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Today’s lecture 

• Switches for RF and microwave 
– Typical examples 
– Important switch parameters 
– Performance requirements 
– Different technology 
– Characteristics of RF MEMS switches 

 

• Basic switch configurations 
– Working principles 

 

• Design of RF MEMS switches 
– Electromechanical design, I 

• Additional switch parameters 
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Next lecture, LN06 

• Design of RF MEMS switches, contd. 
– Electromechanical design, II 
– RF design 

• Ex. of implementations 
– Structure 
– Fabrication 
– Performance 

• Special structures and actuation mechanisms 
• Some challenges  
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Background 

• Switch - relay 
• Important component for RF systems 

– Signal routing 
• Re-directing of signals: antennas, transmitter/receiver 

– Connecting / selecting various system parts 
• Choice of filter in filter bank 
• Choice of network for impedance matching 
• Choice of matching circuitry for amplifier 
• Used for measurements, instrumentation 

• Telecom is a dominant user 
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Ex. of switch applications 

Varadan, fig. 3.1 

Wide band signal generator from 
separate narrow band sources 
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Applications, contd. 

Varadan fig. 3.1 

Choose channel 

Choose measurement instrument 
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Important switch parameters (Var p.111) 

• Switch speed 
– 50% control voltage  90% (10%) of RF-output port envelope 

• Transition time 
– Output RF signal 10  90% or 90  10% 

• Actuation voltage 
– Important parameter for electromechanical design! 

• Desired: VLSI compatibility, - influences the speed 
• No problem for semiconductor components  

• Impedance matching 
– Avoid reflections at both input and output port (for on or off) 

• RF power capability  
– Specifies linearity between output power and input power 
– Possible degradation of switch for high power 
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Important switch parameters, contd. 

• IL = insertion loss 
– Defined for ”on-state” 
– Ratio between signal out (b2) versus signal in (a1) 
– IL = inverse transmission coefficient = 1/S21 in dB 

• S21 = b2/a1 when a2 = 0 
– Design goal: minimize! 

• RF MEMS has low IL at several GHz 
• Much better than for semiconductor                    

switches 
• ”Skin-depth” effect  increased loss at high frequencies 
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Important switch parameters, contd. 

• Isolation 
– Defined in ”off-state” 
– The inverse ratio between signal out (b2) versus signal in (a1) 

• Defined as 1/S21 i dB 
– Alternatively: The inverse ratio between signal transmitted back 

to the input (b1) versus signal in on the output port (a2) 
• Defined as 1/S12 i dB 

– Large value  low coupling between terminals 



10 

Performance requirements 

• High performance parameters are desired 
– Low loss  
– Good isolation  
– Low cross-talk 
– Short switching time  
– Long lifetime 
– Reliability 

• Choice of switch technology is dependent of 
– RF-signal frequency 
– Speed requirements 
– Signal level 
– RF power capability 
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Technology choice 

• Traditional mechanical switches (relays) 
– ala light switch 

• Low loss (+) 
• Good isolation (+) 
• Can handle high power (+) 
• Slow (-) 
• Mechanical degradation (-) 
• Contact degradation, reduced lifetime (-) 

– Macroscopic relays: bulky, expensive (-) 
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Technology choice, contd. 

• Semiconductor switches (solid-state) 
– Used extensively today in portable devices ! 
– FET (Field Effect Transistors), CMOS, PIN-diodes 

• High reliability (+) 
• Integration with Si (+) 
• FET degrades at high frequency (-) 
• Large insertion loss, high resistive loss (-) 
• Limited isolation (-) 
• Poor linearity (-) 
• High power consumption (-) 
• Limited “high power” capability (-) 
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PIN-diode 

• High reliability technology 
• Varadan fig. 3.6 

– PIN: p – insulator - n 
– Forward biased: low R 
– Reverse biased: low C due to isolator layer  high impedance Z 
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PIN-diode used in system 

• The biasing of the PIN-
diode determines the 
switching 
– Forward bias: low R 
– Reverse bias: high Z 

 

