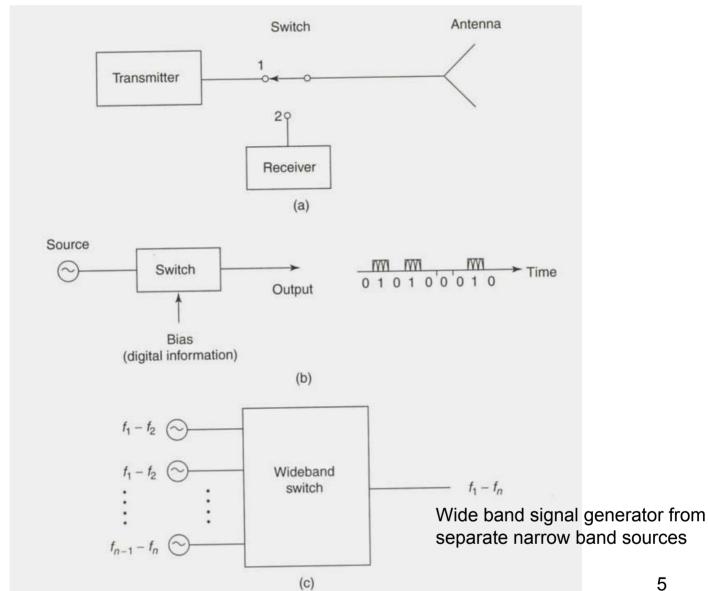
INF5490 RF MEMS

LN05: RF MEMS switches, I

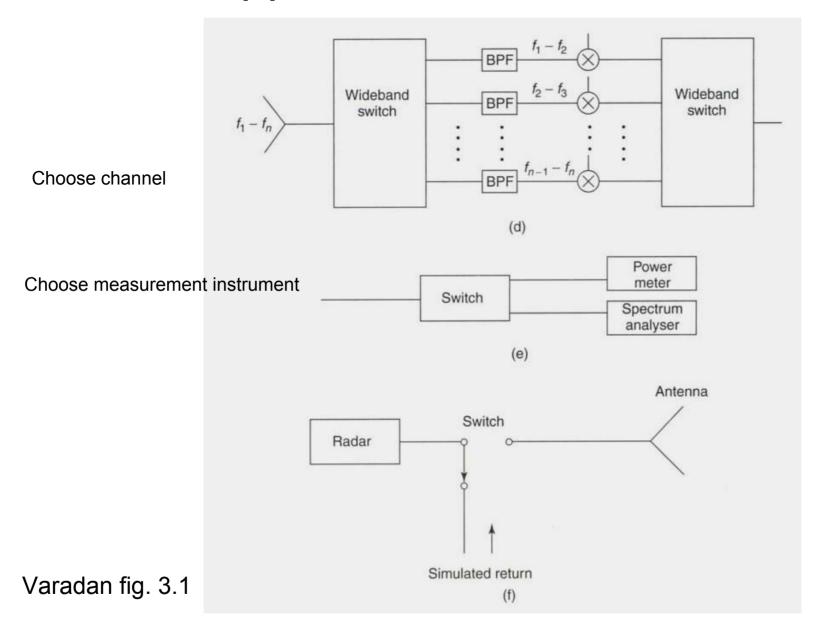
Spring 2010, Oddvar Søråsen Department of Informatics, UoO

Today's lecture

- Switches for RF and microwave
 - Examples
 - Important switch parameters
 - Performance requirements
 - Technology
 - Characteristics of RF MEMS switches
- Basic switch configurations
 - Working principles
- Design of RF MEMS switches
 - Electromechanical design, I


Next lecture, LN06

- Design of RF MEMS switches, contd.
 - Electromechanical design, II
 - RF design
- Ex. of implementations
 - Structure
 - Fabrication
 - Performance
- Special structures and actuation mechanisms
- Some challenges


Background

- Switch relay
- Used for measurement, instrumentation
- Important component for RF systems
 - Signal routing
 - Re-directing of signals: antennas, transmitter/receiver
 - Connecting / selecting various system parts
 - Choice of filter in filter bank
 - Choice of network for impedance matching
 - Choice of matching circuitry for amplifier
- Telecom is a dominant user

Ex. of switch applications

Applications, contd.

Important switch parameters (Var p.111)

Switch speed

50% control voltage → 90% (10%) of RF-output port envelope

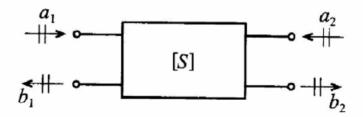
Transition time

- Output RF signal 10 \rightarrow 90% or 90 \rightarrow 10%

Actuation voltage

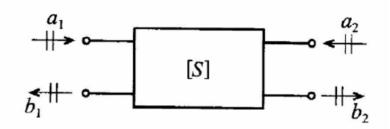
- Important parameter for electromechanical design!
 - · Desired: VLSI compatibility, influences the speed
 - No problem for semiconductor components

Impedance matching


Avoid reflections at both input and output port (for on or off)

RF power capability

- Specifies linearity between output power and input power
- Possible degradation of switch for high power


IL = insertion loss

- Defined for "on-state"
- Ratio between signal out (b2) versus signal in (a1)
- IL = inverse transmission coefficient = 1/S21 in dB
 - S21 = b2/a1 when a2 = 0
- Design goal: minimize!
 - RF MEMS has low IL at several GHz
 - Much better than for semiconductor switches
 - "Skin-depth" effect increased loss at high frequencies

Isolation

- Defined in "off-state"
- The inverse ratio between signal out (b2) versus signal in (a1)
 - Defined as 1/S21 i dB
- Alternatively: The inverse ratio between signal transmitted back to the input (b1) versus signal in on the output port (a2)
 - Defined as 1/S12 i dB
- Large value → low coupling between terminals

