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Today’s lecture

• Packaging of MEMS
• Packaging technology
• Different types of packages
• Quality control and reliability
• Integration of IC and MEMS
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Purpose of packaging

• Packaging is needed for a secure and reliable
interaction with the environment

• Package:
– Is a mechanical support
– Gives environmental protection
– Provides heat transport
– Offers electrical signal connections
– Makes contact to the physical world / environment

• Pressure sensor
• Liquid system 
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Simplified packaging procedure
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Packaging of MEMS
• Techniques from IC-industry have been adopted
• MEMS-packaging is more complicated than IC-

packaging
– Application specific, customized
– High diversity
– Unique requirements
– E.g. circuits may have fragile micro structures

• MEMS requirements: access to outside world needed!
– To allow mechanical interaction
– Ex. movable structures on the surface of the wafer
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Packaging of MEMS
•  Design of MEMS and packaging are highly inter-

related

• No standards exist
– Often proprietary company packaging
– ”cross-disciplinary” information is insufficient

• ”Packaging of MEMS is an art, rather than science”
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Important issues for packaging
• Reduce cost 

• Maintain component performance 

• Secure high packaging yield

• Obtain environmental protection

• Have thermal stability

• Cope with mechanical stress

• Allow post-packaging calibration
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Important issues for packaging
• Cost 

– Packaging may dominate total cost!
• 75 – 95% of total cost

• Component performance should not degrade 
during packaging
– Ensure high reliability under normal operation

• Secure high ”yield” in production
– Small amount of scrape during packaging
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Environmental protection

• Protection against humidity
–  to hinder corrosion

• Al corrodes fast, gold slower

• Protection against liquids and gasses 
– Hermetic packaging

• Hinder pollution from particles/molecules
– ”contamination”
– Protective coatings used

• Ex. parylene (poly polymer) is often used

• Isolation from mechanical chock, vibrations and 
unwanted acceleration

• Isolation from electric fields
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Thermal issues
• Thermal budget for packaging is important

– Components should not degrade due to high temperature steps
• Thermal conductivity

– Metals and some ceramic materials have high thermal conductivity
– ”die-attach”-material should have high thermal conductivity

• Thermal coefficient of expansion (TCE) in package should be 
similar to the MEMS-component TCE 
– Otherwise stress and cracks may arise

• Thermal dissipation is usually not a big problem
– BUT, cooling of thermal MEMS actuators must be ensured
– Cooling may be needed when integrating MEMS with other units 

(amplifiers)
• Thermal stability must be ensured and fluctuations avoided

– MEMS on thick or thin membranes has different thermal stability
• Thermal analysis of die or package should be done

– Sectioning into temperature zones
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Other issues
• Mechanical stress

– Piezoresistive and piezoelectric units should avoid unwanted 
stress from package or bonding

– Thermal coefficients of expansion (TCEs) must ”match”
• Will hinder stress 

– Long term drift properties of adhesives connecting die and 
package may introduce stress

• ”slow creep”
• Calibration

– Calibration is often needed after packaging
– Laser trimming of resistors 

• ”laser ablation”
– Laser trimming of critical metal dimensions 

• ”tuning fork”
– Today: more and more ”electronic” calibration is used



12

Some packaging technologies

• Next 
– Hermetic packaging
– Wafer-level packaging

• Microcaps
– Die-attach
– Wire bonding
– Flip-chip bonding
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Hermetic packaging
• Will give ”sealed package”

– Increases long term stability of component
• Package of ceramics or metal must be used

– Polymer (plastic) packages are not hermetic!
• Packaging materials may outgas, leading to performance 

degradation
• Package must often be filled with inert gas

– Nitrogen, Argon, Helium
• Hermetic package is not generally applicable 

– MEMS often interact with the outside world, measure variables 
etc.

• Vacuum packaging must be used to obtain high Q in 
vibrating resonators
– Vacuum requirement almost universal, - not only for resonators 

and filters
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Wafer-level packaging
• Packaging partly done during fabrication process

• Wafers of same or different materials are bonded 
together (anodic bonding)
– May implement free mechanical movement of MEMS 

structures inside internal cavities
– Ex. piezoresistiv pressure sensor using Si to glass 

bonding

• Large thickness of ”stacked wafers” is a challenge
– ”Stack” of bonded wafers may be 1 mm!
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Microcaps
• Top Si microcap mounted 

by using ”fusion bonding”
– Bonded caps give hermetic

sealing and protection

• Hinder damage from dicing, mounting and atmosphere
– Sawing – dicing of wafer

• Critical with respect to fragments, shaking, cooling liquid!
• Ex. Perform etching of last sacrificial layer after sawing

• Conductive ”caps” can also give electromagnetic 
shielding, if grounded

• Conventional methods can then be used for the 
succeeding packaging process steps
– Use of ”microcap” may allow polymer package (low cost)
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Wafer-level vacuum encapsulation
• A planar process used to implement a “cap” which encapsulates 

the active unit:

Itoh et al
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Example of other types of ”caps”

• A ”cap” is riveted to the substrate using nickel microrivets

”klinking”
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”Die-attach” process

• Die must be mounted on package substrate
– Substrate serves as a mechanical support

• Die connected to substrate by
– Soldering
– Organic adhesives 

• Epoxy, silicone etc.
• Cheap, low temperature
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Wire bonding
• Used for electrical 

interconnections
– DC and RF-signals

• Gold wire: 150 °C
• Ultrasound 

frequencies 50 – 100 
kHz may be a 
problem for MEMS
– May give oscillations 

of mechanical micro 
structures

– Structural errors 
may arise

• Aluminum wire
– Slower
– Substrate not 

heated
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Flip-chip bonding

• Die bonded with top surface 
down to a package substrate

• Plated solder bumps on die
• Contact points may be anywhere

– Density of I/O increases
• Low inductance due to short 

distances
• Used for fast circuits, RF
• High reliability

– Standard bond wires may be a 
reliability threat

• Many MEMS dies may be 
mounted on the same substrate

– Can not be used if 
environmental access is needed

• Especially suitable if the MEMS 
die already has ”caps”
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Different packages used

• Important issues
– Package size, form, number of pins
– Package material

• Different package types
– Ceramic packages
– Metal packages
– Polymer packages

• Package can be combined with a 1. level 
encapsulation
– Die level encapsulation: ”microcaps”
– Can be used if MEMS does not need direct contact 

with liquids and gasses
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Ceramic packages
• Ceramics is a hard, fragile, non-metallic mineral

– Electric insulating
– Good thermal conductivity
– Easy to machine
– High reliability

• Alumina most common ceramic material, Al2O3 
– Also AlN, Aluminum nitride, used

• Common for IC-packaging
• Can be sealed (hermetic encapsulation)

– Encapsulation and putting on a lid are important process steps
• Used for MEMS multi-chip modules
• Package can be custom or standard

• Relatively complex and costly method
– More costly than using polymer
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Laminating ceramic packages
• A ceramic package is made up of laminates

– Each layer is formed and patterned individually 
– Laminates are pressed together (”sintered”, ”co-fired”) at 1500-1600 °C 

• Newer methods at lower temp (800 °C)
– Starting material: ”green unfired soft tape”
– Electric conductors deposited by screen printing on each layer
– The result is a ”stack” of laminates (3-16 layers)

• Heated to high
temp (”firing”)
for densification

• Drawback is that
ceramic shrinks
(13-15%) during
”firing”
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Metal packages
• Used for IC with few pins (”TO-can”)
• Excellent thermal dissipation
• Good electromagnetic shielding
• Often used in MMIC, ”Monolithic Microwave ICs”
• For MEMS: robust, simple to mount

– OK number of pins for most MEMS applications
– Several standard packages with various cavities exist
– Simple prototyping for small volume
– Packaging for rough environment (robust steel packages)
– Simple sealing process
– More expensive than polymer

• Steel or Kovar (alloy) used
– Kovar has low TCE
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Molded polymer packages
• Low cost
• Hermetic encapsulation not possible
• Reliability is increasing
• Polymer material is typical epoxy
• Often large thermal mismatch between polymer, frame and die

– Can cause damage
– Additives in epoxy may change TCE

• Different fabrication methods
– Post-molding

• Molded after die is fastened to lead frame
– Pre-molding

• Die fastened after molding
• Preferred if risk of damage
• More expensive
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Post- and pre-molding

Post-molding

Pre-molding
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Quality control and reliability

• Quality control
– No standards exist
– Typical application specific standards and guidelines are used 

(f.ex. from automotive industry)
– ISO 9000, QS 9000 say nothing about qualifying tests
– IEEE, MIL –standards give detailed operational tests for 

qualification and reliability

• Perform statistical analysis: failure analysis
– MTBF, Mean Time Between Failure

• DAC simulations may reveal points with high stress that 
could cause cracks
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Operational tests
• Enforce ”demanding environments”

– Shock, vibration, temperature, humidity
• Provoke a weak point to cause an error

– ”burn-in”, maximum load
– ”infant mortality”

“Bath tube” curve
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Important failure modes
• Fracture and cracks due to large stress or mechanical shock

– Reduced by round corners, damping
• Change of elastic properties 

– Influences resonance and damping 
• Delaminating of package

– Laminate ”stack”  destroyed due to bad process control
• Corrosion due to environment

– Vapor/gas influence
– Critical for movable parts

• ”Stiction”
– Surfaces are “glued” together
– Ex. Capacitive switches
– Charging of dielectric layer can permanently keep the switch plate down

• Different electrical and thermal failure modes
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Integration of IC and MEMS

• Multi-chip 
module 
packaging
– Figure shows a 

HDI process 
(High Density 
Interconnect) 
where ”naked 
dies” are 
mounted in 
cavities in the 
substrate
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Integration of IC and MEMS, contd.

