INF5490 RF MEMS

LN03: Modeling, design and analysis

Spring 2010, Oddvar Søråsen Department of Informatics, UoO

Today's lecture

- Operating principles for MEMS components
 - Transducer principles
 - Sensor principles
- Methods for RF MEMS modeling
 - 1. Simple mathematical models
 - 2. Converting to electrical equivalents
 - (3. Analyzing using Finite Element Methods)
 - → LN04

(RF) MEMS transducers

- Electromechanical transducers
 - Transforming
 electrical energy ←→ mechanical energy
- Basic transducer principles
 - Electrostatic
 - Electromagnetic
 - Electro thermal
 - Piezoelectric

Transducer principles

- Electrostatic transducers
 - Principle: force exists between electric charges
 - "Coulombs law"
 - Implemented by using a capacitor with movable "plates"
 - Vertical movement: parallel plates
 - Horizontal movement: comb structures
 - → Stored energy when mechanical work is performed on the unit can be converted to electrical energy
 - Stored energy when electrical work is performed on the unit can be converted to mechanical energy

Electrostatic transducers

- + Simple principle and fabrication
- + Actuation (movement) controlled by voltage
 - voltage → charges → attractive force → movement
- + Movement gives current
 - movement → variable capacitor → current when voltage is constant:
 Q = V C and i = dQ/dt = V dC/dt
- + Need environmental protection (dust)
 - Packaging required (vacuum)
- ÷ Transduction mechanism is non-linear
 - ... for variation of **distance** between plates ...
 - Force is not proportional to voltage
 - Solution: small signal variations around a DC voltage
- The most used form of electromechanical energy conversion

Transducer principles, contd.

- Electromagnetic transducers
 - Magnetic windings pull the element
 - ÷ More complicated processes
- Electro thermal actuators
 - Different thermal expansion due to temperature gradients
 - · Different materials
 - Each with its: TCE Thermal Coefficient of Expansion
 - Different locations
 - Large deflections can be obtained
 - Slow!

Transducer principles, contd.

- Piezoelectric transducers
 - In some anisotropic crystalline materials the charges will be displaced when stressed → electric field
 - stress = "mechanical stress" (Norw: "mekanisk spenning)
 - Similarly, strain results when an electric field is applied (relative shrinking or prolongation of unit)
 - strain = "mechanical strain" (Norw: "mekanisk tøyning")
 - Ex. PZT (lead zirconate titanates) ceramic material
- (<u>Electrostrictive</u> transducers
 - Mechanical deformation by electric field
- Magnetostrictive transducers
 - Deformation by magnetic field)

Comparing different transducer principles

Table 1.4 Comparison of electromechanical transducers

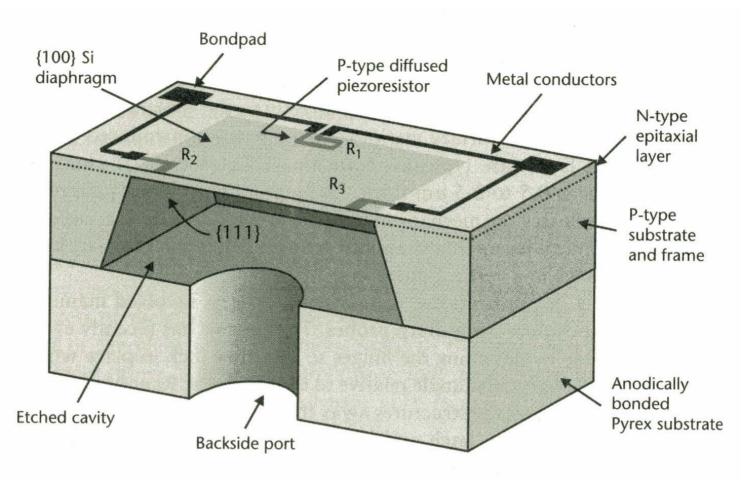
			TO STATE OF THE ST	
Actuator	Fractional stroke (%)	Maximum energy density (J cm ⁻³)	Efficiency	Speed
Electrostatic	32	0.004	High	Fast
Electromagnetic	50	0.025	Low	Fast
Piezoelectric	0.2	0.035	High	Fast
Magnetostrictive	0.2	0.07	Low	Fast
Electrostrictive	4	0.032	High	Fast
Thermal	50	25.5	Low	Slow

Source: Wood, Burdess and Hariss, 1996.

