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Today’s lecture

• Design of RF MEMS switches
– Electromechanical design, II
– RF design

• Examples of implementations
– Structure
– Fabrication
– Performance

• Special structures and actuation mechanisms
• Some challenges 
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Electromechanical design, II

• Designer should take into account 

– Stress 

– Dynamics
• Damping
• How actuation voltage influences switch speed
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Stress
• Stress induced during fabrication: high T  low T

– Due to different properties of neighboring materials
• This causes: ”residual stress”

• Change of stress during operation due to temperature 
variations
– Different CTEs (Coefficient of Thermal Expansion)

• Ex. axial tensile stress influences stiffness
– Spring constant increases
– increases 20x when tensile stress 0  300 MPa
– Vpi increases 4.5x when tensile stress 0  300 MPa
–  Tensile stress must be taken into account!

• Stress can be  evaluated by misalignment 
measurements on test structures 

zk
zk
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Micro strain gauge with mechanical amplifier

Lin et al, J of MEMS, 1997

Jmfr. ”skyvelær”
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Switch speed and damping

• Switch speed depends of damping
– Air, gas must be pushed/pulled away
– ”squeezed-film damping”
– Method of modeling from fluid dynamics

• How to reduce damping?
– Operate in vacuum

• Hermetic sealed packages
– Make holes in membrane for gas to escape

• Perforated membrane 
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Perforated membrane: UMICH
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Perforated membrane: Raytheon

Rebeiz



9Yao, 2000

Switch time for Raytheon/TI-
switch

 Significant increased speed by use of
perforated membrane!

Ex. On effect of perforation
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Switch speed

• Damping influences Q-factor

• Switch-speed depends of Q-factor
• damping  Q  speed

– High Q-factor means small damping
•  increased switch speed

– Low Q-factor means large damping
• System is ”damping-limited” when  Q ≤ 0.5 [Castaner and 

Senturia]
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Gap vs. Time for various Q-factors

(For differences between Al and Au: later )
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Gas damping
Dynamic response of cantilever beam

w = displacement
m = mass
b = damping coefficient
k = spring constant

Resonance frequency

Q-factor

(

Q = (ω0 m)/b
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m for gas damping

• Q depends on the relationship between m, b, k
– m is ”effective mass” (”dynamic mass”)

• The effective mass is different from the physical mass since 
only the end/central part of the cantilever/beam is moving

• m_eff ~ 0.35 – 0.45 *m_total
• m_eff depends of 

– Topology/ physical dimensions
– Spring constant, material choice 
– Dynamics

– Will be calculated more accurately in a future lecture
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b for gas-damping

– Q depends of b = damping coefficient
– Damping, b, depends of viscosity of surroundings

• Viscosity is internal resistance against gas transport

– Ex.: damping for rectangular parallel plate:

area

viscosity of gas
Rebeiz

gap



17

Q for gas damping

Gas damping influences Q-factor

Quantitative equations:

for clamped-clamped beam
Rebeiz

density
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Switch speed for large damping

For a damping-limited system

Equation of motion

Rebeiz

i

Vs = actuation voltage

A quantitative
expression:

simplification of equation
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Time response for various Q-factors

Note: Au has higher density  larger mass 
lower ω  larger switch time (t_s)
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Switch speed for increased Vs

• Switch-speed strongly depends of
actuation voltage, Vs

– Vs is usually larger than Vpi
– Vs = const * Vpi (pull-in) = (”actuation voltage”)

• Larger voltage gives larger electrostatic force
–  increased switch speed
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Time response vs. applied voltage



22

Switch speed for small damping

Electrostatic force

“Acceleration limited” switch (b~0)

Rebeiz

Actuation voltage

Switch time
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Acceleration limited switch

Note: The system becomes more acceleration limited 
when damping decreases (eg. Q-factor increases). 
High Vs/Vp is good.
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RF design of MEMS switch

• Detailed electromagnetic modeling can be 
used
– 3 dim electromagnetic analysis of field distributions

• Detailed mechanical model: 3-dim
• Depends on material properties, boundary conditions etc.