Bandwidth

- An upper limit is usually specified
 - Resistances and parasitic reactances influence the value

Resonance frequency

- Specifies the frequency where the switch "resonates"
- Resonance when potential and kinetic energy are "equal"
 - $j\omega L = -1/j\omega C$
 - E.g. reactances are of equal magnitude
 - Frequency depends on k and m → 1/C and L
 - Operational bandwidth should be outside the frequency of natural resonance mode
 - → Limits minimum or maximum switching speed

Phase and amplitude "tracking" and "matching"

- Specifies how well the signal keeps the "shape"
- Important for "multi-throw" switches
- Each branch may have different length and loss, giving phase and amplitude differences

"Intercept" point

 Specifies when distortion of output power versus input power "starts"

Switch transients

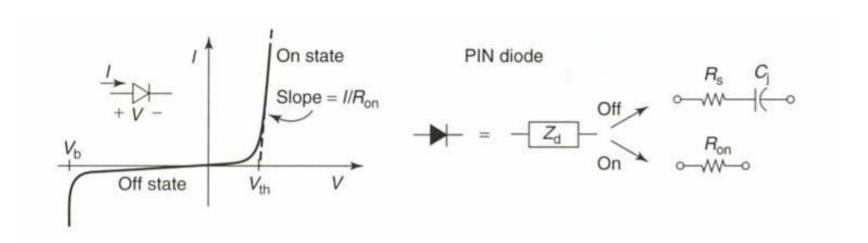
Voltage transients at input/output due to changes in actuation voltage

- Life cycle and degradation
 - Influences from the environment
 - Fatigue fracture
 - This aspect is important for all parts containing movable structures!

Performance requirements

- High performance parameters are desired
 - Low loss
 - Good isolation
 - Low cross-talk
 - Short switching time
 - Long lifetime
 - Reliability
- Choice of switch technology is dependent of
 - RF-signal frequency
 - Speed requirements
 - Signal level
 - RF power capability

Technology choice


- Traditional mechanical switches (relays)
 - ala light switch
 - Low loss (+)
 - Good isolation (+)
 - Can handle high power (+)
 - Slow (-)
 - Mechanical degradation (-)
 - Contact degradation, reduced lifetime (-)
 - Macroscopic relays: bulky, expensive (-)

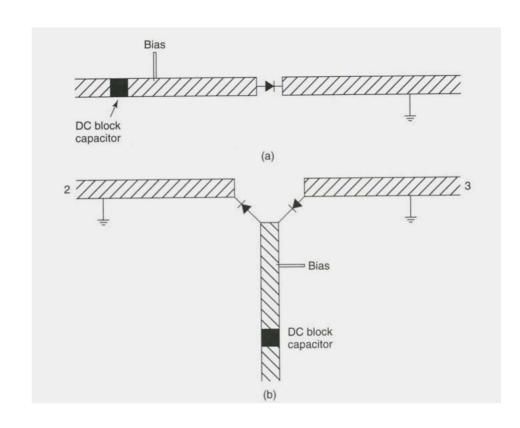
Technology choice, contd.

- Semiconductor switches (solid-state)
 - Used extensively today in portable devices!
 - FET (Field Effect Transistors), CMOS, PIN-diodes
 - High reliability (+)
 - Integration with Si (+)
 - FET degrades at high frequency (-)
 - Large insertion loss, high resistive loss (-)
 - Limited isolation (-)
 - Poor linearity (-)
 - High power consumption (-)
 - Limited "high power" capability (-)

PIN-diode

- High reliability technology
- Varadan fig. 3.6
 - PIN: p insulator n
 - Forward biased: low R
 - Reverse biased: low C due to isolator layer → high impedance Z

PIN-diode used in system


 The biasing of the PINdiode determines the switching

Forward bias: low R

Reverse bias: high Z

Typical terms

- Single-pole single-throw,SPST
- Single-pole double-throw,SPDT
 - Varadan fig. 3.8

RF MEMS switches

- A great need exists for having switches with better performance!
 - → MEMS switches:
 - The first ex. of RF MEMS-components (78→)
 - Many implementations exist
 - F.ex. in Gabriel M. Rebeiz: "RF MEMS Theory, Design and Technology" (Wiley 2003)
 - Publications
 - Most mature RF MEMS field
 - Slow adoption

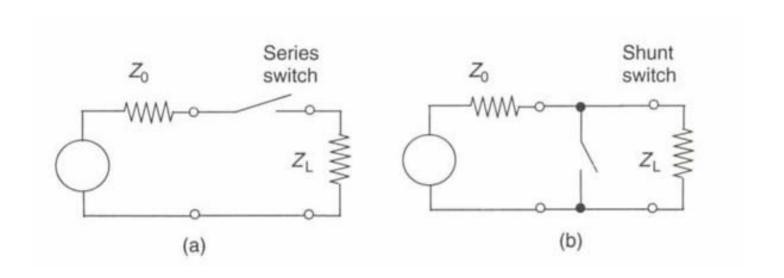
Benefits and typical characteristics of RF MEMS switches

FSRM

RF MEMS switch: key advantages and issues

- + Ultra low power consumption: 10-100nW
- + Ultra-high isolation → airgap: low state C ~fF, 0.1-40GHz
- + Low insertion loss → ~ -0.1dB, 0.1-40GHz
- + Practically no intermodulation: very linear
- + Low cost ~ simple technology, integrable with RF ICs (problem → cost & performance of the full packaged structure)
- + · High linearity
- • Speed limited by mechanical nature: 1-100μs
- • Power handling limited: <100mW
- Reliability: limited (today) ~10⁹-10¹⁰ cycles
 no reliable switch to handle ~few Watts
- Packaging: needs inert ambient & low humidity & low cost

