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Today’s lecture
•

 
Switches for RF and microwave
–

 
Examples

–
 

Important switch parameters
–

 
Performance requirements

–
 

Technology
–

 
Characteristics of RF MEMS switches

•
 

Basic switch configurations
–

 
Working principles

•
 

Design of RF MEMS switches
–

 
Electromechanical design, I
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Next lecture, LN06

•
 

Design of RF MEMS switches, contd.
–

 
Electromechanical design, II

–
 

RF design
•

 
Ex. of implementations
–

 
Structure

–
 

Fabrication
–

 
Performance

•
 

Special structures and actuation mechanisms
•

 
Some challenges 
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Background

•
 

Switch -
 

relay
•

 
Used for measurement, instrumentation

•
 

Important component for RF systems
–

 
Signal routing

•

 

Re-directing of signals: antennas, transmitter/receiver

–
 

Connecting / selecting various system parts
•

 

Choice of filter in filter bank
•

 

Choice of network for impedance matching
•

 

Choice of matching circuitry for amplifier

•
 

Telecom is a dominant user
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Ex. of switch applications

Varadan, fig. 3.1

Wide band signal generator from
separate narrow band sources
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Applications, contd.

Varadan

 

fig. 3.1

Choose channel

Choose measurement instrument
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Important switch parameters (Var

 

p.111)

•
 

Switch speed
–

 

50% control voltage 90% (10%) of RF-output port envelope
•

 
Transition time
–

 

Output RF signal 10 90% or 90 10%
•

 
Actuation voltage
–

 

Important parameter for electromechanical design!
•

 

Desired: VLSI compatibility, -

 

influences the speed
•

 

No problem for semiconductor components
•

 
Impedance matching
–

 

Avoid reflections at both input and output port (for on or off)
•

 
RF power capability
–

 

Specifies linearity

 

between output power and input power
–

 

Possible degradation of switch for high power
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Important switch parameters, contd.

•
 

IL = insertion loss
–

 

Defined for ”on-state”
–

 

Ratio between signal out (b2) versus signal in (a1)
–

 

IL

 

= inverse transmission coefficient = 1/S21 in dB
•

 

S21 = b2/a1 when a2 = 0
–

 

Design goal: minimize!
•

 

RF MEMS has low IL at several GHz
•

 

Much better than for semiconductor 
switches

•

 

”Skin-depth”

 

effect –

 

increased loss at high frequencies
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Important switch parameters, contd.

•
 

Isolation
–

 

Defined in ”off-state”
–

 

The inverse

 

ratio between signal out (b2) versus signal in (a1)
•

 

Defined as 1/S21 i dB
–

 

Alternatively: The inverse ratio between signal transmitted back

 
to the input (b1) versus signal in on the output port (a2)

•

 

Defined as 1/S12 i dB
–

 

Large value low coupling between terminals
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Important switch parameters, contd.

•
 

Bandwidth
–

 

An upper limit is usually specified
•

 

Resistances and parasitic reactances

 

influence the value

•
 

Resonance frequency
–

 

Specifies the frequency where the switch “resonates”
–

 

Resonance when potential and kinetic energy are “equal”
•

 

jωL

 

= -

 

1/ jωC
•

 

E.g. reactances

 

are of equal magnitude
•

 

Frequency depends on k and m 1/C and L

•

 

Operational bandwidth should be outside

 

the frequency of natural 
resonance mode

• Limits minimum or maximum switching speed
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Important switch parameters, contd.

•
 

Phase and amplitude ”tracking”
 

and ”matching”
–

 

Specifies how well the signal keeps the ”shape”
–

 

Important for ”multi-throw”

 

switches
–

 

Each branch may have different length and loss, giving phase 
and amplitude differences

•
 

”Intercept”
 

point
–

 

Specifies when distortion of output power versus input power 
“starts”

•
 

Switch transients
–

 

Voltage transients at input/output due to changes in actuation 
voltage
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Important switch parameters, contd.