• Typical terms 
– Single-pole single-throw, 

SPST 
– Single-pole double-throw, 

SPDT 
• Varadan fig. 3.8 
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RF MEMS switches 

• A great need exists for having switches with 
better performance! 
–  MEMS switches: 

• The first ex. of RF MEMS-components (78) 
• Many implementations exist 

– F.ex. in Gabriel M. Rebeiz: ”RF MEMS – Theory, Design and 
Technology” (Wiley 2003) 

– Publications 
• Most mature RF MEMS field 
• Slow adoption 
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Benefits and typical characteristics of RF MEMS switches 

 
 

Ionescu, EPFL 

+  • High linearity 
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Comparing performance 

Rebeiz 
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Two basic switch configurations 

Varadan fig. 3.2 
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Basic switch structures 

• Series switch 
– Contact switch, ohmic switch (relay) * 

• Cantilever beam 
– Capacitive switch (“contact less”) 

• RF-signals short-circuited via C ( Z=1/jωC ) 
– Impedance depends on value of C 

 

• Shunt switch 
– Shunt capacitive switch * 

• clamped-clamped beam (c-c beam) 
– Shunt contact switch 

* most used 
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Adrian Ionescu, EPFL. Europractice – STIMESI, Nov 2007 
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Series contact switch  

• Cantilever beam switch 
 

Signal propagation into the paper plane 

coplanar waveguide 
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Signal propagates perpendicular to cantilever  

 
 
 

Varadan fig. 3.14, top view 

Separate pull-down electrode 
Actuation voltage between beam and bottom electrode 
Separate “contact metal” at beam end 
 



23 

Working principle 

Rebeiz fig.2.12 
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More realistic structure 

Varadan fig 3.16 
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Signal propagation along beam 

 
 

Varadan fig. 3.13 
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Doubly supported cantilever beam 

Varadan fig. 3.15 
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Series switch 

• Ideal requirements – typical parameters 
 

– ”Open/short” transmission line (t-line) 
• typical: 0.1 to 40 GHz 

 
– ”Infinite” isolation (up) 

• typical: -50 dB to -60 dB at 1 GHz 

 
– ”Zero” insertion loss (down) 

• typical: -0.1 dB to -0.2 dB 
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Cantilever beam switch: critical parameters 

• Contact resistance for metal – metal 
– Contact pressure (not too low, not too high) 
– Surface roughness influences 
– Degradation due to increased resistance after some time 

• Soft vs hard metals (gold vs alloys) 
• Actuation voltage vs spring constant (not too low, not too high) 
• Possibility of ”stiction” (”stuck-at”) 

– Restoring spring force vs adhesion forces 
• Reliability 

– Aging 
– Max. number of contact cycles 
– High current is critical (”hot switching”) 

• melting, conductive metal damp  ”microwelding” 
• Self actuation 

– V_RF (RMS) > V_actuation 
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Typical shunt switch 

Rebeiz 
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Typical shunt switch 

Rebeiz 

Bridge up 
 C to ground = small 
 Signal passes through 

Bridge down 
 C to ground = large 
 Signal is shorted to 
ground 
 Signal does not pass 
 

C= εA/d 
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Shunt capacitive switch, contd. 

• C_down / C_up should be > 100  
• C= εA/d 
• C_down = C_large 

• C_up = C_small 

 
• Impedance Z ~ 1/j ωC 

– For a given ω: 
• C_small Z_large = Z_off  (UP) 

–  isolation 
• C_large  Z_small = Z_on  (DOWN) 

–  short circuiting of RF-signal to GND 



32 

RF MEMS switch 

Signal 

Coplanar 
waveguide 
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Shunt capacitive switch, contd. 