Comparing performance


TABLE 1.2. Performance Comparison of FETs, PIN Diode, and RF MEMS Electrostatic Switches

Parameter	RF MEMS	PIN	FET
Voltage (V)	20-80	±3-5	3-5
Current (mA)	0	3-20	0
Power consumption ^a (mW)	0.05-0.1	5-100	0.05 - 0.1
Switching time	1-300 μs	1-100 ns	1-100 ns
C_{up} (series) (fF)	1-6	40-80	70-140
R_s (series) (Ω)	0.5-2	2-4	4-6
Capacitance ratio ^b	$40-500^{b}$	10	n/a
Cutoff frequency (THz)	20-80	1-4	0.5-2
Isolation (1–10 GHz)	Very high	High	Medium
Isolation (10-40 GHz)	Very high	Medium	Low
Isolation (60–100 GHz)	High	Medium	None
Loss (1-100 GHz) (dB)	0.05-0.2	0.3 - 1.2	0.4 - 2.5
Power handling (W)	<1	<10	<10
Third-order intercept point (dBm)	+66-80	+27-45	+27-45

[&]quot;Includes voltage upconverter or drive circuitry.

^bCapacitive switch only. A ratio of 500 is achieved with high- ε_r dielectrics.

Two basic switch configurations

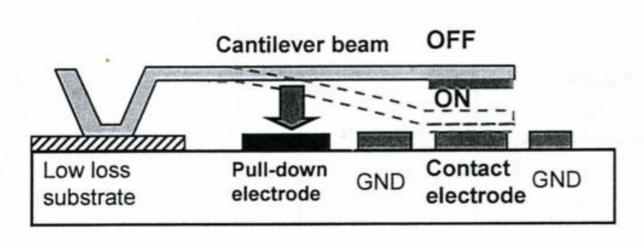
Basic switch structures

Series switch

- Contact switch, ohmic switch (relay) *
 - Cantilever beam
- Capacitive switch ("contact less")
 - RF-signals short-circuited via C (Z=1/jωC)
 - Impedance depends on value of C

Shunt switch

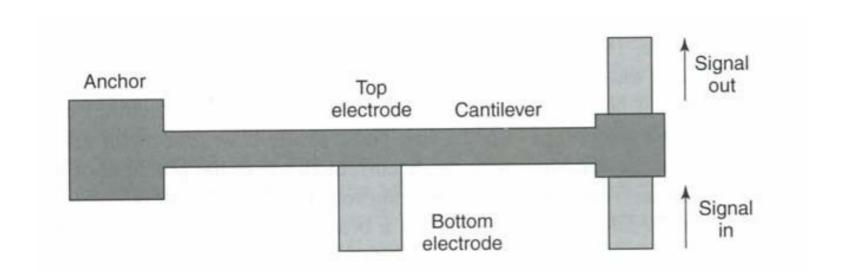
- Shunt capacitive switch *
 - clamped-clamped beam (c-c beam)
- Shunt contact switch


^{*} most used

RF MEM switches: capacitive & contact S₂₁ (dB) R_s Insertion Loss FET -10 S21 (dB) Isolation o Contacts Frequency (GHz) Contact Region Contact μm Cantilever Pull-Down Electrode Anchor (a)

