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Today's lecture

Properties of mechanical filters
Visualization and working principle
Modeling

Examples

Design procedure

Mixer



Mechanical filters

+ Well-known for several decades
— Jdmfr. book: "Mechanical filters in electronics”,
R.A. Johnson, 1983
» Miniaturization of mechanical filters
makes it more interesting to use
— Possible by using micromachining

— Motivation - Fabrication of small integrated
filters: "system-on-chip” with good filter
performance
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Figure 12.11. Parameters typically used for filter specification. (From reference [29])
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Several resonators used

* One single resonator has a narrow BP-
response

— Good for defining oscillator frequency
— Not good for BP-filter

» BP-filters are implemented by coupling
resonators in cascade

~

— Gives a wider pass ban
resonating structure
— 2 or more micro resonators are used
« Each of comb type or c-c beam type (or other types)
— Connected by soft springs

Q.



Filter order

Number of
resonators, n, defines
the filter order

— Order=2*n

— Sharper "roll-off” to
stop band when
several resonators

are used

« - "sharper filter”

-
Attaining Better Performance
* Use more resonators to attain higher order
*® Filter Order = 2 x (# of resonators)
5
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* Higher order = sharper roll-off = better stopband rejection
— C. T-C. Nguyen Unv, of Michigan -




Micromachined filter properties

* + Compact implementation
— "on-chip” filter bank possible

* + High Q-factor can be obtained

 + Low-loss BP-filters can be implemented
— The individual resonators have low loss

— Low total "Insertion loss, IL”
 |L: Degraded for small bandwidth -
* |L: Improved for high Q-factor -
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IL: Improved for high Q-factor

Coupler Resonator (M=l o) | Resonator General BPF
Tank Tank Implementation

Typical LC implamantatiun‘ |
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*In resonator-based filters: g™ .
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Mechanical model

A coupled resonator system has several
vibration modes

* n independent resonators

— Resonates at their natural frequencies
determined by m, k
—"compliant” (soft) coupling springs

« Determine the resulting resonance modes of the
many-body system
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2 oscillation modes

In phase:

No relative
displacement between
masses

No force from coupling
spring
Oscillation frequency =
natural frequency for a
single resonator (both
are equal, - “mass
less” coupling spring*)
» (* actual coupling

spring mass can
lower the frequency)
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Figure 7.13 lllustration of two identical resonators, each with a mass and spring, coupled by a
weak and compliant intermediate flexure. The system has two resonant oscillation modes, for in-
phase and out-of-phase motion, resulting in a bandpass characteristic.
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Out of phase:

Displacement in
opposite directions

Force from coupling
spring (added force)

Gives a higher
oscillation frequency
(Newton’s 2.law,
F=ma)

- the 2 overlapping
resonance frequencies
are split into 2 distinct
frequencies
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Stiff spring with
spring constant k;

Weak flexure with
spring constant k;

Stiff spring with
spring constant k,

Mass m Mass m
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‘_
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Figure 7.13 lllustration of two identical resonators, each with a mass and spring, coupled by a
weak and compliant intermediate flexure. The system has two resonant oscillation modes, for in-
phase and out-of-phase motion, resulting in a bandpass characteristic.
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3-resonator structure

frequency response
— Lowest frequency: all in phase
— Middle frequency: center not moving, ends out of phase

— Highest frequency: each 180 degrees out of phase with
neighbour

G @=E 7 oyl

512 512 512 523

X
Fq

T
=

()]

Figure 12.13. Mode shapes of a three-resonator micromechanical flter and their corres-

ponding frequency peaks.

« Each vibration mode corresponds to a distinct top in the
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lllustrating principle: 3 * resonators
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R

x1

Figure 12.12. (a) Equivalent lumped-parameter mechanical circuit for a mechanical filter.
(b) Corresponding equivalent LCR network.
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Mechanical or electrical design?