Sensor principles

• Piezoresistive detection

Capacitive detection


Piezoelectric detection

Resonance detection

Sensor principles

- Piezoresistive detection
 - Resistance varies due to external pressure/stress
 - Resistor value is proportional to strain
 - Piezoresistors placed on membrane where strain is maximum
 - Peripheries
 - Used in pressure sensors
 - Deflection of membrane
 - + Simple principle
 - ÷ Performance of piezoresistive micro sensors is temperature dependent

Pressure sensor

Sensor principles, contd.

- Capacitive detection
 - Exploiting capacitance variations
 - Pressure → electric signal
 - Change in C: can influence oscillation frequency, charge or voltage
 - Potentially higher performance than piezoresistive detection
 - + Better sensitivity
 - + Can detect <u>small</u> pressure variations
 - + High stability

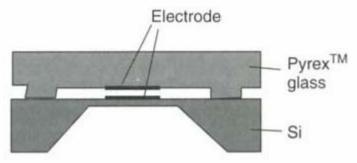


Figure 1.19 Capacitive sensing structure

Sensor principles, contd.

- Piezoelectric detection
 - Electric charge distribution changed due to external force → electric field → current

- Resonance detection
 - Using resonating structures
 - Analogy: stress variation on a string gives strain and is changing the "natural" resonance frequency

Methods for modeling RF MEMS

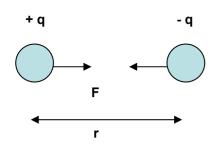
- 1. Simple mathematical models
 - Ex. parallel plate capacitor

2. Converting to electrical equivalents

 3. Analysis using Finite Element Methods

1. Simple mathematical models

- Use equations, formulas describing the physical phenomena
 - Simplification, approximations necessary
 - a) Explicit solutions for simple problems
 - Linearization around a bias point
 - b) Numerical solution of a set of equations
 - Typical: differential equations
- + Gives the designer insight/ understanding
 - How the performance changes by parameter variations
 - May be used for initial estimates


Ex. On mathematical modeling

- Important equations for many RF MEMS components:
 - − → Parallel plate capacitor!

- Study electrostatic actuation of the capacitor with one plate suspended by a spring
- Calculate "pull-in"
 - Formulas and figures →

Electrostatics

Electric force between charges: Coulombs law

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2}$$

Electric field = force pr. unit charge

$$\overline{E} = \frac{\overline{F}}{q_0}$$

Work done by a force = change in potential energy $W_{a \to b} = \int_{a}^{b} \overline{F} \cdot d\overline{l} = U_a - U_b$

$$W_{a\to b} = \int_{a}^{b} \overline{F} \cdot d\overline{l} = U_a - U_b$$

Potential, **V** = potential energy pr. unit charge

$$V = \frac{U}{q_0}$$

Voltage = potential difference

$$V_a - V_b = \int_a^b \overline{E} \cdot d\overline{l}$$

Capacitance

Definition of capacitance

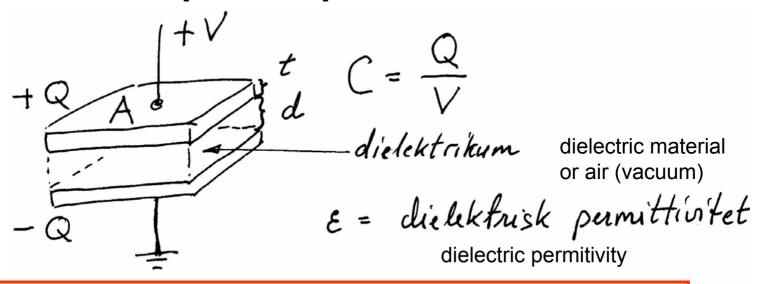
$$C = \frac{Q}{V_{ab}}$$

Surface charge density = σ

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A} \cdot \frac{1}{\varepsilon_0}$$