•
 

Life cycle and degradation
–

 
Influences from the environment

–
 

Fatigue fracture
–

 
This aspect is important for all parts containing 
movable structures!
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Performance requirements
•

 
High performance parameters

 
are desired

–
 

Low loss 
–

 
Good isolation 

–
 

Low cross-talk
–

 
Short switching time 

–
 

Long lifetime
–

 
Reliability

•
 

Choice of switch technology
 

is dependent of
–

 
RF-signal frequency

–
 

Speed requirements
–

 
Signal level

–
 

RF power capability
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Technology choice

•
 

Traditional mechanical switches (relays)
–

 
ala light switch

•
 

Low loss (+)
•

 
Good isolation (+)

•
 

Can handle high power (+)
•

 
Slow (-)

•
 

Mechanical degradation (-)
•

 
Contact degradation, reduced lifetime (-)

–
 

Macroscopic
 

relays: bulky, expensive
 

(-)
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Technology choice, contd.

•
 

Semiconductor switches
 

(solid-state)
–

 
Used extensively

 
today in portable devices

 
!

–
 

FET (Field Effect Transistors), CMOS, PIN-diodes
•

 

High reliability (+)
•

 

Integration with Si (+)
•

 

FET degrades at high frequency (-)
•

 

Large insertion loss, high resistive loss (-)
•

 

Limited isolation (-)
•

 

Poor

 

linearity

 

(-)
•

 

High

 

power

 

consumption

 

(-)
•

 

Limited “high power”

 

capability (-)
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PIN-diode

•
 

High reliability technology
•

 
Varadan

 
fig. 3.6

–

 

PIN: p –

 

insulator -

 

n
–

 

Forward

 

biased: low R
–

 

Reverse

 

biased: low C due to isolator layer high impedance Z
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PIN-diode used in system

•
 

The biasing of the PIN-
 diode determines the 

switching
–

 

Forward bias: low R
–

 

Reverse bias: high Z

•
 

Typical terms
–

 

Single-pole single-throw, 
SPST

–

 

Single-pole double-throw, 
SPDT

•

 

Varadan

 

fig. 3.8
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RF MEMS switches

•
 

A great need exists for having switches with 
better performance!
– MEMS switches:

•

 

The first ex. of RF MEMS-components (78 )
•

 

Many implementations exist
–

 

F.ex. in Gabriel M. Rebeiz: ”RF MEMS – Theory, Design and 
Technology” (Wiley 2003)

–

 

Publications
•

 

Most mature RF MEMS field
•

 

Slow

 

adoption
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Benefits and typical characteristics of RF MEMS switches

Ionescu, EPFL

+

 

•

 

High

 

linearity



20

Comparing performance

Rebeiz
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Two basic switch configurations

Varadan

 

fig. 3.2
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Basic switch structures

•
 

Series switch
–

 
Contact switch, ohmic

 
switch (relay) *

•
 

Cantilever beam
–

 
Capacitive switch (“contact less”)

•
 

RF-signals short-circuited via C ( Z=1/jωC )
–

 

Impedance depends on value of C

•
 

Shunt switch
–

 
Shunt capacitive switch *

•
 

clamped-clamped beam (c-c
 

beam)
–

 
Shunt contact switch

*

 

most used
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Adrian Ionescu, EPFL. Europractice

 

–

 

STIMESI, Nov 2007
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Series contact switch 

•
 

Cantilever
 

beam switch

Signal propagation into

 

the paper plane

coplanar waveguide
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Signal propagates perpendicular to cantilever

Varadan

 

fig. 3.14, top

 

view

Separate pull-down electrode
Actuation voltage between beam and bottom electrode
Separate “contact metal”

 

at beam end
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Working principle

Rebeiz

 

fig.2.12
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More realistic structure

Varadan

 

fig 3.16
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Signal propagation along beam

Varadan

 

fig. 3.13
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Doubly supported cantilever beam

Varadan

 

fig. 3.15
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Series switch

•
 

Ideal
 

requirements –
 

typical parameters
–

 
”Open/short”

 
transmission line (t-line)