Much similarity between
description of mechanical
and electrical systems

The dual circuit to a
"spring-mass-damper”
systemis a LC-ladder
network -

— Electromechanical

analogy used for
conversion

— Each resonator a LCR
tank

— Each coupling spring
(idealized massless)
corresponds to a shunt
capacitance

Lumped Mechanical Model and Its Equivalent LCR Circuit

M. Co\Wu

High-Order Micromechanical Filters:

(1
EE M2508 | MAE M282 | BME M250B CIA

g
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Modeling

« Systems can be modeled and designed in electrical
domain by using procedures from coupled resonator
"ladder filters”

— All polynomial syntheses methods from electrical filter design
can be used

— A large number of syntheses methods and tables excist +
electrical circuit simulators

» Butterworth, Chebyshev -filters

* Possible procedure: Full synthesis in the electrical
domain and conversion to mechanical domain as the
last step

— LC-elements are mapped to lumped mechanical elements
 Possible, but generally not recommended

— -> knowledge from both electrical and mechanical domains
should be used for optimal filter design

16



2-resonator HF-VHF micromechanical filter

 The coupled resonator
filter may be classified as
a 2-port:

Two c-c beams

0.1 ym over substrate

* Determined by
thickness of "sacrificial
oxide”

Soft coupling spring
polySi stripes under each
resonator - electrodes

Vibrations normal to
substrate

DC voltage applied

polySi at the edges
function as tuning
electrodes

* ("beam-softening”)

High-Frequency iMechanical Filters

. Resonator Counlin
Freq. Pullin pling Output
Eﬂmmdeg Input Anchor  gpring Electrode

Electrode

It
[

lr-k I, Lz _l"'f"'l c, l"}rl-' m,

:?%?W%? %?‘””“%%T_

N— . T-C. Ngmy

of Michigan —""
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Resistors

AC-signal on input - . . ,
electrode through RQl High-Frequency i Mechanical Filters
Frglni.cfrtélilizg Resnnato:qnchnr Cs?:r?:Sg E'?EL:::t gtt:le v, |
E|L"cpt$§de j&
— Ry reduces overall Q L~
and makes the pass v o
band more flat Yo
. Fiafe : T ¥, X
Matched impedance at WT ocfiss 4 W z)—-.v
output, Ry,
— R’ s may be tailored to VE, m, \ —ml ¢ Uk m
specific applications ¥ o = ? ’—%
— e.g. may be adjusted for | - T ? é é s é % é -
interfacing to a following —crem o Mickize
LNA
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"Mechanical signal processing”

This unit shows: Signal processing can be done in the
mechanical domain

Electrical input signal is converted to force
— By capacitive input transducer

Mechanical displacements (vibrations) are induced in x-
direction due to the varying force

The resulting mechanical signal is then “processed” in
the mechanical domain

— "Reject” if outside pass band

— "Passed’ if inside pass band

19
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t
Mechanical signal pro sing”, cont

~A
u.

The mechanically processed signal manifests itself as
movement of the output transducer

The movement is converted to electrical energy
— QOutput current io = Vd * dC/dt

= "micromechanical signal processor”

The electrical signal can be further processed by
succeeding transceiver stages

20



BP-filter using 2 c-c beam resonators

Electrode

Coupling X
i .

Electrodes

2-Resonator HF
(4th Order)

[Bannon, Clark,
Nguyen 1996]

— C. T-C. Nguyen

HF Spring-Coupled Micromechanical Filter

N

_._.
oo o
T T T

Transmssion [dB]

dnode B da deod e L L,
B oin & @ o

1 1 1 17
776 7.B0 7.54 7.88
Fregquency [MHz]

Performance
f,=7.81MHz, BW=15kHz
Rej.=35dB, |.L.<2dB

Unav. of Michigan —""‘
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VHF Spring-Coupled Micromechanical Filter

Frequency | DC Bias/Annealing

Tuning Electrode
Electrode . . -
W,=11 um

Outpu
E tm%- 34.5 MHz

| A\

‘/ \

Transmission [dB]
_IIIIIIIIIIIIIIII1

Electrode

Performance:
V=15V, Rg~2k(}

L
= &
[

fo~34.5MHz, BIW~1.3% Y Fenuency Mz
Rej.=25dB, L.L.<6dB | [Wong, Ding, Nguyen 1998]
— . IT-C. Nguyen LUnrv. of Michigan —'J
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Filter response

 Frequency separation depends on the stiffness
of the coupling spring
— Soft spring ("compliant”) - close frequencies =

narrow pass band

* |ncreased number of coupled resonators in a
linear chain gives
— Wider pass band
— Increased number of passband "ripples”

— - the total number of oscillation modes are equal to
the number of coupled resonators in the chain