–  Calculating field distributions and S-parameters

• Alternatively: use equivalent circuit models
– Simple models for analytic calculations

• Can be used to estimate RF performance
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Electrical characterization of RF MEMS switches

• For ”low” frequency
– Use impedance – admittance parameters

• Two-port with voltage and current (Kirchhoff´s equations)

• For high frequency
– Use S-parameters
– S-parameters are measured/calculated when the line is 

terminated with its characteristic impedance
– S-parameters are small signal parameters 

• RF power < DC power
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Definition of S-parameters
• Calculating power:
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S-parameters



27

Meaning of S-parameters
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Measuring S-parameters
• S-parameters measured when lines are 

terminated with characteristic impedance
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RF characterization

• Reflected and transmitted signals should be 
taken into account

• Important parameters calculated
– Insertion loss in ON-state (down) = 
– Isolation i OFF-state (up) =
– Return loss (both up/down) =
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RF characterization, contd.
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”IL = Insertion loss” i ”on-state”

The inverse value is used for IL

Specified in dB

Degrades with increased frequency
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RF characterization, contd.
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High isolation when output is small relative to input
(or input is marginally influenced by output)
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eg. Large loss for much reflected
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(Varadan)  (most common def)
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S-parameters
• In UP-state: S21 is corresponding to isolation

• In DOWN-state: S21 is corresponding to insertion loss

• In UP-state: S11 is corresponding to return loss

• In DOWN-state: S11 is corresponding to return loss
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Typical s-parameter measurements

Varadan



34

Equivalent circuit for capacitive shunt switch

Rebeiz
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Equivalent circuit, contd.
Switch shunt impedance

At  resonance
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RF parasitics
• Simplified calculations for shunt switch:

– Use C only
• More accurate calculations:

– Include L
– Meander spring contributes to parasitics!

– Meanders give a softer spring
• Give lower Vpi

–  contribute to parasitic inductance
•  influence RF-performance

• Accurate modeling should take into account parasitic 
inductance and parasitic resistance
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Parasitic inductance

Rebeiz
Meander spring increases inductance
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Shunt configuration



41



42



43



44



45



46
Ionescu, EPFL
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Examples of implemented switches

• Series-switch
– Structure
– Fabrication
– Performance

– Ex. of contact-switches 
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Cantilever beam with electrostatic actuation

Ionescu, EPFL
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Rockwell series-switch

Rebeiz

Sketch of principle
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Rockwell series-switch, contd.
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Motorola

Rebeiz
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Motorola, contd.

Rebeiz
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Lincoln
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Lincoln, contd.



55

Examples of implemented switches

• Shunt-switches

– Structure
– Fabrication
– Performance

– Ex. of capacitive shunt-switches 
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Fabrication of capacitive switch

Ionescu, EPFL
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Raytheon

Rebeiz
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Raytheon, contd.

Rebeiz
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Univ of Michigan

Rebeiz



60

Fabrication, ”Michigan switch”

Rebeiz
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Univ of Michigan

Rebeiz
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Special switch structures
• 3 electrodes can also be used

– Top-electrode used to ”clamp” the active electrode to the top
– Important for systems experiencing large accelerations

Ionescu, EPFL
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Liquid/metal contact-switch

• May solve reliability problem of solid state – solid 
state contacts 
–  Use liquid-to-solid state

• Mercury (Hg) is candidate due to good 
properties

• Low contact resistance
• No signal ringing
• No contact degradation

– Electrostatic actuation
• Actuation voltage 100 – 150 V

–  Liquid not accepted in IC-industry!
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Planar prosess, foto, JHU, Appl Physics Lab

Mercury switch

Mercury switch sphere moves
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Mercury switch

Varadan

Figure shows switch from above
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Mercury switch, contd.

Varadan
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Thermal actuation

Varadan

Thermo sensitive
magnets
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Some challenges in switch design

• High electric field in small dimensions
– Parts of metal surface may melt
– Liquid metal damp conducts when switch is turned off
– ”Break-down” in dielectric

• Self actuation
– If RF-signal modulates a DC voltage the beam can 

self actuate
• May be beneficial to have separate pull-down electrodes

• Integration of switch with IC
– (more on this in a future lecture)
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Challenge: System-on-Chip (SoC)

Saias et al, 2003

Switch integrated on IC:



70Saias et al, 2003

Comparing performance
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