$$C = \frac{Q}{V_{ch}} = \varepsilon_0 \frac{A}{d}$$

Voltage

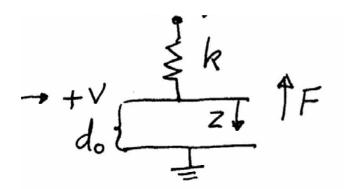

$$V_{ab} = E \cdot d = \frac{Q}{A \varepsilon_0} \cdot d$$

Energy stored in a capacitor, C, that is charged to a voltage V_0 at a current $i = \dot{Q} = C \frac{dV}{dV}$

$$i = \dot{Q} = C \frac{dV}{dt}$$

$$U = \int v \cdot i \cdot dt = \int v \cdot C \frac{dv}{dt} \cdot dt = C \int_{0}^{V_0} v \cdot dv = \frac{1}{2} C V_0^2 = \frac{\varepsilon_0 A}{2d} V_0^2$$

Parallel plate capacitor


Attractive force between plates

$$F = -\frac{\partial U}{\partial d} = -\frac{\partial}{\partial d} \left(\frac{\varepsilon A}{2d} V^2 \right) = \frac{\varepsilon A V^2}{2d^2}$$

Movable capacitor plate

- Assumptions for calculations:
 - Suppose air between plates
 - Spring attached to upper plate
 - Spring constant: k
 - Spring force!
 - Voltage is turned on
 - Electrostatic attraction
 - Electrostatic force!
 - At equilibrium
 - Forces up and forces down are in balance →

Force balance

k = spring constant

deflection from start position

$$d0 = gap at 0V$$
 and zero spring strain $d = d0 - z$
 $z=d0 - d$

Force on upper plate with voltage V and distance d:

$$F_{net} = -\frac{\varepsilon A V^2}{2 d^2} + k (d_0 - d) = 0$$
 at equilibrium

Two equilibrium positions

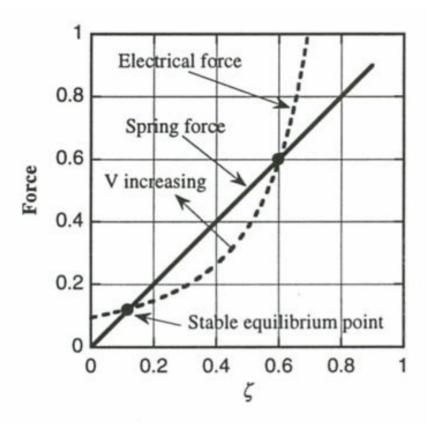


Figure 6.7. Electrical and spring forces for the voltage-controlled parallel-plate electrostatic actuator, plotted for $V/V_{PI}=0.8$.

$$\varsigma = 1 - d/d0$$

Senturia

Stability

- How the forces develop when d decreases
 - Suppose a small perturbation in the gap at constant voltage

$$SF_{net} = \left(\frac{\varepsilon AV^2}{d^3} - k\right) S_d$$

Suppose the gap decreases

$$\delta d < 0$$

If the upward force also deceases, the system is **UNSTABLE!**

Stability, contd.

Stability condition:

$$\frac{\partial F_{net}}{\partial d} \Big| < 0$$

$$k > \frac{\epsilon A V}{I^3}$$

Pull-in when:

$$k = \frac{\varepsilon A \sqrt{\rho_{I}^{2}}}{d_{P\dot{I}}^{3}}$$

Pull-in

$$F_{net} = 0$$

$$\frac{\mathcal{E}A \ V_{PI}^{2}}{2 \ d_{PI}^{2}} = k \left(d_{o} - d_{PI} \right)$$

$$1 = \frac{\mathcal{E}A \ V_{PI}^{2}}{d_{PI}^{3}}$$

Pull-in when:

$$d_{PI} = \frac{2}{3} d_o$$

$$V_{PI} = \sqrt{\frac{8 k d_o^3}{27 \epsilon A}}$$

Pull-in

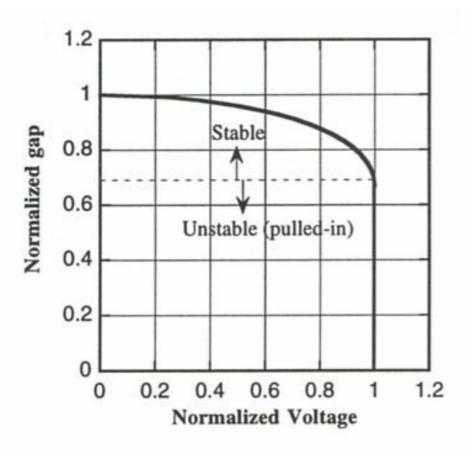


Figure 6.8. Normalized gap as a function of normalized voltage for the electrostatic actuator.

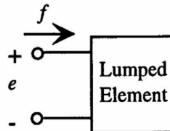
Senturia

2. Converting to electrical equivalents

- Mechanical behavior can be modeled using electrical circuit elements
 - Mechanical structure → simplifications → equivalent electrical circuit
 - ex. spring/mass/damper system → R, C, L -equivalent
 - Possible to "interconnect" electrical and mechanical energy domains
 - Simplified modeling and <u>co-simulation</u> of electronic and mechanical parts of the system
 - Proper analysis-tools can be used
 - Ex. SPICE

Converting to electrical equivalents, contd.

- We will discuss:
 - Needed circuit theory
 - Conversion principles
 - effort flow
 - Example of conversion
 - Mechanical resonator


- In a future lecture:
 - Co-existence and coupling between various energy domains

Circuit theory

- Basic circuit elements: R, C, L
- Current and voltage equations for basic elements (low frequency)
 - Ohms law, C and L-equations
 - V = RI, I = C dV/dt, V = L dI/dt
 - Laplace transformation
 - From differential equations to algebraic (s-polynomial)
 - → Complex impedances: R, 1/sC, sL
- Kirchhoffs equations
 - Σ current into nodes = 0, Σ voltage in a loop = 0

Effort - flow

- Electrical circuits are described by a set of variables: conjugate power variables
 - Voltage V: across or effort variable
 - Current I: through or flow variable
 - An effort variable drives a flow variable through an impedance, Z
- Circuit element is modeled as a 1-port with terminals
 - Same current (f = flow) in
 and out and through the element
 - Positive flow into a terminal defining a positive effort

Energy-domains, analogies

- Various energy domains exist
 - Electric, mechanical/elastic, thermal, for liquids etc.
- For every energy domain it is possible to define a set of conjugate power variables that may be used as basis for lumped component modeling using equivalent circuits elements
- Table 5.1 Senturia ->

Ex. of conjugate power variables

Energy Domain	Effort	Flow	Momentum	Displacement
Mechanical translation	Force F	Velocity \dot{x}, v	Momentum p	Position
Fixed-axis rotation	Torque $ au$	Angular velocity ω	Angular momentum J	Angle θ
Electric circuits	Voltage V, v	Current I, i		Charge Q
Magnetic circuits	Magnetomotive force MMF	Flux rate $\dot{\phi}$	linovity i mp2 =	Flux \$\phi\$
Incompressible fluid flow	Pressure P	Volumetric flow Q	Pressure momentum Γ	Volume V
Thermal	Temperature T	Entropy flow rate \dot{S}	one parens ace for a preside of sec feather or besiden	Entropy S

Conjugate power variables: e,f

- Assume conversion between energy domains were the energy is conserved!
- Properties
 - -e * f = power
 - e / f = impedance
- Generalized displacement represents the state, f. ex. position or charge

$$f(t) = \dot{q}(t) \qquad \qquad q(t) = \int\limits_{t_0}^t f(t) dt + q(t_0)$$

$$- \mathbf{e} * \mathbf{q} = \mathbf{energy}$$

Generalized momentum

$$p(t) = \int_{t_0}^{t} e(t)dt + p(t_0)$$

- Mechanics: "impulse"
 - F*dt = mv mv0

– General: p * f = energy

Ex.: Mechanical energy domain

$$e = F \quad (knaft) \qquad \text{force}$$

$$f = v, \dot{x} \quad (hashight) \qquad \text{velocity}$$

$$q = x \qquad (posi's jon) = \int \dot{x} \, dt \qquad \text{position}$$

$$\rho = \rho \qquad (momentum) = \int F \, dt \qquad \text{momentum}$$

$$(knaft \times hd) \qquad \text{force x time}$$

$$e \cdot d \rightarrow F \cdot \dot{x} = \frac{F \, dx}{\Delta t} = \frac{arbaid}{trd} = effekt \qquad \text{work/time = power}$$