23



Ideal Spring Coupled Filter
Two Uncoupled couol
Resonators jr—‘ Resonator coupier
c d T/}\ Stiffness  Stiffness
frl e | /
I I
090000 " - g ® BW = _Sij
‘F{rl Y k_
F —™= ‘ﬁ‘ 7
Cr2 e /?\ Normalized
—y | Coupling fmm
— | m,s T 0 o Coefficient ‘
f'lf'rz
Massless
’/ Spring
crl ks12 ‘r2 Spring
— 1., |ao0o00] m,2 —LE— » Coupled
£000Q0; 00004) Resonators
jFli:-;r']_ I{I‘I J
k"— C. I-C. Neuven LTI r:l"'"l.ﬁ'rhr'w:lrl—""‘
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Filter design

« Resonators used in micromechanical filters
are normally identical
— Same dimension and resonance frequency
— Filter centre frequency is fo
— (if "massless coupling spring”)
« Pass band determined by max distance
between node tops

— Relative position of vibration tops is determined by
« Coupling spring stiffness kSij

« Resonator properties (spring constant) kr
at coupling points

25



Design, contd.

« At centre frequency fo and bandwidth B, spring constants

must fulfill
[kij) [kr)

. kij = normalized coupling coefficient taken from filter cook books

k ..
 Ratio (%) important, NOT absolute values

r

 Theoretical design procedure A*

(* can not be implemented in practice)

— Determine T, and k= Choose kg forrequired BW

— | real life this procedure is modified (procedure B =)

26



Design procedures c-c beam filter

* A. Design resonators first

— This will give constraints for selecting the stiffness of
the coupling beam

— = but bandwidth B can not be chosen freely!
or
* B. Design coupling beam spring constant first

— Determine the spring constant the resonator must
have for a given BW

— =2 this determines the coupling points!

27



Design procedure A.

* Al. Determine resonator geometry for a given
frequency and a specific material (p)

— Calculate beam-length (Lr), thickness (h) and gap (d)
using equations for fo and terminating resistors (Raq)

o If filter is symmetric and Q_resonator >> Q_filter, a simplified
model for the resistors may be used -

28



For a specific resonator frequency, geometry is
determined by:

F‘

fO:const-\/—- E {
o

h, L : determined from f,—requirement
W., W, : chosen as practical as possible
Addedrequirement : R,

K
R = = ) Qres>>Q ilter
’ @y Oy * Q ireer '77e2 "

K. : givenbyresonator dimensions

w, . IS given

g, : from filter cook book

Qiiier - 1S given

N, =V Z—i ~ % : only possible variation
V, : haslimitations

d : canbe changed! (e, is centre position of beam)
29



Design-procedure A, contd.

« AZ2. Choose a realistic width of the coupling
beam Ww,_,

* Length of coupling beam should be a quarter
wavelength of the filter centre frequency

— => Coupling springs are in general transmission
lines

 The filter will not be very sensitive to dimensional variations
of the coupling beam if a quarter wavelength

— Quarter wavelength requirement determines the
length of the coupling beam ]
512

30



Design procedure A, contd.

« Constraints on width, thickness and length

determines the coupling spring constant
kle

— This limits the possibility to set the bandwidth
independently (BW depends on the coupling spring

constant)
B = L . k512
k12 I(rc

— An alternative method for determining the filter-
pandwidth is needed-> see design procedure B

31



Design procedure B

 B1. Use coupling points on the resonator to determine
filter bandwidth
— BW determined by the ratio  k_,,

K

rc

« k.. is the value of k at the coupling point!

. krc position dependent, especially of the speed at the position

« k . can be selected by choosing a proper coupling point
of resonator beam!

« The dynamic spring constant k,, fora c-c beam is
largest nearby the anchors
— k_ is larger for smaller speed of coupling point at

rc
resonance

rc
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Smaller speed

K
@, = const = |
meff
_KE
eff
1.2
2

|

Max. speed

Smaller speed - eff. mass higher
—> eff. spring stiffness higher
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Positioning of coupling beam

« So: filter bandwidth can be found by choosing a
value of K. fulfilling the equation

| fo| (K
ki | LK,
— where kSij IS given by the quarter wavelength

requirement

 Choice of coupling point of resonator beam
Influences on the bandwidth of the mechanical
filter =

34



Position of coupling beam

(a) Max. Velocity Coupling: yields large % bandwidth
Velocity = 2.1 m/s = m, = 2.35 x 107 kg; k, = 43,511 N/m
(fo=70MHz, Vp=3V,d = Zﬂﬂh}

iy

(b) Low Velocity Coupling: allows much smaller % bandwidth
Velocity = 0.81 m/s = m_= 1.48 x 107 kg; k, = 286,064 N/m
(f,=70MHz, Vp= 3V, d = 200A)

oy, I
W LU

Figure 12.15. Filter schematics showing (a) maximum velocity coupling to yield a large
percent bandwidth and (b) low-velocity coupling to yield a smaller percent bandwidth.

