{v_2} \\ \end{array} $	$A = 1 + \frac{Y_B}{Y_C}$ $C = Y_A + Y_B + \frac{Y_A Y_B}{Y_C}$	$B = \frac{1}{Y_C}$ $D = 1 + \frac{Y_A}{Y_C}$	
$i_{1} \qquad i_{2} \\ \downarrow \\ $	$A = \cos\beta l$ $C = \frac{j\sin\beta l}{Z_0}$	$B = jZ_0 \sin\beta l$ $D = \cos\beta l$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} A=N\\ C=0 \end{array}$	$B=0$ $D=\frac{1}{N}$	

Table 4-1 ABCD-Parameters of Some Useful Two-Port Circuits.

Conversion between different 2-port types

Table 4-2 Conversion between Different Network Representations					
	[Z]	[Y]	[h]	[ABCD]	
[Z]	$Z_{11} Z_{12}$ $Z_{21} Z_{22}$	$\frac{Z_{22}}{\Delta Z} - \frac{Z_{12}}{\Delta Z}$ $- \frac{Z_{21}}{\Delta Z} - \frac{Z_{11}}{\Delta Z}$	$\frac{\Delta Z}{Z_{22}} \frac{Z_{12}}{Z_{22}} \\ \frac{Z_{21}}{Z_{22}} \frac{1}{Z_{22}}$	$\frac{Z_{11}}{Z_{21}} \frac{\Delta Z}{Z_{21}}$ $\frac{1}{Z_{21}} \frac{Z_{22}}{Z_{21}}$	
[Y]	$\frac{Y_{22}}{\Delta Y} - \frac{Y_{12}}{\Delta Y}$ $- \frac{Y_{21}}{\Delta Y} \frac{Y_{11}}{\Delta Y}$	$Y_{11} Y_{12}$ $Y_{21} Y_{22}$	$\frac{1}{Y_{11}} - \frac{Y_{12}}{Y_{11}}$ $\frac{Y_{21}}{Y_{11}} - \frac{\Delta Y}{Y_{11}}$	$-\frac{Y_{22}}{Y_{21}} - \frac{1}{Y_{21}} \\ -\frac{\Delta Y}{Y_{21}} - \frac{Y_{11}}{Y_{21}}$	
[h]	$\frac{\Delta h}{h_{22}} \frac{h_{12}}{h_{22}} \\ -\frac{h_{21}}{h_{22}} \frac{1}{h_{22}}$	$\frac{\frac{1}{h_{11}}}{\frac{h_{12}}{h_{11}}} - \frac{\frac{h_{12}}{h_{11}}}{\frac{h_{21}}{h_{11}}} - \frac{\frac{\Delta h}{h_{11}}}{\frac{\Delta h}{h_{11}}}$	$h_{11} h_{12} h_{21} h_{21}$	$-\frac{\Delta h}{h_{21}} - \frac{h_{11}}{h_{21}} \\ -\frac{h_{22}}{h_{21}} - \frac{1}{h_{21}}$	
[ABCD]	$\frac{A}{C} \frac{\Delta A B C D}{C}$ $\frac{1}{C} \frac{D}{C}$	$\frac{D}{B} - \frac{\Delta ABCD}{B}$ $-\frac{1}{B} - \frac{A}{B}$	$\frac{B}{D} \frac{\Delta ABCD}{D}$ $-\frac{1}{D} \frac{C}{D}$	A B C D	

Table 4-2 Conversion between Different Network Representations

determinant

S-parameters

- 2-port used for definition of S-parameters
- "Power waves" defined as

$$a_n = \frac{1}{2\sqrt{Z_0}} (V_n + Z_0 I_n)$$
(4.36a)

$$b_n = \frac{1}{2\sqrt{Z_0}} (V_n - Z_0 I_n)$$
(4.36b)

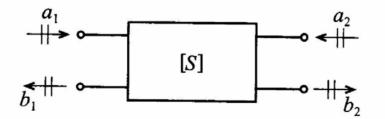
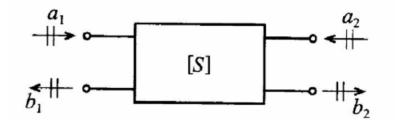


Figure 4-14 Convention used to define S-parameters for a two-port network.