$$e \cdot q \rightarrow F \cdot x = knaft \times vu' = anbaid = energy \qquad \text{force*distance = work = energy}$$

$$\rho \cdot f \rightarrow \rho \cdot \dot{x} = mv \cdot v = mv^2 = energy \qquad \text{energy}$$

Ex.: Electrical energy domain

e → V - convention

Senturia and Tilmans use the

Ex. electrical and mechanical circuits

```
– e → V (voltage) equivalent to F (force)
```

$$-q \rightarrow Q$$
 (charge) equivalent to x (position)

– e * f = "power" injected into the element

H. Tilmans, Equivalent circuit representation of electromagnetical transducers:

I. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996

Other conventions

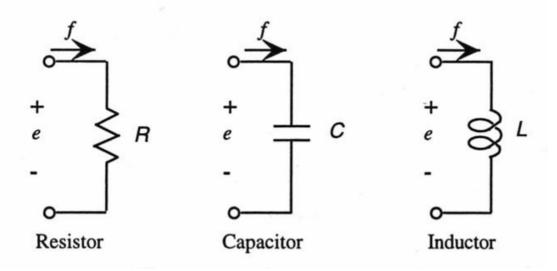

 Different conventions exist for defining throughor across-variables

Table 5.2. Different conventions for assigning circuit variables.

Convention	Across Variable	Through Variable f	Product	Principal Use electric circuit elements
$e \rightarrow V$ *	e			
$f \! o \! V$ altern	ative f	е	power	mechanical circuit elements
Thermal	Т	ġ	Watt-Kelvin	thermal circuits
HDL	q	e ·	energy	HDL circuit representation of mechanical elements

Generalized circuit elements

- One-port circuit elements
 - R, dissipating element
 - C, L, energy-storing elements
 - Elements can have a general function!
 - Can be used in various energy domains

Generalized capacitance

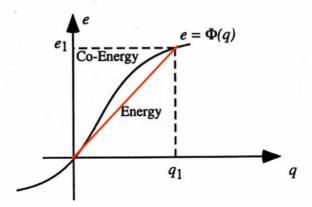


Figure 5.5. Illustrating energy and co-energy for a generalized capacitor.

Compare with a simplified case:

- a linear capacitor

$$Q = \sqrt{\cdot} C$$

$$V = \frac{1}{c} \cdot Q$$

$$e = \frac{1}{c} \cdot q$$

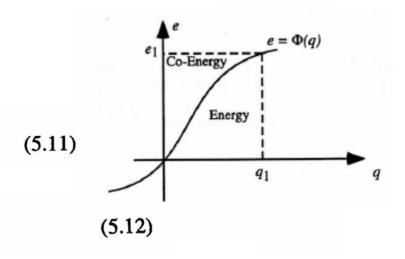
$$V = \frac{1}{c} \cdot q$$

$$Q = \sqrt{\cdot} C$$

$$Q = \sqrt{\cdot} Q$$

$$Q$$

Generalized capacitance, contd.

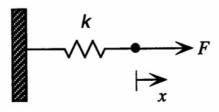

Capacitance is associated with stored potential energy

$$W(q_1) = \int_0^{q_1} e \, dq = \int_0^{q_1} \Phi(q) \, dq \qquad (5.10)$$

Co-energy:

$$W^*(e) = eq - W(q)$$

$$W^*(e_1) = \int_0^{e_1} q \, de = \int_0^{e_1} \Phi^{-1}(e) \, de$$


Energy stored in parallel plate capacitor

Energy:
$$W(Q) = \int_{0}^{Q} e \cdot dq = \int_{0}^{Q} \frac{q}{C} \cdot dq = \frac{Q^{2}}{2C}$$