Adrian Ionescu, EPFL. Europractice – STIMESI, Nov 2007

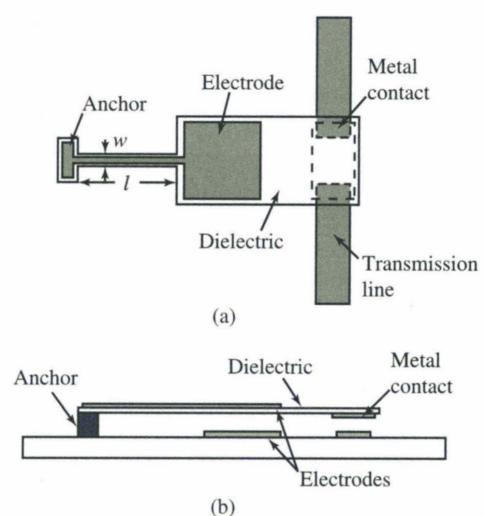
Series contact switch


Cantilever beam switch

coplanar waveguide

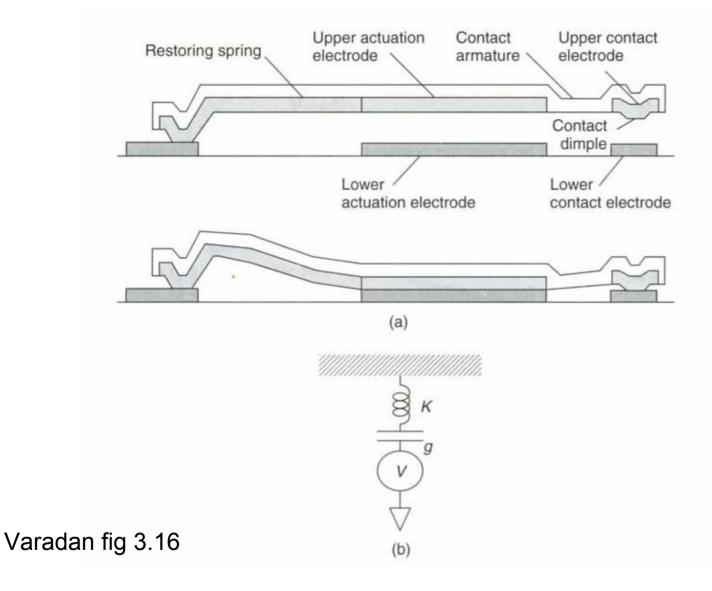
Signal propagation into the paper plane

Signal propagates perpendicular to cantilever

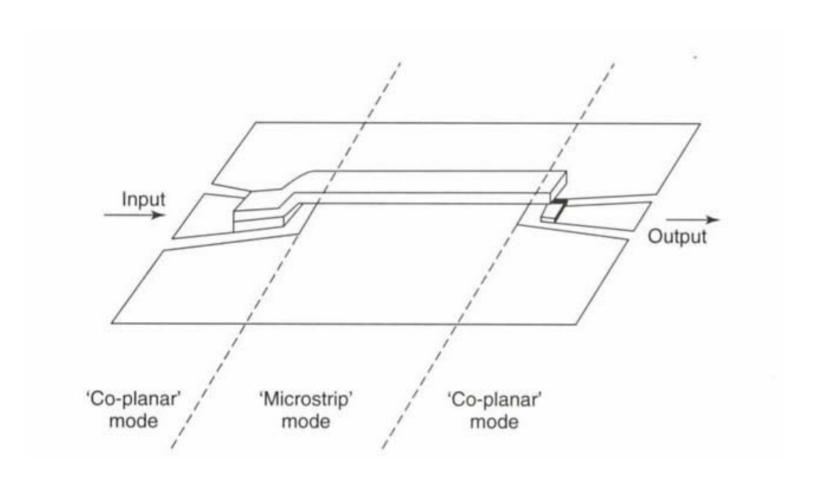


Separate pull-down electrode

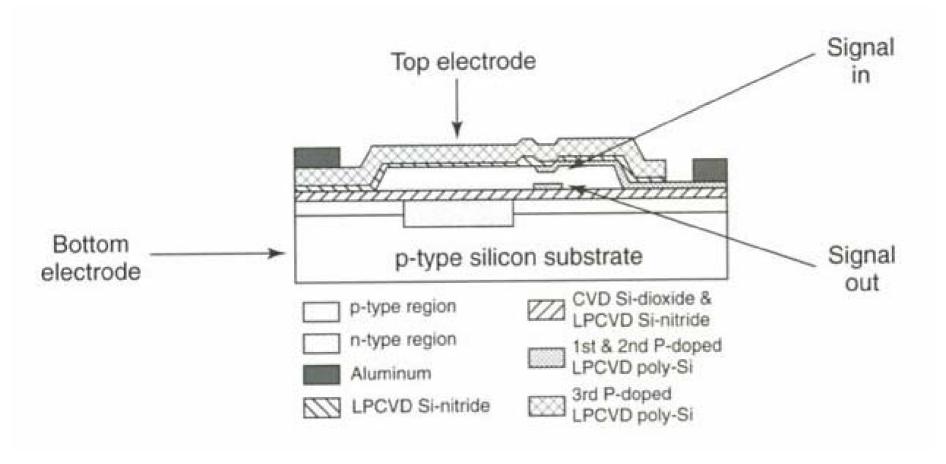
Actuation voltage between beam and bottom electrode


Separate "contact metal" at beam end

Working principle



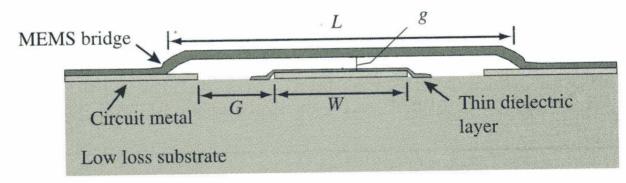
Rebeiz fig.2.12


More realistic structure

Signal propagation along beam

Doubly supported cantilever beam

Varadan fig. 3.15


Series switch

- Ideal requirements typical parameters
 - "Open/short" transmission line (t-line)
 - typical: 0.1 to 40 GHz
 - "Infinite" isolation (up)
 - typical: -50 dB to -60 dB at 1 GHz
 - "Zero" insertion loss (down)
 - typical: -0.1 dB to -0.2 dB

Cantilever beam switch: critical parameters

- Contact resistance for metal metal
 - Contact pressure (not too low, not too high)
 - Surface roughness influences
 - Degradation due to increased resistance after some time
 - Soft vs hard metals (gold vs alloys)
- Actuation voltage vs spring constant (not too low, not too high)
- Possibility of "stiction" ("stuck-at")
 - Restoring spring force vs adhesion forces
- Reliability
 - Aging
 - Max. number of contact cycles
 - High current is critical ("hot switching")
 - melting, conductive metal damp → "microwelding"
- Self actuation
 - V_RF (RMS) > V_actuation

Typical shunt switch

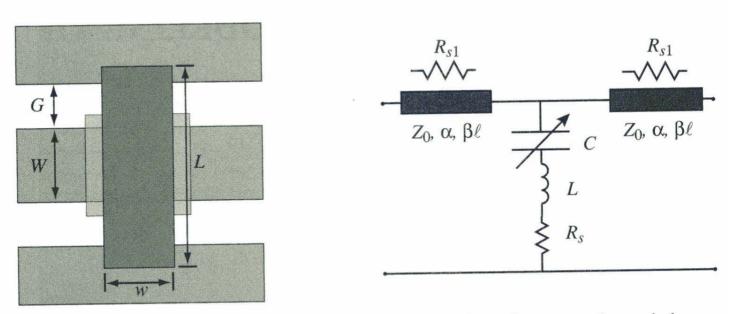
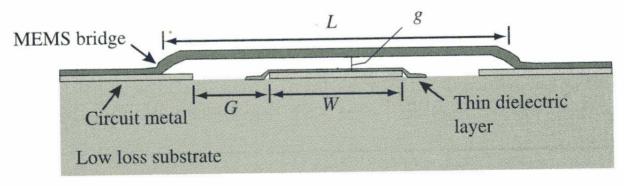



Figure 4.1. Illustration of a typical MEMS shunt switch shown in cross section and plan view. The equivalent circuit is also shown [6] (Copyright IEEE).