-
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Design-procedure, contd.

« B2. Generate a complete equivalent circuit for
the whole filter structure and verify using a circuit
simulator

— Equivalent circuit for 2-resonator filter -
— Each resonator is modeled as shown before

— Coupling beam operates as an acoustic transmission
line and is modeled as a T-network of energy storing
elements

« Transformers are placed in-between resonator and coupling
beam circuit to model velocity transformations that take place
when coupling beam is connected at positions outside the
resonator beam centre

36
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Figure 12.14. (a) Perspective-view schematic of a symmetrical two-resonator VHF
pumechanical filter with typical bias, excitation, and signal conditioning electronics. (b)
Electrical equivalent circuit for the filter in (a) along with equations for the elements [18].
Here, m,;., ke, and ¢, denote the mass, stiffness, and damping of resonator i at the beam
center location, and 1, and 1, are turns ratios modeling electromechanical coupling at the
inputs and mechanical impedance transformations at low-velocity coupling locations. (From
reference [18])
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HF micromechanical filter

Coupling position

| ¢ was adjusted to
obtain the required
bandwidth

Torsion rotation of
coupling beam may
also influence the
mechanical
coupling
— Effective value of
| c changes

« SEM of symmetric filter : 7.81 MHz
» Resonators consist of phosphor doped poly

Electrodq_____

Coupling
Spring - uResonators

Figure 12.16. SEM of a fabricated 7.81 MHz two-resonator micromechanical filter. (From
reference [18])
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HF micromechanical filter

Measured and simulated frequency response
BW = 18 kHz, Insertion loss = 1.8 dB, Q_filter = 435

« Simulation and experimental oF - - ; =
results match well in pass - o i Pefitnace
band o b s Simulated e

» Large difference in the & ngigggé
transition region to the stop 200 L. < 2dB

band

— In areal filter poles that are
not modeled, are introduced.
They improve the filter shape a0 |-
factor, -due to the feed-
through capacitance C_p . :
between input and output 7.75 7.80 7.85 7.90
electrodes (parasitic EresrencyIMie]
element) For fu”y |ntegrated Figure 12.17. Measured spectrum for a terminated 7.81 MHz pmechanical filter with
fllters thls CapaCItance can be excessive input/output shunt capacitance. Here, Qg =435. (From reference [18])
controlled and the position of
the poles can be chosen
such that they contribute to a
optimized filter performance

=30

Transmission [dB]
I
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Both series
and parallel
configurations
can be used

In figure 5.11.b
the output

currents are
added

Comb structure

Comb shape
transducer
N

Signal
sending port

._._I 0= =
q=—3

=

1

DC bias

Coupling spring
First resonator —

==
(a)
Analog
inverter
-
1~—
2
1
(b)

Figure 5.11

T 1 Second resonator

Ground plane

-

Comb shape
transducer
—

Signal
sensing port

b

Transimpedance
amplification

(a) Series and (b) parallel combination of resonators. Reproduced from 1. Lin,

C.T.-C. Nguyen, R.T. Howe, and A.P. Pisano, 1992, *Micro electromechanical filters for signal

processing’, in IEEE Conference on Micro Electro Mechanical Systems '92, February 4-7 1992,

IEEE, Washington, DC, by permission of IEEE, © 1992 [EEE
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Comb-structure, contd.

* Resonators designed for having different

resonance frequencies f

f,—f, =—L
Q
* Model taken from Varadan p. 262-263:

— Model assumes a massless coupling beam. Possible to ignore
the influence of the mass on the filter performance if the
coupling beam length is a quarter wavelength of the centre
frequency

« Formulas inaccurate for high frequencies and small
dimensions

— - Better method: Use advanced simulation tools

41
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Three-Resonator Spring-Coupled Filter