Co-energy:
$$W^*(V) = \int_0^V q \cdot de = \int_0^V C \cdot v \cdot dv = \frac{CV^2}{2}$$

$$W^*(V) = W(Q)$$
 for linear capacitance

Mechanical spring

Hook's law: $F = k \cdot x$

$$F = k \cdot x$$

Stored energy
$$W(x_1) = \int_0^{x_1} F(x) dx = \frac{1}{2} k x_1^2$$
 (5.18)

Compare with capacitor

$$W(Q) = \frac{1}{2} \cdot \frac{1}{C} \cdot Q^2$$

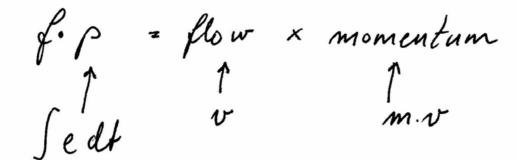
displacement

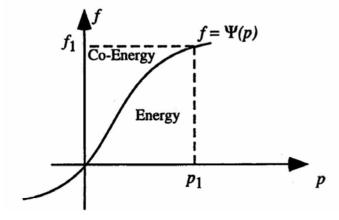
x1

displacement

→ 1/C equivalent to k

"Compliance"


• "Compliance" = "inverse stiffness"


$$C_{spring} = \frac{1}{k}$$

- Stiff spring → small capacitor
- Soft spring → large capacitor

Generalized inductance

Energy also defined as:

Energy = stored kinetic energy

$$W(p_i) = \int_{0}^{\infty} f(p) dp$$

Ex.: Electrical inductor

Co-energy:
$$W^*(f) = \int_0^{f_i} \rho(f) df$$

$$W^*(f) = \int_0^{f_i} \rho(f) df$$

$$V = L \frac{dI}{dt}$$

$$P = \int_0^{f_i} e dt = \int_0^{f_i} V dt = \int_0^{f_i} L dI$$

$$P(f) = \rho(I) = LI$$

$$W^*(f_i) = W^*(I_i) = \int_0^{I_i} L \cdot I \cdot dI = \frac{1}{2} L \cdot I_i^2$$

Analogy between mass (mechanical inertance) and inductance L

A mechanical system has **linear momentum**: p = mv

Flow:
$$f = v = f_m$$

$$W(\rho_1) = \int_0^{\rho_1} f(\rho) d\rho = \int_0^{\rho_1} f(\rho) d\rho = \int_0^{\rho_1} f(\rho) d\rho = \int_0^{\rho_1} f(\rho) d\rho$$

Co-energy:

$$W^*(v_i) = \int_{0}^{\infty} p(v) dv = \int_{0}^{\infty} (mv) dv = \frac{1}{2} m v_i^2$$

Analogy between m and L

$$W^{*}(f_{1}) = W^{*}(I_{1}) = \int_{0}^{I_{1}} L \cdot I \cdot dI = \frac{1}{2} L I_{1}^{2}$$
with:
$$W^{*}(v_{1}) = \frac{1}{2} m v_{1}^{2}$$

Compare with:
$$W^*(v_i)$$
 = $\frac{1}{2}$

L is equivalent to m

$$m = L$$
 inertance

Mechanical inertance = mass m is analog to inductance L

Interconnecting elements

e → V follows two basic principles

 Elements that share a common flow, and hence a common variation of displacement, are connected in series

 Elements that share a common effort are connected in parallel

Ex. of interconnection:

"Direct transformation"