Typical shunt switch

Bridge up

- → C to ground = small
- → Signal passes through

Bridge down

- → C to ground = large
- → Signal is shorted to ground
- → Signal does not pass

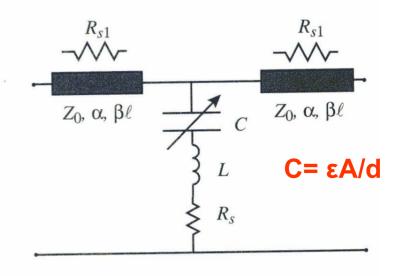
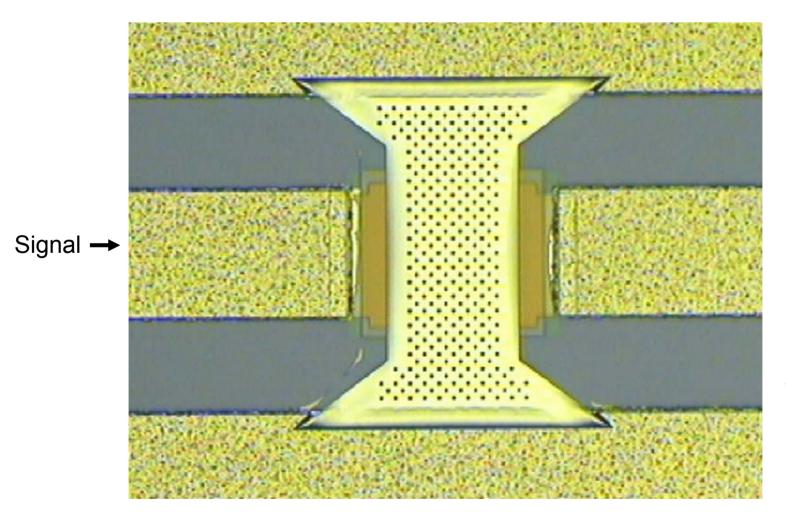
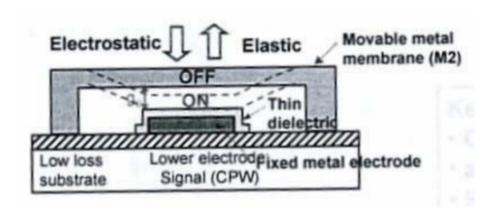



Figure 4.1. Illustration of a typical MEMS shunt switch shown in cross section and plan view. The equivalent circuit is also shown [6] (Copyright IEEE).

Shunt capacitive switch, contd.

- C_down / C_up should be > 100
 - $C = \varepsilon A/d$
 - C_down = C_large
 - C_up = C_small
- Impedance Z ~ 1/j ωC
 - For a given ω:
 - C_small → Z_large = **Z_off** (UP)
 - − → isolation
 - C_large \rightarrow Z_small = **Z_on** (**DOWN**)
 - → short circuiting of RF-signal to GND


RF MEMS switch

Coplanar waveguide

Shunt capacitive switch, contd.

- Clamped-clamped beam (c-c beam)
 - Electrostatic actuation
 ← → beam elasticity
- RF signal is modulating actuation voltage
 - "overlaying"
- No direct contact between metal regions
 - Dielectric (isolator) inbetween
 - C_up / C_down important!

Shunt switch

- Ideal requirements typical parameters
 - Shunt between t-line and GND
 - typical: 5 to 100 GHz
 - "Zero" insertion loss (up)
 - typical: -0.04 dB to -0.1 dB at 5-50 GHz
 - "Infinite" isolation
 - typical: -20 dB to -30 dB at 10-50 GHz

Capacitive switch: design parameters

- Signal lines and switches must be designed for RF
 - Suitable layouts
 - "CPW coplanar waveguide" (horizontal)
 - "microstrip lines" (vertical)
- Switches should be compatible with IC-technology
 - Not too high actuation voltage
 - Proper spring constant
- Alternatives to electrostatic actuation:
 - Piezoelectric actuation
- Reliability > 10_E9 switching cycles before failure
 - 10E9 is demonstrated

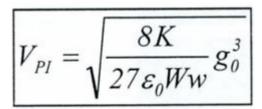
Capacitive switch: critical parameters

- Thickness and quality of dielectric is critical
- Choice of dielectric material
 - High dielectric constant:
 - Gives high ratio C_down / C_up
- Charging of the surface of the dielectric
 - C -degradation
 - Possible "stiction"
- "Breakdown" of dielectric
 - Becomes conductive → disaster!

Design of RF MEMS switches

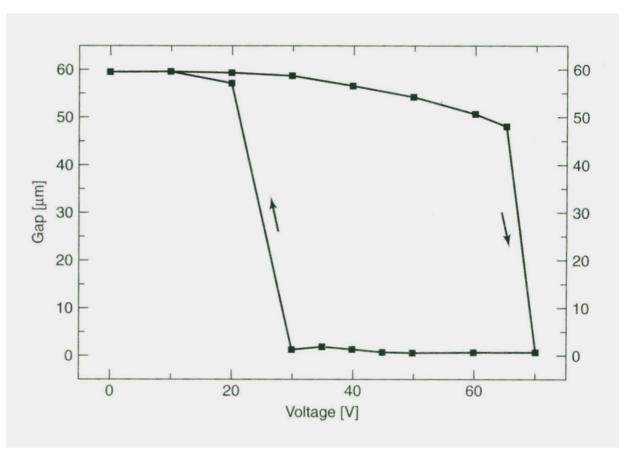
- Electromechanical design, I
- The remaining contents of today's lecture:
 - Design parameters determining pull-in
 - Effect of dielectric
 - Roughness
 - Simplified analysis of cantilever beam
 - Elasticity
 - Deflection of beam
 - Mechanical anchoring
 - Folded springs
 - Material choice