• Separate MEMS- and IC-dies can be impractical and 
costly
– Often the only possibility

• Due to different technology requirements
– + MEMS and CMOS may then be individually optimized
– - Parasitic capacitances, impedances! 
–  One-chip solution desired! (monolithic integration)

• Technologies for monolithic integration
– Pre-circuits (Pre-CMOS)
– Mixed circuit- and micromechanics (Intermediate CMOS)
– Post-circuits (Post-CMOS)
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Pre-CMOS circuits
• Fabricate micromechanics first, - then IC
• Benefits

– May fabricate MEMS optimally at high temp (+ annealing)
– Only one passivation , planarization step needed after 

micromechanics processing
– Can upgrade each processing module individually

• Drawbacks
– Large topography variations present after MEMS (ex. of 9 μm)

• Use of a trench for MEMS components
– CMOS photo resist spinning and patterning become more 

difficult
• Especially for  submicron circuits
• CMOS and MEMS have different min. geometries (waste area)!

– Must make the surface planar before CMOS processing
– CMOS foundry processes do not allow ”dirty” MEMS wafers into 

the fabrication line
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Pre-CMOS circuits, contd.

• Ex. of iMEMS-process
that has overcome the 
drawbacks
– Process from Sandia

National Laboratories 
– The micromechanical 

components are made in 
a trench

– Structure is planarized 
using CMP = Chemical 
Mechanical Polishing

– Then the IC-steps are 
performed
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Mixed circuit- and micromechanics

• IC and MEMS-processes integrated into one process 
– ”MEMS in the middle”

• Drawbacks 
– Limitations on what kind of  MEMS structures that can be 

fabricated
– Many passivation layers needed 

• When switching between circuit and micromechanics process
– Only custom CMOS-processes can be used
– Total redesign of the whole process if one of the combined 

technologies (“modules”) is changed

– Ex. of a combination process 
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Combination processes

• BiMOSII process from Analog Devices for fabrication 
of accelerometers
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Post-CMOS circuits
• CMOS circuit processing performed before MEMS

– Possibly the most promising procedure
– Planarization not needed
– May use advanced/standard IC foundries and succeeding 

micromechanical processing
– Method gradually developed

• Drawbacks
– Difficulties with CMOS Al-based metallization

• Al can not withstand the high temperature steps typically needed 
for several micromechanical process steps

– Especially those needed for high Q: f.ex. polySi deposition/annealing
– Compromises must be done for one or both processes

• Ex. MICS process: Tungsten (“wolfram”) as CMOS metal
– can withstand higher temp

• Ex. UoC Berkely: use SiGe as MEMS structure material
– lower deposition temp
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MICS process
• Tungsten (”wolfram”) used for metallization instead of Al before polySi 

surface micromachining process
• Tungsten withstands higher temperatures
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Al-metallization kept
Low temperature poly-SiGe used as structural material 
Minimal reduction in micromechanical performance!
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CMOS-MEMS

• Implementation of MEMS-components 
by using an ordinary CMOS-process
– ASIMPS:

• CMP, ”Circuits Multi-Projets”, runs MPW
• ST Microelectronics 0.25 µm BiCMOS
• Postprocessing at Carnegie Mellon 

University
– Test circuits designed at Ifi S2007

• Jan Erik Ramstad, Jostein Ekre

• Typical process characteristics 
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Resonators

Switch

CMOS-MEMS circuit F2008

Jan Erik Ramstad
Bård Eirik Nordbø
Kristian G. Kjelgård
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ASIMPS at CMU
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Specific design rules are required

Ex. of ASIMPS design rules
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European ASIMPS: critical characteristics

• Multilayer structure of metal + dielectric
• 5 metal layers
• Top metal layer used as mask
• MEMS released in a mask-less etch step
• RIE + isotropic under-etch
• CMOS must be covered by metal
• Specific MEMS design rules

• Can exploit enormous investments in CMOS-process development

(CMU)
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RIE -etched
at MiNaLab

IFI test circuits from STM (JER, JE)



50

Details from IFI test circuit
Postprocessed at CMU
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MiNaLab: post-CMOS etching of STM circuit

MiNaLab: After unisotropic etch

Laterally moving cantilever beam
(JER)
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MiNaLab: high ion energy used  top layer is heavily eroded (initial run)
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Other integration methods

• Bonding processes may be used
– IC circuits and micromechanics merged by bonding 

one wafer onto the other
• F.ex. Anodic bonding

– Alternatively: Bond an IC-circuit on a MEMS structure

– Alternatively: Bond MEMS on an IC circuit
• Reducing the bonding pad dimensions may give acceptable 

interface capacitance values for the IC circuits
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