•
 

typical: 0.1 to 40 GHz
–

 
”Infinite”

 
isolation (up)

•
 

typical: -50 dB to -60 dB at 1 GHz
–

 
”Zero”

 
insertion loss (down)

•
 

typical: -0.1 dB to -0.2 dB
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Cantilever beam switch: critical parameters

•

 

Contact resistance

 

for metal –

 

metal
–

 

Contact pressure (not too low, not too high)
–

 

Surface roughness influences
–

 

Degradation due to increased resistance after some time
•

 

Soft vs

 

hard metals (gold vs

 

alloys)
•

 

Actuation voltage

 

vs

 

spring constant (not too low, not too high)
•

 

Possibility of ”stiction”

 

(”stuck-at”)
–

 

Restoring spring force vs

 

adhesion forces
•

 

Reliability
–

 

Aging
–

 

Max. number of contact cycles
–

 

High current is critical (”hot switching”)
•

 

melting, conductive metal damp ”microwelding”
•

 

Self actuation
–

 

V_RF

 

(RMS) > V_actuation
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Typical shunt switch

Rebeiz
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Typical shunt switch

Rebeiz

Bridge up
C to ground = small
Signal passes through

Bridge down
C to ground = large
Signal is shorted to ground
Signal does not pass

C= εA/d
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Shunt capacitive switch, contd.

•
 

C_down
 

/ C_up
 

should be > 100 
•

 
C= εA/d

• C_down = C_large

•
 

C_up

 

= C_small

•
 

Impedance Z ~ 1/j ωC
–

 
For a given ω:

•
 

C_small Z_large = Z_off (UP)
– isolation

•
 

C_large Z_small = Z_on (DOWN)
– short circuiting of RF-signal to 

GND
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RF MEMS switch

Signal

Coplanar
waveguide
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Shunt capacitive switch, contd.
•

 
Clamped-clamped beam  
(c-c

 
beam)

–

 

Electrostatic actuation
beam elasticity

•
 

RF signal is modulating
 actuation voltage

–

 

”overlaying”

•
 

No direct contact 
between metal regions
–

 

Dielectric (isolator) in-

 between
–

 

C_up

 

/ C_down

 

important!
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Shunt switch

•
 

Ideal
 

requirements –
 

typical parameters
–

 
Shunt between t-line and GND

•
 

typical: 5 to 100 GHz
–

 
”Zero”

 
insertion loss (up)

•
 

typical: -0.04 dB to -0.1 dB at 5-50 GHz
–

 
”Infinite”

 
isolation

•
 

typical: -20 dB to -30 dB at 10-50 GHz
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Capacitive switch: design parameters

•
 

Signal lines and switches must be designed for RF
–

 

Suitable layouts
•

 

”CPW –

 

coplanar waveguide”

 

(horizontal)
•

 

”microstrip

 

lines”

 

(vertical)
•

 
Switches should be compatible with IC-technology
–

 

Not too high actuation voltage
–

 

Proper spring constant
•

 
Alternatives to electrostatic actuation:
–

 

Piezoelectric actuation
•

 
Reliability > 10E9 switching cycles before failure 
–

 

10E9 is demonstrated
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Capacitive switch: critical parameters

•
 

Thickness and quality of dielectric is critical
•

 
Choice of dielectric material
–

 
High dielectric constant:

•

 

Gives high ratio C_down

 

/ C_up

•
 

Charging
 

of the surface of the dielectric
–

 
C -degradation

–
 

Possible ”stiction”
•

 
”Breakdown”

 
of dielectric

–
 

Becomes conductive disaster!
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Design of RF MEMS switches
•

 
Electromechanical

 
design, I

•
 

The remaining contents of today´s
 

lecture:
–

 
Design parameters determining pull-in 

–
 

Effect of dielectric
–

 
Roughness

–
 

Simplified analysis of cantilever beam
•

 

Elasticity
•

 

Deflection of beam
–

 
Mechanical anchoring

•

 

Folded springs
•

 