Electromechanical operation

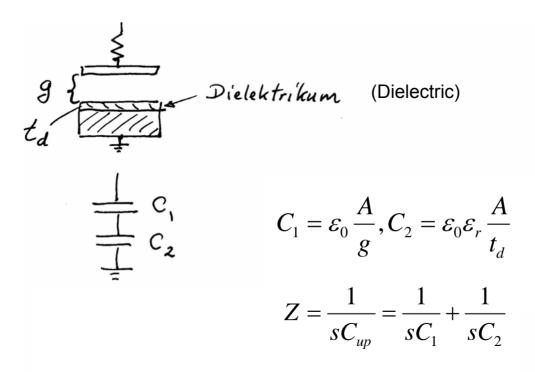

- The operation is based on the pull-in effect
 - Characteristics at pull-in
 - Membrane/beam pulls in at 1/3 of gap
 - Pull-in voltage:

$$V_{PI} = \sqrt{\frac{8K}{27\varepsilon_0 Ww} g_0^3}$$

- Definition of parameters:
 - K spring constant
 - g0 initial gap
 - A=W*w = area


Discussion of design parameters

- Vpi
 - Should be low for CMOS compatibility
- A=W*w
 - Should be large. Size requirement is a limitation (→ compactness)
- g0
 - Should be small. Depending of fabrication yield. Must be traded against RF performance (return loss and isolation)
- K
 - Low voltage when soft spring.
 Dependent on proper mechanical design. Make sure that the beam can be "released"!


Hysteresis

 A capacitive switch shows hysteresis when being switched on/off

Varadan fig. 3.18

Parallel plate capacitance for shunt switch

$$C_{up} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

$$C_{up} = \frac{1}{\frac{g}{\varepsilon_0 A} + \frac{t_d}{\varepsilon_0 \varepsilon_x A}} = \frac{\varepsilon_0 A}{g + \frac{t_d}{\varepsilon_x}} \approx \frac{\varepsilon_0 A}{g_{eff}}$$

Down-state

$$C_d = \frac{\mathcal{E}_0 \mathcal{E}_r A}{t_d}$$
 Fringe field negligible

Down-state / up-state
$$\frac{C_d}{C_{up}} = \frac{\frac{\mathcal{E}_0 \mathcal{E}_r A}{t_d}}{\frac{\mathcal{E}_0 A}{g_{eff}} + C_f} \approx \frac{\mathcal{E}_r g_{eff}}{t_d} \approx \frac{\mathcal{E}_r g}{t_d}$$
Fringe field effect

Fringe field effect

Typical value 60 - 120

Electromechanical design of RF MEMS switch (2)

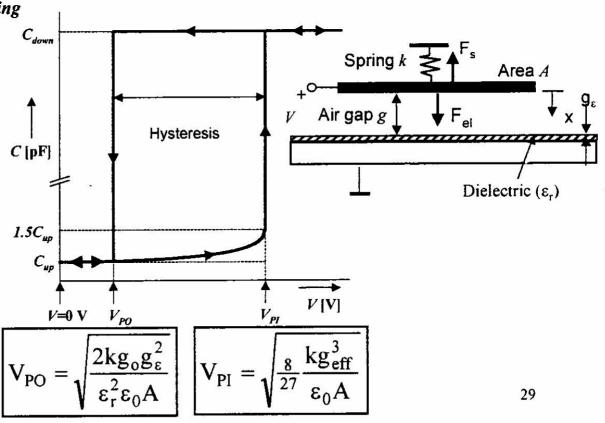
Hysteresis of capacitive switch (source: H. Tilmans)

 $g_0 = zero - voltage gap spacing$

$$g = g_o - x$$

$$g_{eff} = g_o + \frac{g_{\epsilon}}{\epsilon_r} \approx g_o$$
$$F_{el} = \frac{\epsilon_0 AV^2}{2g^2}$$

$$F_{el} = \frac{\varepsilon_0 AV^2}{2g^2}$$

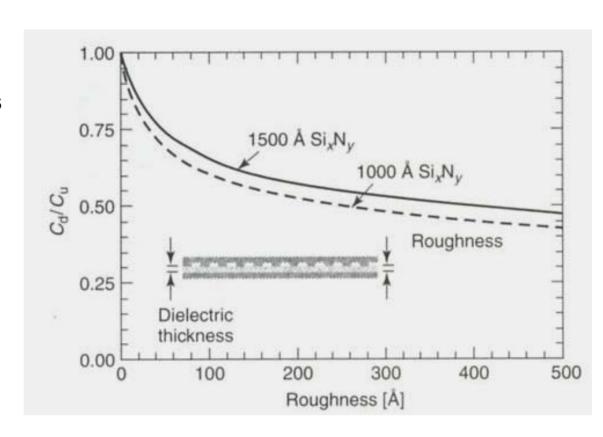

$$F_s = k(g_o - g)$$

$$C_{up} = C(V = 0) = \varepsilon_0 \frac{A}{g_{eff}}$$

$$C_{down} = C(V > V_{PI}) = \varepsilon_0 \varepsilon_r \frac{A}{g_s}$$

$$\frac{C_{down}}{C_{up}} = \frac{\epsilon_r g_{eff}}{g_{\epsilon}} \approx \frac{\epsilon_r g_o}{g_{\epsilon}}$$

Ionescu, EPFL



Thickness off dielectric

- Thickness of dielectric controls the capacitance ratio C_down/C_up
 - Thin layer may give high Cd / Cu –ratio
 - Beneficial for performance
 - Problem with thin layer
 - Difficult to deposit: "pinhole" problem
 - In real life: min 1000 Å,
 - Should sustain high voltage without breakdown, 20 50V
 - Dielectric materials with higher \mathcal{E}_r give higher Cd/Cu-ratio
 - \mathcal{E}_r from 7.6 for SixNy \rightarrow 40-200 for strontium-titanate-oxide
 - PZT: $\mathcal{E}_r > 1000!$