L]
.
Frequency I|.|n||1|g F ll'I:H,lI"l
==k S
1 i
T

.f-._

i ok i...
E - |~40dB Ea £
o W
R I'E
- -E—l':l E-“
Flexural Mode Coupling Beam i E '
XU oupling . ak ]
o 7| " | threeresonat wl two rEEE:"ﬂmr'
Fig. 5 SEM of a thiee-resonator ideromechanical filier along W @\ W e L
= withi :ﬁl s :q:lﬁ.:ll'l,.llﬁ; .:mn.d I:II1]III'||-E specinam IF|:|rl;. ll.ul't Frequancy [kHz] Frequency(uiz]
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High-Order itMechanical Filter

3-Resonator MF

T s g ok (6th Order, 1/5-
/ \ 1 Velocity Coupled)
\ | e \ f,=340kHz
_ . ' BW=403Hz
%BW=0.09%
Stop.R.=64 dB
I.L.<0.6 dB
Comb-Transducer Raticed Folded Beam [Wang, Nguyen 1997]
\‘ 340 kHz

Anchor = Z0mm Coupling Beam
 — \

| o —
o R Y s

Trarsmessson (1B
1 1 1 [.I_,._'l 1
=
T
]

o on
e s
|
]

337 338 339 340 341 342 34
Fraquency [kHz]

Folding Truss

— C. T-C. Nguven Unrv. of Michigan —’)
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Micromechanical mixer filters

« A 2 c-c beam structure can be modified to be a
mixer

— Suppose input signals on both on v_e (electrode) and
V_b (beam)

* Fig 12.18 Itoh, shows schematic for a symmetric
micromechanical mixer-filter-structure -

45



Antenna rMi;; R e
< y
LNA RF % +ov
= Baseband
> Electronics e e * b 3
4 — (©) 7 :
Bandpass VCO vCo Replaswjth single LO Filter Vp
Filter umechanical N Filters
|9
; Output
[_(g) ' Non-conductive uMec R
VRE = Vepcoswuit nput Couplin esonator
RF RFC Resonator Beﬁmg Resonator An Freq. Pulling
R Freq. Pulling P / Anchor  Switch lectrodes
Infoerhation Electrodes el \ o
Input Input =
A Electrode Forl Ly I Vanne)
Output
; gap =d Electrode
T =
- <!
CPT_[ IF
% Mixing Cpy Rpp
VN = Transducer < L
W Local & T Down-Converiget 3
«Yp1—=— Oscillator T =  and FiltgreeOutput
Input l

Figure 12.18. (a) Simplified block diagram of a wireless receiver, indicating (with shading) the
components replaceable by mixer-filter devices. (b) Schematic diagram of the described pmechanical

mixer—filter, depicting the bias and
diagram of the mixer—filter scheme.

excitation scheme needed for downconversion. (¢) Equivalent block

46



Mixer

Suppose v, on electrode
Suppose local oscillator onbeam, v, =V,
Force calculated:

SRS

Suppose 'V, = vRF =V COS W, t
Vp, =V, =V o COS@ ot

1, 5 ,. OC
=—(v."=2vV +V°")—
2(b bYe e)ax

_ 1., ., ©oC

Fy=...— 5 2V Ve v COS @, ot - COS e

[where 2cos at - cos w,t = cos(w, — w, )t + cos(w, + w, )t]
1 oC

Fd =...— EVRFVLO & . COS(G)RF — 0 )t

Fy= - COS @)t
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Micromechanical mi
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Summary of calculations

— Start with a non-linear relationship between voltage
and force: voltage/force characteristic (square)

— Linearization: Vp suppresses non-linearity

— Voltage signals v_rrF and v_Lo are mixed down to
intermediate frequency (force), w_ir = difference
between frequencies!

Transducer no. 1 can couple the signal into the
following resonator

— If transducer no. 2 is designed as a
micromechanical BP filter with centre frequency
w_r, we will get an effective mixer-filter structure

48



Micromechanical mixer-filter, contd.

YRE % oV
Lt =t * e |
(c)

Vv :
~— LO Filter Vp

« > Mixer structure is a functional-block in a RF-
System (future lecture)

— This is a component that may replace present mixer + |F-
filter (intermediate-filter)

— Lower contact-loss between parts and ideally zero DC
power consumption

» A non-conducting coupling beam is used for isolating the IF-
port (e.g. 2. beam) from LO (local oscillator)
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Mixer-filters using square-frame resonators

 Made using a post-CMOS process

 Laterally moving structures

« Examples from research at the Nanoelectronics
group
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Tether width
llwte“

Single “clamped- Tether beam
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Bandwidth = 117.8 kHz
fc = 10.009 MHz
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