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Today's lecture

* Operating principles for MEMS components
— Transducer principles
— Sensor principles

* Methods for RF MEMS modeling

— 1. Simple mathematical models
— 2. Converting to electrical equivalents

— (3. Analyzing using Finite Element Methods)
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(RF) MEMS transducers

 Electromechanical transducers

— Transforming
electrical energy €-> mechanical energy

» Basic transducer principles
— Electrostatic
— Electromagnetic
— Electro thermal
— Piezoelectric




Transducer principles

 Electrostatic transducers

— Principle: force exists between electric charges
« "Coulombs law”

— Implemented by using a capacitor with movable
‘plates”
* Vertical movement: parallel plates
« Horizontal movement: comb structures

« = Stored energy when mechanical work is performed on the
unit can be converted to electrical energy

« =>» Stored energy when electrical work is performed on the
unit can be converted to mechanical energy



Electrostatic transducers

+ Simple principle and fabrication

+ Actuation (movement) controlled by voltage
« voltage - charges - attractive force > movement

+ Movement gives current

* movement = variable capacitor - current when voltage is constant:
Q=V Candi=dQ/dt=V dC/dt

+ Need environmental protection (dust)
« Packaging required (vacuum)

+ Transduction mechanism is non-linear
« ... for variation of distance between plates ...
» Force is not proportional to voltage
« Solution: small signal variations around a DC voltage

The most used form of electromechanical energy
conversion




Transducer principles, contd.

+ Electromagnetic transducers
— Magnetic windings pull the element
— + More complicated processes

 Electro thermal actuators

— Different thermal expansion due to temperature
gradients

 Different materials
— Each with its: TCE — Thermal Coefficient of Expansion
 Different locations

— Large deflections can be obtained
— Slow!



Transducer principles, contd.

* Piezoelectric transducers
— In some anisotropic crystalline materials the charges
will be displaced when stressed - electric field
 stress = "mechanical stress” (Norw: “mekanisk spenning)

— Similarly, strain results when an electric field is
applied (relative shrinking or prolongation of unit)

« strain = "mechanical strain” (Norw: “mekanisk tayning”)

— Ex. PZT (lead zirconate titanates) — ceramic material

(Electrostrictive transducers

— Mechanical deformation by electric field
Magnetostrictive transducers

— Deformation by magnetic field)




Comparing different transducer principles

Table 1.4 Comparison of electromechanical transducers

Actuator Fractional Maximum Efficiency Speed
stroke (%) energy
density
(Jem™)
Electrostatic 32 @ High Fast
Electromagnetic 50 0.025 Low Fast
Piezoelectric 0.2 @ High Fast
Magnetostrictive 0.2 0.07 Low Fast
Electrostrictive 4 0.032 High Fast

Thermal 50 23.5 Low

Source: Wood, Burdess and Hanss, 1996,




Sensor principles

Piezoresistive detection

Capacitive detection

Piezoelectric detection

Resonance detection



Sensor principles

Piezoresistive detection
— Resistance varies due to external pressure/stress
— Resistor value is proportional to strain

— Piezoresistors placed on membrane where strain is
maximum

» Peripheries

— Used in pressure sensors
» Deflection of membrane

— + Simple principle
— + Performance of piezoresistive micro sensors is
temperature dependent
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Pressure sensor

Bondpad
{1.00} Si P-type diffused
diaphragm piezoresistor

Metal conductors
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and frame
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bonded
Pyrex substrate
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Sensor principles, contd.

« Capacitive detection
— Exploiting capacitance variations

— Pressure = electric signal
« Change in C: can influence
oscillation frequency, charge or
voltage
— Potentially higher performance
than piezoresistive detection
« + Better sensitivity

« + Can detect small pressure
variations

* + High stability

fEtectrode

Pyrex™

glass

Si

Figure 1.19 Capacitive sensing structure
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Sensor principles, contd.

 Piezoelectric detection

— Electric charge distribution changed due to
external force - electric field = current

* Resonance detection
— Using resonating structures

— Analogy: stress variation on a string gives
strain and is changing the “natural”
resonance frequency
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Methods for modeling RF MEMS

* 1. Simple mathematical models
— EXx. parallel plate capacitor

« 2. Converting to electrical equivalents

* 3. Analysis using Finite Element
Methods
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1. Simple mathematical models

« Use equations, formulas describing the physical
phenomena
— Simplification, approximations necessary

— a) Explicit solutions for simple problems
 Linearization around a bias point

— b) Numerical solution of a set of equations
» Typical: differential equations
+ + Gives the designer insight/ understanding

— How the performance changes by parameter
variations

— May be used for initial estimates
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Ex. On mathematical modeling

* Important equations for many RF MEMS
components:

— —> Parallel plate capacitor!