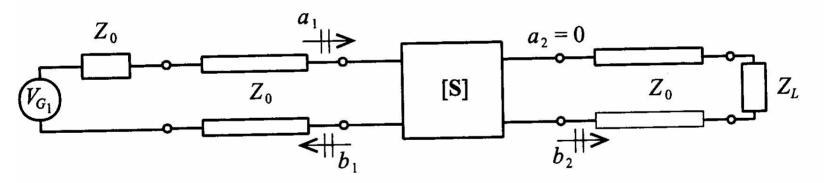
Definition of S-parameters


• The power is:

$$P_n = \frac{1}{2} \operatorname{Re}\{V_n I_n^*\} = \frac{1}{2} (|a_n|^2 - |b_n|^2)$$

S-parameters

$$\begin{cases} b_1 \\ b_2 \end{cases} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{cases} a_1 \\ a_2 \end{cases} \qquad \xrightarrow{a_1} \qquad \xrightarrow{a_1} \qquad \xrightarrow{a_2} \qquad \xrightarrow{a_2} \qquad \xrightarrow{a_1} \qquad \xrightarrow{a_2} \qquad \xrightarrow{a_2} \qquad \xrightarrow{a_3} \qquad \xrightarrow{a_4} \qquad \xrightarrow{a_5} \qquad \xrightarrow{a_6} \qquad \xrightarrow{a_7} \qquad \xrightarrow{a_8} \qquad \xrightarrow{$$


Interpretation of S-parameters

 $S_{11} = \frac{b_1}{a_1}\Big|_{a_0 = 0} \equiv \frac{\text{reflected power wave at port 1}}{\text{incident power wave at port 1}}$ (4.42a) $S_{21} = \frac{b_2}{a_1} \bigg|_{a=0} \equiv \frac{\text{transmitted power wave at port 2}}{\text{incident power wave at port 1}}$ (4.42b) $S_{22} = \frac{b_2}{a_2}\Big|_{a_1 = 0} \equiv \frac{\text{reflected power wave at port 2}}{\text{incident power wave at port 2}}$ (4.42c) $S_{12} = \frac{b_1}{a_2} \bigg|_{a=0} \equiv \frac{\text{transmitted power wave at port 1}}{\text{incident power wave at port 2}}$ (4.42d)

Measuring S-parameters

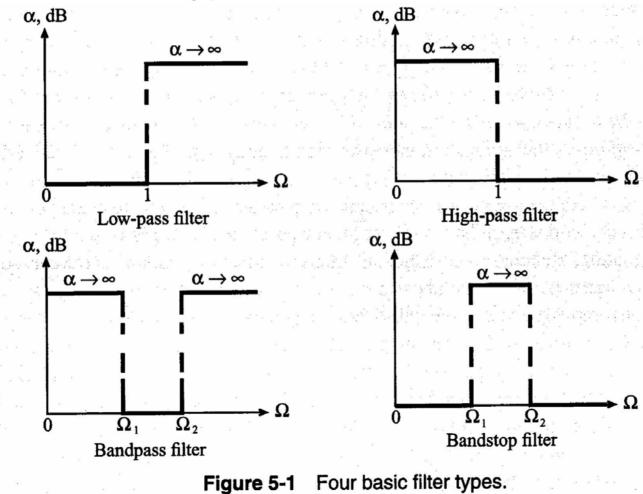

 S-parameters are measured when lines are terminated with their characteristic impedances

Figure 4-15 Measurement of S_{11} and S_{21} by matching the line impedance Z_0 at port 2 through a corresponding load impedance $Z_L = Z_0$.

Filters

• Different filter types

Ex. of 3 different filter types

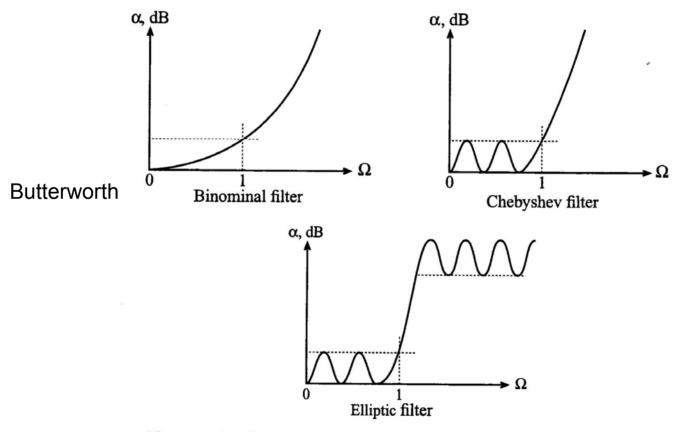


Figure 5-2 Actual attenuation profile for three types of low-pass filters.