Roughness

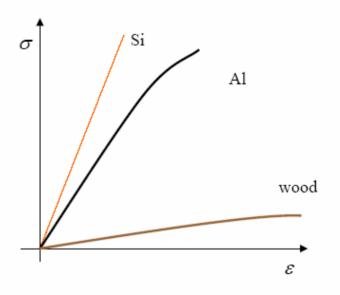
- Cd/Cu may decrease due to roughness
 - Increased roughness reduces the ratio
- Metal-to-metal: roughness degrades contact
 - Increased resistance in contact interface
- Var fig 3.26 shows effect of roughness →

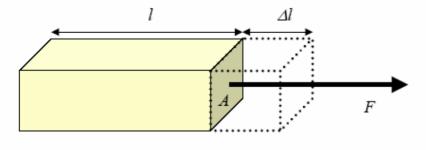
Simplified analysis of cantilever beam

 Look at interaction between elastic and electrostatic properties

- Starting with some material on elasticity ->
 - Slides from Arlington

Axial Stress And Strain


Stress: force applied to surface


$$\sigma = F/A$$

measured in N/m² or Pa compressive or tensile

Strain: ratio of deformation to length $\varepsilon = AI/I$

measured in %, ppm, or microstrain

Texas Christian University

Department of Engineering

Young's Modulus:

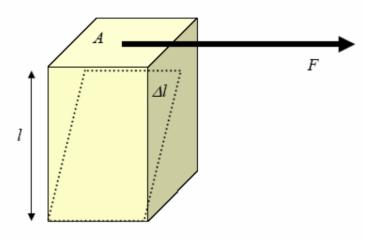
$$E = \sigma/\varepsilon$$

Hooke's Law:

$$K = F/\Delta l = E A/l$$

Ed Kolesar

Shear Stress And Strain


Shear Stress: force applied parallel to surface

$$\tau = F/A$$

measured in N/m² or Pa

Shear Strain: ratio of deformation to length

$$\gamma = \Delta l / l$$

Texas Christian University Department of Engineering

Shear Modulus:

$$G = \tau / \gamma$$

Ed Kolesar

Poisson's Ratio

Tensile stress in x direction results in compressive stress in y and z direction (object becomes longer and thinner)

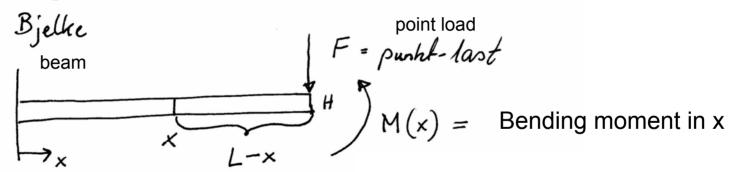
Poisson's Ratio:


$$\nu = - \varepsilon_y / \varepsilon_x$$

= - transverse strain / longitudinal strain

Metals: $v \approx 0.3$

Rubbers: $v \approx 0.5$


Cork: $v \approx 0$

Texas Christian University Department of Engineering Ed Kolesar

Deflection of beam

- Suppose the following approximations:
 - Actuation electrode is not deflected
 - Electrostatic force concentrated at the end of the flexible beam with length L

w(x) = vertical displacement W = width

$$\frac{d^2w}{dx^2} = -\frac{M}{E \cdot I}$$

$$\frac{d^2w}{dx^2} = -\frac{M}{E \cdot I}$$

Moment of inertia

Bending moment (force * arm)

$$M(x) = -F(L-x)$$

$$\frac{d^2w(x)}{dx^2} = \frac{F}{E \cdot I} (L - x)$$

Boundary conditions

$$w(0) = 0$$

$$\frac{dw(0)}{dx} = 0$$

Suppose a solution

$$w(x) \cdot A + Bx + Cx^{2} + Dx^{3}$$

$$\frac{dw(x)}{dx} = B + 2Cx + 3Dx^{2}$$

$$\frac{d^{2}w(x)}{dx^{2}} = 2C + 6Dx$$

Boundary conditions

$$\frac{w(0) = 0}{dx} \Rightarrow A = 0$$

$$\frac{dw(0)}{dx} = 0 \Rightarrow B = 0$$

$$w(x) = \frac{FL}{2EI} x^{2} \left(1 - \frac{x}{3L}\right)$$

$$w(x) = \frac{FL}{2EI} x^{2} \left(1 - \frac{x}{3L}\right)$$

Max. deflection at x = L

$$w(L) = \frac{L^3}{3ET} \cdot F$$

Beam stiffness represents a spring with spring constant k_cantilever

Compare with

$$k_{\text{condition}} = \frac{F}{w(L)} = \frac{3EI}{L^3} = \frac{1}{4} F \cdot w \left(\frac{H}{L}\right)^3$$

Spring constant

$$k_{\text{candilor}} = \frac{F}{w(L)} = \frac{3EI}{L^3} = \frac{1}{4} E \cdot W \left(\frac{H}{L}\right)^3$$