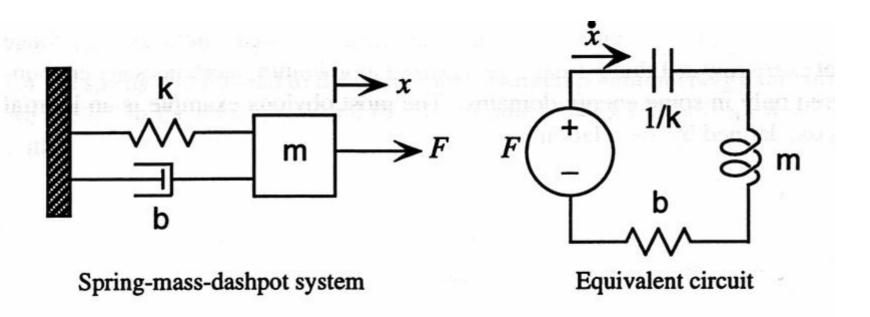
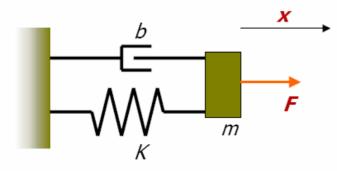
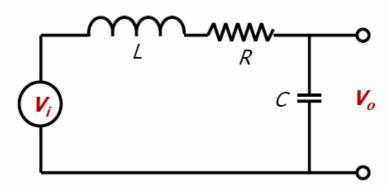




Figure 5.9. Translating mechanical to electrical representations.

Mechanical / Electrical Systems

Input: external force F

Output : displacement x

$$m\ddot{x}(t) + b\dot{x}(t) + Kx(t) = F$$

m mass, b damping, K stiffness

Transfer function:

$$H(s) = \frac{x}{F} = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{K}{m}}$$

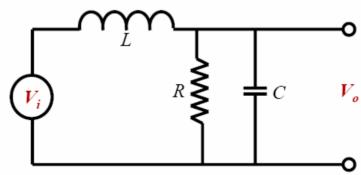
Input : voltage V_i

Output : voltage V_o

$$L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = V_i$$

L induct., R resist., C capacit.

Transfer function:


$$H(s) = \frac{V_o}{V_i} = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Texas Christian University

Department of Engineering

Mechanical / Electrical Systems

Alternative circuit:

Input : voltage V_i

Output : voltage V_o

$$L\ddot{q}(t) + \frac{L}{RC}\dot{q}(t) + \frac{1}{C}q(t) = V_i$$

L inductance, R resistance, C capacitance

Transfer function:

$$H(s) = \frac{V_o}{V_i} = \frac{\frac{1}{LC}}{s^2 + \frac{1}{RC}s + \frac{1}{LC}}$$

Texas Christian University

Department of Engineering

Resonators

- Analogy between mechanical and electrical system:
 - Mass m inductivity L
 - Spring *K* capacitance *C*
 - Damping *b* resistance *R* (depending where *R* is placed in circuit)
- Solution to 2nd order differential equation:

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

 $\omega_0 = 2\pi f_0$ natural frequency

$$\omega_0 = \sqrt{\frac{K}{m}}$$
 mechanical system, $\omega_0 = \sqrt{\frac{1}{LC}}$ electrical system

Q quality factor

Texas Christian University

Department of Engineering

System without damping (b=0, R=0)

$$H(s) = \frac{w_0^2}{s^2 + w_0^2} = \frac{w_0^2}{(s+jw_0)(s-j'w_0)}$$

$$|H(jw_0)| = \infty$$

$$|H(jw_0)| = \infty$$

$$H(jw) = \frac{1}{1-(\frac{w}{w_0})^2}$$

$$\omega_0 = \sqrt{\frac{1}{LC}}, \omega_0 = \sqrt{\frac{k}{m}}$$

System without damping, contd.

$$H(j\omega) = \frac{1}{1 - (\frac{\omega}{\omega_0})^2}$$

$$|H(j\omega)| = 1 \quad \text{nai} \quad \omega << \omega_0 \qquad \text{OdB}$$

$$|H_j\omega| = -(\frac{\omega_0}{\omega})^2 \quad \text{nai} \quad \omega >> \omega_0 \qquad -40 \, \text{dB/deleade}$$