Filter parameters

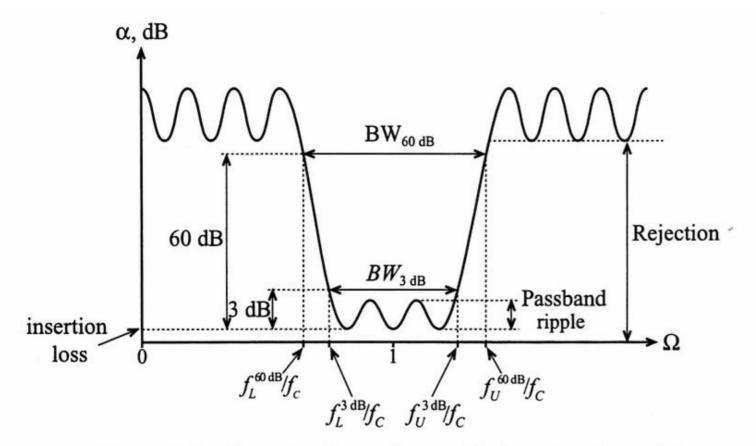


Figure 5-3 Generic attenuation profile for a bandpass filter.

Q-factor

Definition of Q-factor

$$Q = \omega \frac{\text{average stored energy}}{\text{energy loss per cycle}}\Big|_{\omega = \omega_c} = \omega \frac{\text{average stored energy}}{\text{power loss}}\Big|_{\omega = \omega_c} = \omega \frac{W_{\text{stored}}}{P_{\text{loss}}}\Big|_{\omega = \omega_c}$$
(5.4)

Different definitions of the Q-factor exist
 The definitions are equivalent

$$Q_{LD} = \frac{f_c}{f_U^{3dB} - f_L^{3dB}} \equiv \frac{f_c}{BW^{3dB}}$$

Unloaded – loaded Q

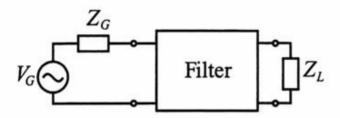
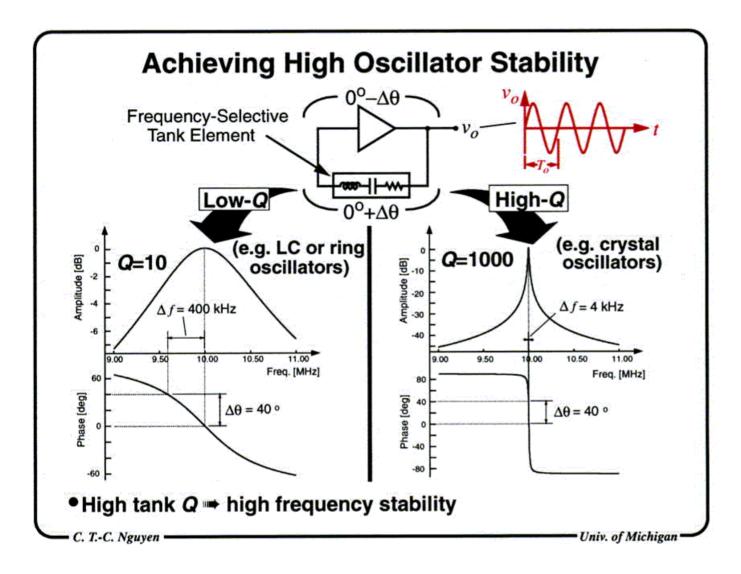



Figure 5-4 Filter as a two-port network connected to an RF source and load.

$$\frac{1}{Q_{LD}} = \frac{1}{\omega} \left(\frac{\text{power loss in filter}}{\text{average stored energy}} \right) \Big|_{\omega = \omega_r} + \frac{1}{\omega} \left(\frac{\text{power loss in load}}{\text{average stored energy}} \right) \Big|_{\omega = \omega_r}$$
(5.5)

$$\frac{1}{Q_{LD}} = \frac{1}{Q_F} + \frac{1}{Q_E}$$

Q-factor is important for frequency stability