— Study electrostatic actuation of the capacitor
with one plate suspended by a spring

— Calculate "pull-in”
 Formulas and figures -
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Electrostatics

Electric force between charges: Coulombs law

+q -q
o— —O S
F 47&?0 r
L . =_F
Electric field = force pr. unit charge E= o
0
b
Work done by a force = change in potential energy  Wa = _[ F-dl=U,-U,
Potential, V = potential energy pr. unit charge vV _uU
Qo
. . b PR _
Voltage = potential difference V, -V, = j E.d
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Capacitance

. ‘ re Definition of capacitance C= Vg
b E d Vab ab
A ‘ -Q
Surface charge density = o Voltage
o Q1
E=—==.—_ B - Q
& A g Vi =E-d =—-d
0
C= Q =&, A
V., d
Energy stored in a capacitor, C, dv
that is charged to a voltage V, at a current | = Q C E
Vo
1 g, A
U= _[v | - dt—jv C—dt—ij-dv:—Cvo2 =20y ?
) 2 2d
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Parallel plate capacitor
[+ g
C-~

z
! %1 ﬂ 4
| ! 4“#} c/’/k/' Y7 dielectric material
;/ e }/ fefekttifure or air (vacuum)
g A
- Q) & = cﬁ(iﬁk/fz/u;q/( paru thin'tet
dielectric permitivity

—
—

Attractive force between plates
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Movable capacitor plate

* Assumptions for calculations:
— Suppose air between plates
— Spring attached to upper plate
« Spring constant: k
» Spring force!
— Voltage is turned on

» Electrostatic attraction
» Electrostatic force!

— At equilibrium
* Forces up and forces down are in balance -
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Force balance

% k k = spring constant
%
iz - hox

I “"’f”"‘“_‘ﬂ

= deflection from start position
dO = gap at OV and zero spring strain
d=d0-2z
z=d0 —d

Force on upper plate with voltage V and distance d:

F = - E'/%VZ = 0 at equilibrium
mf ,Zo(?’ 'f"é(%o-‘cf) 0 atequilib
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Two equilibrium positions
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Figure 6.7. Electrical and spring forces for the voltage-controlled parallel-plate electrostatic
actuator, plotted for V/Vp; = 0.8.

¢=1-d/dO Senturia
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Stability

 How the forces develop when d decreases

— Suppose a small perturbation in the gap at constant voltage

SFM! = WJSJ
0d
v

0 Fud = <£AV& ﬂz) O d

Suppose the gap decreases Sd <0

If the upward force also deceases,
the system is UNSTABLE! OFul <0
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Stability, contd.

DE.L

Stability condition: il s
anllity conaition @oe / < O
,
L s €AV
?
Z
Pullinwhen: | 4 = €7 /PJ:
VE
PL
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Pull-in when:

Pull-In

;':w‘ =0
ER Vor
2 A% - é (‘{"’Qaf’r)
Pr ,F
_ AV
0?&3
Caf’rzg d,
Jo - |8k 4
Fr 27ep o

25



Pull-in
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Normalized gap
o
(o)

o
o

o
()

0

0O 02 04 06 08 1 1.2
Normalized Voltage

Figure 6.8. Normalized gap as a function of normalized voltage for the electrostatic actuator.

Senturia
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2. Converting to electrical equivalents

* Mechanical behavior can be modeled using
electrical circuit elements

— Mechanical structure - simplifications = equivalent
electrical circuit
e eX. spring/mass/damper system - R, C, L -equivalent
— Possible to “interconnect” electrical and mechanical
energy domains

« Simplified modeling and co-simulation of electronic and
mechanical parts of the system

— Proper analysis-tools can be used
« Ex. SPICE
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Converting to electrical equivalents, contd.

 We will discuss:
— Needed circuit theory

— Conversion principles
 effort - flow

— Example of conversion
 Mechanical resonator

— |In a future lecture:

» Co-existence and coupling between various
energy domains
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Circuit theory

* Basic circuit elements: R, C, L

« Current and voltage equations for basic
elements (low frequency)

— Ohms law, C and L-equations
« V=RI|, 1=C dV/dt, V =L dl/dt

— Laplace transformation
« From differential equations to algebraic (s-polynomial)
« - Complex impedances: R, 1/sC, sL
 Kirchhoffs equations
— 2 current into nodes = 0, 2 voltage ina loop =0
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Effort - flow

 Electrical circuits are described by a set of
variables: conjugate power variables
— Voltage V: across or effort variable
— Current I: through or flow variable

— An effort variable drives a flow variable through an
impedance, Z

f
Lo
 Circuit element is modeled as a . Lumped
. . Element
1-port with terminals _ o0—

— Same current (f = flow) in
and out and through the element

» Positive flow into a terminal defining a positive effort

30



Energy-domains, analogies

* Various energy domains exist
— Electric, mechanical/elastic, thermal, for liquids etc.