Material choice
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Electromechanical operation

•
 

The operation is based on the pull-in
 

effect
–

 
Characteristics at pull-in

•

 

Membrane/beam pulls in at 1/3 of gap
•

 

Pull-in voltage: 

•

 

Definition of parameters: 
–

 

K spring constant
–

 

g0 initial gap
–

 

A=W*w = area
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Discussion of design parameters
•

 
Vpi
–

 

Should be low for CMOS compatibility
•

 
A=W*w 
–

 

Should be large. Size requirement is a 
limitation ( compactness)

•
 

g0
–

 

Should be small. Depending of 
fabrication yield. Must be traded 
against RF performance (return loss 
and isolation)

•
 

K
–

 

Low voltage when soft spring. 
Dependent on proper mechanical 
design. Make sure that the beam can 
be “released”!
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Hysteresis

•
 

A capacitive 
switch shows 
hysteresis

 
when 

being switched 
on/off

Varadan

 

fig. 3.18
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Parallel plate capacitance for shunt switch
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Ionescu, EPFL
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Thickness off dielectric
•

 
Thickness of dielectric controls the capacitance ratio 
C_down/C_up
–

 

Thin layer

 

may give high Cd

 

/ Cu –ratio
•

 

Beneficial for performance
–

 

Problem with thin layer
•

 

Difficult to deposit: ”pinhole”

 

problem
•

 

In real life: min 1000 Å,
•

 

Should sustain high voltage without breakdown, 20 –

 

50V

–

 

Dielectric materials

 

with higher        give higher Cd/Cu-ratio
•

 

from 7.6 for SixNy 40-200 for strontium-titanate-oxide
•

 

PZT:      >1000!

rε
rε

rε
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Roughness 
•

 

Cd/Cu may decrease 
due to roughness
–

 

Increased roughness 
reduces the ratio

•

 

Metal-to-metal: 
roughness degrades 
contact
–

 

Increased resistance 
in contact interface

•

 

Var

 

fig 3.26 shows 
effect of roughness 
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Simplified analysis of cantilever beam

•
 

Look at interaction between elastic
 

and 
electrostatic

 
properties

•
 

Starting with some material on elasticity
–

 
Slides from Arlington
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Deflection of beam
•

 
Suppose the following approximations:
–

 

Actuation electrode is not deflected
–

 

Electrostatic force concentrated at the end of the flexible beam

 with length L

I =  (area) moment of inertia

Bending moment in x

W = width
w(x) = vertical displacement

Euler beam equation

point

 

load

beam
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Beam equation

Moment of inertia

Bending moment
(force * arm)

Boundary conditions
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Suppose a solution

Boundary conditions
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Max. deflection at x = L

Compare with

Beam stiffness represents a spring
with spring constant k_cantilever
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Spring constant

For a double clamped

 

beam we have (Varadan

 

p. 132)
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Mechanical anchoring

•
 

Folded springs
 

are often used
•

 
Why?
–

 
To obtain low actuation voltage (< 5V) for mobile 
communication systems

• Folded springs give low K on a small area
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Reduced actuation voltage

•
 

Actuation voltage
–

 
”pull-down”

 
needed

–
 

Should be < tens of V

•
 

Membrane should 
not be too stiff
–

 
Use meanders

–
 

Folded spring has 
lower k

–
 

Area effective! meander
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Different folded springs

Rebeiz

 

fig. 2.10
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Ionescu, EPFL
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Spring materials?

Ionescu, EPFL
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Spring materials, contd.

•
 

Summary 
–

 
Metal seems to be a better choice for RF MEMS 
spring structures than polySi

•

 

Metal has lower actuation voltage (+)
•

 

Metal has lower resistivity

 

(+)

–
 

BUT: PolySi
 

is stiffer 
•

 

Higher

 

spring constant

 

(+)
•

 

Mechanical release force is larger (+)
–

 

”stiction”

 

avoided!
•

 

Higher actuation voltage (÷)
–

 

Might

 

not be CMOS compatible
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