$$|H_j\omega| \, dB \qquad \qquad \omega$$

$$-40 \, dB/deleade$$

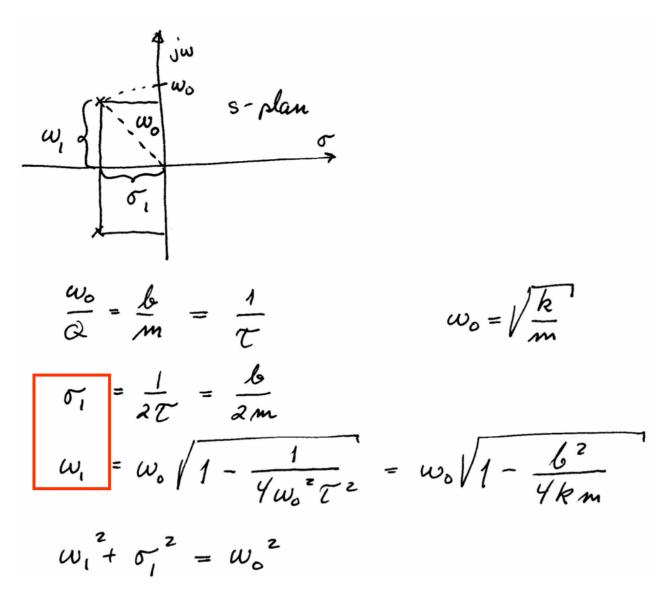
With damping

$$S^{2} + \frac{w_{0}}{Q}S + w_{0}^{2} = 0$$

$$S = -\frac{w_{0}}{2Q} + \int w_{0} \sqrt{1 - \frac{1}{YQ^{2}}}$$

$$= -\sigma_{1} + \int w_{1}$$

$$w_{1} = -\sigma_{1} + \int w_{2}$$


$$S = -\frac{w_{0}}{2Q} + \int w_{0} \sqrt{1 - \frac{1}{YQ^{2}}}$$

$$= -\sigma_{1} + \int w_{1}$$

$$w_{2} = -\sigma_{1} + \int w_{2}$$

$$S = -\frac{w_{0}}{2Q} + \int w_{0} \sqrt{1 - \frac{1}{YQ^{2}}}$$

Damped system, contd.

Mechanical Resonator

 Frequency and phase shift under damping:

$$x(t) = Ae^{-t/2\tau}\cos(\omega_1 t + \varphi)$$

$$\tau = \frac{m}{b} \text{ damping time}$$

$$\omega_1 = \omega_0 \sqrt{1 - \frac{1}{4\omega_0^2 \tau^2}} = \omega_0 \sqrt{1 - \frac{b^2}{4Km}}$$

 φ phase shift

• Energy dissipation:

$$E(t) = E_0 e^{-t/\tau}$$

Texas Christian University

Department of Engineering

What is the meaning of "damping time"?

$$T = damping fine$$

$$e^{-t/2T} = e^{-t/2} = \frac{1}{Ve^{-1}}$$

$$t = T$$

Power

Effekten
$$|x(t)|^{2} = \frac{1}{e}$$

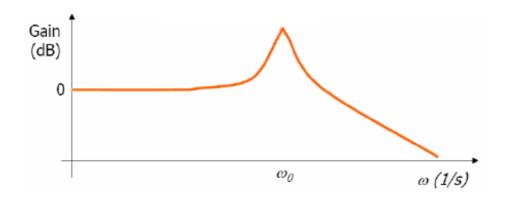
$$t=T$$

$$x(t) = Ae^{-t/2\tau} \cos(\omega_1 t + \varphi)$$

$$x(0) = A \cdot \cos \varphi \quad \text{inihalbehingelsur}$$
initial conditions

Q-factor and damping time

General equation
$$s^{2} + \frac{w_{0}}{Q} s + w_{0}^{2} = 0$$


$$\Rightarrow s^{2} + \frac{1}{T} s + w_{0}^{2} = 0$$

$$Q = w_{0}T$$

$$T = \frac{m}{b} \quad \text{mukanish} \quad T = \frac{L}{R} \quad \text{electrical}$$

$$Q_{\text{mek}} = \frac{w_{0} m}{b} \qquad Q_{d} = \frac{w_{0} L}{R}$$

Amplitude at resonance for forced vibrations

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

$$H(j\omega) = \frac{\omega_0^2}{(\omega_0^2 - \omega^2) + j \frac{\omega\omega_0}{Q}}$$

$$|H(j\omega_0)| = \frac{\omega_0^2}{0 + j \frac{\omega_0^2}{Q}} = Q$$