 For every energy domain it is possible to define a set
of conjugate power variables that may be used as
basis for lumped component modeling using

equivalent circuits elements

e Table 5.1 Senturia ->
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EX. of conjugate power variables

Energy Domain Effort Flow Momentum Displacement
Mechanical Force Velocity Momentum Position
translation F z,v P T
Fixed-axis Torque Angular Angular Angle

rotation T velocity momentum 0
' w J
Electric Voltage Current Charge
circuits V,v I g Q
Magnetic Magnetomotive Flux rate Flux
circuits force ¢ ¢
MMF
Incompressible Pressure Volumetric flow Pressure Volume
fluid flow P Q momentum | %4
E
Thermal Temperature Entropy flow rate Entropy
T S S




Conjugate power variables: e,f

* Assume conversion between energy domains
were the energy is conserved!

* Properties
— e * f=power
— e/ f =impedance

* Generalized displacement represents the
state, f. ex. position or charge

t

f(t) =q(t) q(t) = | f(t)dt+q(t,)

— e * g = energy b
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Generalized momentum

p(t) = [ e(t)dt + p(t,)

— Mechanics: “impulse”
e F*dt = mv - mv0

— General: p * f = energy
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Ex.: Mechanical energy domain

gl ( /&“ﬂ ) force

ﬁ = X ( 474/3445“) velocity

== ( posi’s Jfo"') . f £ ot position

porp (rometin) s JEA o
(f@/mﬂ i ﬂd) force x time

2 f — Fix - FAX cabuaf ;W work/time = power

C.i — F.x = /&G%x 7, ‘=mbabf-.-_ {nmj" force*distance = work =

energy

()f —> (3;; = muU = mu’z'-‘- 4r'013¢'
energy
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EX.: Electrical energy domain

e = V ( S/){nm;ﬁ) voltage
{ = T C sf)la')m) current
q_ - J-Z’O(j' = ( (ag{mr:j ) charge
P = M.q.

ﬁf = V' I- - ﬂ!/&b{l power

e._qr - V.Q - fodf . majc.' energy

36



e 2 V - convention

Senturia and Tilmans use the
e->V —convention
EXx. electrical and mechanical circuits

— e -2 V (voltage) equivalent to F (force)
— f =2 | (current) equivalent to v (velocity)
— g~ Q (charge) equivalent to x (position)

— e * f ="power” injected into the element

H. Tilmans, Equivalent circuit representation of electromagnetical transducers:
|. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996
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Other conventions

 Different conventions exist for defining through-
or across-variables

Table 5.2.  Different conventions for assigning circuit variables.

Convention  Across Through Product Principal Use
Variable Variable

e=V e f power electric circuit elements
f—V alternative f e power mechanical circuit elements
Thermal T Q Watt-Kelvin  thermal circuits

HDL q e energy HDL circuit representation

of mechanical elements
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Generalized circuit elements

* One-port circuit elements
— R, dissipating element
— C, L, energy-storing elements

— Elements can have a general function!
« Can be used in various energy domains

I f f
=
+ +
e R e —_— C e L
0———-

Resistor Capacitor Inductor



Generalized capacitance

e = ®(g)

Figure 5.5.  Illustrating energy and co-energy for a generalized capacitor.

Compare with a simplified case:
- a linear capacitor

Q
V

V- C definition of C
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Generalized capacitance, contd.

Capacitance is associated with stored potential energy

Q1 ra
W(q) = /ﬂ edq = /0 ®(q) dg (5.10)
: e = D(q)
Co-energy: *’+fﬂ75:u-.~g;--l 9
Energy :I
W'(e) = eq—W(q) 5.11) ,
/ au

W*(e1) =/081 gde = f:‘ ®(e) de (5.12)



Energy stored in parallel plate capacitor

Q*

Q Q
Energy: W(Q):je-dqzj%dqzzc

Co-energy: W'(V)= jq .de = jc V- dv_C\Z/

W (V)=W(Q) for linear capacitance
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Mechanical spring

k
vVV\——>F
>
X
Hook's law: F=k-X
Stored energy  W(z1) = fo Y P@)de = %k:cf (5.18)
| | 11
Compare with capacitor W(Q) = E'E'Q