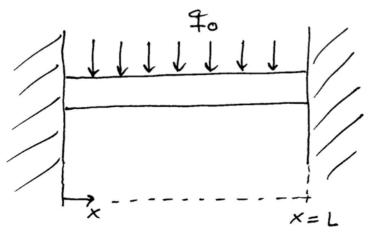
For a double clamped beam we have (Varadan p. 132)

$$k_{cc} = 16 E \cdot W \left(\frac{H}{L}\right)^3$$

Beam equation for distributed force

$$40 = \frac{F}{L}$$

$$EI \cdot \frac{d^4w(x)}{dx^4} = 40$$


$$w(0) = w'(0) = 0$$

 $w''(L) = w''(L) = 0$

$$\Rightarrow w(x) = \frac{40}{24EI} x^2 \left(x^2 + 6L^2 - 4Lx\right)$$

$$w(L) = \frac{90}{8EI}L^4 = \frac{F}{8EI}L^3$$

$$k_{canhilever} \approx \frac{F}{w(L)} = \frac{8EI}{L^3} = \frac{2}{3}EW(\frac{H}{L})^3$$

c-c-beam

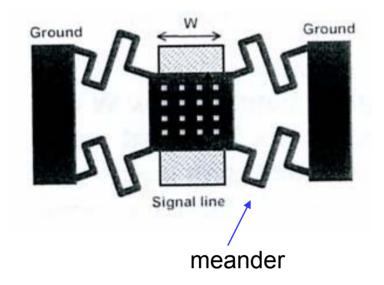
$$EI \cdot \frac{d^4w(x)}{dx^4} = 40$$

$$w(0) = w'(0) = 0$$

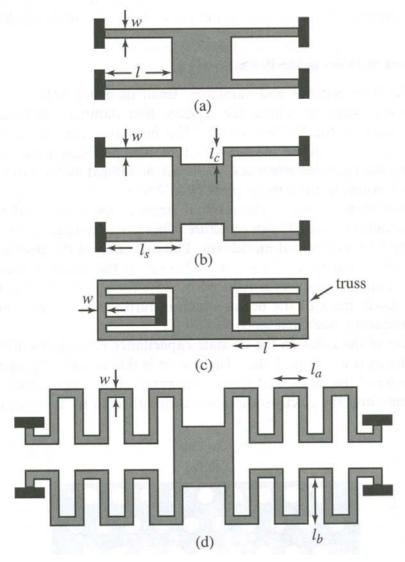
$$w(L) = w'(L) = 0$$

$$\Rightarrow w(x) = \frac{40}{24EI} \times^2 (x^2 - 2Lx + L^2)$$

$$w\left(\frac{L}{2}\right) = \frac{40}{24EI} \cdot \frac{L^4}{8} = \frac{F}{24EI} \cdot \frac{L^3}{8}$$


$$k_{e-c} = \frac{F}{w(\frac{L}{2})} = \frac{24.8 \cdot EI}{L^3} = 16 E w(\frac{H}{L})^3$$

Mechanical anchoring

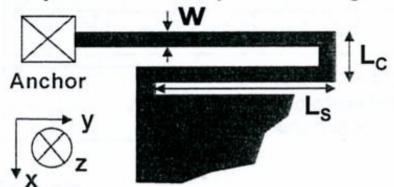

- Folded springs are often used
- Why?
 - To obtain low actuation voltage (< 5V) for mobile communication systems
- → Folded springs give low K on a small area

Reduced actuation voltage

- Actuation voltage
 - "pull-down" needed
 - Should be < tens of V
- Membrane should not be too stiff
 - Use meanders
 - Folded spring has lower k
 - Area effective!

Different folded springs

Rebeiz fig. 2.10



Electromechanical design of RF MEMS switch (3)

Suspension (arm) folded design

Low voltage operation (<5V) for mobile communication applications requires folded suspension design: low-k in small area

Ls: span beam length

Lc: connector beam length

w: width

t: metal thickness

E: Young's modulus

v: Poisson's ratio

$$k_z = \frac{\left(\frac{Ew}{2}\right)\left(\frac{t}{L_C}\right)^3}{1 + \frac{L_S}{L_C}\left[\left(\frac{L_S}{L_C}\right)^2 + 12\frac{1+v}{1+(w/t)^2}\right]} \begin{vmatrix} L_S \gg L_C \\ L_S \end{pmatrix} + 2Ew \left(\frac{t}{L_S}\right)^3 \\ \text{Independent of } v \end{vmatrix}$$

$$k_{x} = 2Et \left(\frac{w}{L_{c}}\right)^{3}$$
$$k_{y} = 2Et \left(\frac{w}{L_{S}}\right)^{3}$$

30

Ionescu, EPFL

Spring materials?

Metal or polysilicon: case study (one) serpentine spring

Ls=220um, Lc=18um, t=2um, w=6um

Au	Al	Polysilicon
E _{Au} ~80GPa	E _{AI} ~70GPa	E _{Si-poly} ~170GPa
v _{Au} ~0.22	v_{Al} ~0.3	$v_{\text{Si-poly}} \sim 0.3$

Elastic constant K₂(= 4k₂)

$$K_{zAu}$$
=0.721N/m K_{zAl} =0.631N/m K_{zpoly} =1.533N/m
Elastic constant K_x
 K_{xAu} =1.19x10⁴N/m K_{zAl} =1.04x10⁴N/m K_{zpoly} =2.52x10⁴N/m
Elastic constant K_y
 K_{yAu} =6.49N/m K_{zAl} =5.68N/m K_{zpoly} =13.79N/m
Estimated V_x (area = 100x100 / 20x20 µm² 2µm-gap):

Estimated V_{Pl} (area = 100x100 / 20x20 um², 2um-gap):

$$V_{PIAu} = 4.4V/21.9V$$
 $V_{PIAI} = 4.1V/20.6V$ $V_{PIpoly} = 6.4V/32V$

Spring materials, contd.

Summary

- Metal seems to be a better choice for RF MEMS spring structures than polySi
 - Metal has lower actuation voltage (+)
 - Metal has lower resistivity (+)
- BUT: PolySi is stiffer
 - Higher spring constant (+)
 - Mechanical release force is larger (+)
 - "stiction" avoided!
 - Higher actuation voltage (÷)
 - Might not be CMOS compatible