Q  displacement
X1 displacement

- 1/C equivalent to k
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"Compliance”

« "Compliance” = "inverse stiffness”

1
Cspring = E
« Stiff spring - small capacitor

« Soft spring - large capacitor
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Generalized inductance

Energy also defined as:

Energy = stored kinetic energy
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Ex.: Electrical inductor
oo
Co-energy: W ({) = f/)(f) //
0

dL

p - jea@/ frab-fo Ty [Lar
P(f)- p(1):-LT

T
WHt)-wiz) - [vrdr- o7 ?
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Analogy between mass
(mechanical inertance) and inductance L

A mechanical system has linear momentum: p = mv

Flow: = 2 = £
P. P i
Vo) Jipn [ 4p - L
© 0
Co-energy:

(I Oy ‘
W*(/D") =fP("")OL"=f(ﬂwd’)d‘r ‘:zixwlu;{
O 0
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Analogy between m and L

- T,
w(t)-wiz,) '-'fL-f-d_h F
6]

Compare with:

-

x 1
W (’U})" 2 m Y
I‘ = )Z&)W
OK = —_—h—

L is equivalent to m

M = L inertance

Mechanical inertance = mass m
is analog to inductance L

é
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Interconnecting elements

« ¢ 2 V follows two basic principles

— Elements that share a common flow, and
hence a common variation of displacement,
are connected In series

— Elements that share a common effort are
connected in parallel
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Ex. of interconnection:

’Direct transformation”

X
—> |
—> X I
~ 1k
m —>F F ~ m
b
Spring-mass-dashpot system Equivalent circuit

Figure 5.9. Translating mechanical to electrical representations.

50



Mechanical / Electrical Systems

Input : external force F
Output : displacement x
mx(t)+bx(t)+ Kx(t) =F

m mass, b damping, K stiffness

Transter function :

1
x —
7

F sP+2s+%

m m

H(s)=

—0

||
oS

Input : voltage V.

Output : voltage V',
Lg(1) + RG(1) + = q(1) =7,

L induct., R resist., C capacit.

Transfer function:

I

L
LC

H(s)=—*%=

I

2 R 1
V. s + 285+ —

Ed Kolesar

o



Mechanical / Electrical Systems

Alternative circuit: L

Input : voltage V.

Output : voltage I,

L{(t) + 3= 4() + zq(1) =V,

L inductance, R resistance, C capacitanc e

Transfer function :

4 L
H(S)= 2 fx 1
V. s +—=5+—
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Resonators

e Analogy between mechanical and electrical system:
» Mass m - inductivity £
» Spring K - capacitance C
= Damping b - resistance R (depending where R is placed in circuit)

e Solution to 2nd order differential equation:
2
@,

s+,

H(s)=—

On

s+
@, = 2xf, natural frequency
m

w, = ./~ mechanical system, @, =,/-- electrical system
LC
(O quality factor

53



System without damping (b=0, R=0)

z

#{S) . Wo _ w, *
Sz‘f' Woz (S+leﬂ)<$-_)PWo)
“)“*Jo S’p!am _

. 1 1 k
H(jw) - ,_(_69_)1 a)o:\/E,wo: N
Wo
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System without damping, contd.
- 1
H()w) * 1__ (_“_"_)__)‘?‘

{H(Jw)(f—“{ nar W << wy Od8

{H)’w) {- —(%O)z Nox W >> W, ‘“I/Od%/m&
[t d8 | o

v

=0 dB/ dlea cte
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With damping
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Damped system, contd.
T g
-+ T Wo S’/JOM.

ya

F"‘ x;éT

Wo f y /Z‘“
CE)-—=—_:—_ Wp = |/ —
M T M
g N R
; RT Rm
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Mechanical Resonator

Frequency and
phase shift under
damping:

Energy dissipation:

x(1) = Ae e cos(am,f + @)

= b damping time

, 1 b
®, = @, 1-4 =, 1-4K

@ phase shift

E(ty=Ee /"

Ed Kolesar
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Power

What is the meaning of "damping time™?

= CfZwaggﬁg }QLUL

&'” %2" Y2 {
= e - ——
Ve

(o) = A o f (n/%dMVlﬁf/%"/L

initial conditions
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Q-factor and damping time

GM %M;j General equation

Q = Wof
(Z" - M é N ~— L "
mechanical R electrical
- Wom w. L
QMC‘C /6' G) d = ;?
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Amplitude at resonance for forced vibrations

Gain [
(dB)

@ w (1/5)

H(s) . 2’

st “é"s + Wy
PFQ )

@o w)+ W We

/”()’%)(*( g l Q

O+ ) =

61
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