• Clamped-clamped beam  
(c-c beam) 
– Electrostatic actuation 
 beam elasticity 

• RF signal is modulating 
actuation voltage 
– ”overlaying” 

• No direct contact 
between metal regions 
– Dielectric (isolator) in-

between 
– C_up / C_down important! 
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Shunt switch 

• Ideal requirements – typical parameters 
 

– Shunt between t-line and GND 
• typical: 5 to 100 GHz 

 
– ”Zero” insertion loss (up) 

• typical: -0.04 dB to -0.1 dB at 5-50 GHz 

 
– ”Infinite” isolation 

• typical: -20 dB to -30 dB at 10-50 GHz 
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Capacitive switch: design parameters 

• Signal lines and switches must be designed for RF 
– Suitable layouts 

• ”CPW – coplanar waveguide” (horizontal) 
• ”microstrip lines” (vertical) 

• Switches should be compatible with IC-technology 
– Not too high actuation voltage 
– Proper spring constant 

• Alternatives to electrostatic actuation: 
– Piezoelectric actuation 

• Reliability > 10E9 switching cycles before failure  
– 10E9 is demonstrated 
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Capacitive switch: critical parameters 

• Thickness and quality of dielectric is critical 
• Choice of dielectric material 

– High dielectric constant: 
• Gives high ratio C_down / C_up 

 

• Charging of the surface of the dielectric 
– C -degradation 
– Possible ”stiction” 

• ”Breakdown” of dielectric 
– Becomes conductive  disaster! 
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Design of RF MEMS switches 

• Electromechanical design, I 
 

• The remaining contents of today´s lecture: 
– Design parameters determining pull-in  
– Effect of dielectric 
– Roughness 
– Simplified analysis of cantilever beam 

• Elasticity 
• Deflection of beam 

– Mechanical anchoring 
• Folded springs 
• Material choice 

– Additional switch parameters 
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Electromechanical operation 

• The operation is based on the pull-in effect 
– Characteristics at pull-in 

• Membrane/beam pulls in at 1/3 of gap 
• Pull-in voltage:  

 
 
 

• Definition of parameters:  
– K spring constant 
– g0 initial gap 
– A=W*w = area 
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Discussion of design parameters 
• Vpi 

– Should be low for CMOS compatibility 
• A=W*w  

– Should be large. Size requirement is a 
limitation ( compactness) 

• g0 
– Should be small. Depending of 

fabrication yield. Must be traded 
against RF performance (return loss 
and isolation) 

• K 
– Low voltage when soft spring. 

Dependent on proper mechanical 
design. Make sure that the beam can 
be “released”! 
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Hysteresis 

• A capacitive 
switch shows 
hysteresis when 
being switched 
on/off 

 

Varadan fig. 3.18 
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Parallel plate capacitance for shunt switch 
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Ionescu, EPFL 
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Thickness off dielectric 

• Thickness of dielectric controls the capacitance ratio 
C_down/C_up 
– Thin layer may give high Cd / Cu –ratio 

• Beneficial for performance 
– Problem with thin layer 

• Difficult to deposit: ”pinhole” problem 
• In real life: min 1000 Å, 
• Should sustain high voltage without breakdown, 20 – 50V 

 
– Dielectric materials with higher        give higher Cd/Cu-ratio 

•       from 7.6 for SixNy  40-200 for strontium-titanate-oxide 
• PZT:      >1000! 

rε
rε

rε



45 

Roughness  

• Cd/Cu may decrease 
due to roughness 
– Increased roughness 

reduces the ratio 
 

• Metal-to-metal: 
roughness degrades 
contact 
– Increased resistance 

in contact interface 
 

• Var fig 3.26 shows 
effect of roughness 
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Simplified analysis of cantilever beam 

 
• Look at interaction between elastic and 

electrostatic properties 
 

 
• Starting with some material on elasticity  

– [Slides from Arlington, Texas] 
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Deflection of beam 
• Suppose the following approximations: 

– Actuation electrode is not deflected 
– Electrostatic force concentrated at the end of the flexible beam 

with length L 

 

I =  (area) moment of inertia 

Bending moment in x 

W = width 
w(x) = vertical displacement 

Euler beam equation 

point load 

beam 
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Beam equation 

Moment of inertia 

Bending moment 
(force * arm) 

Boundary conditions 
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Suppose a solution 

Boundary conditions 
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Max. deflection at x = L 

Compare with 

Beam stiffness represents a spring 
with spring constant k_cantilever 
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Spring constant 

For a double clamped beam we have (Varadan p. 132) 
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Mechanical anchoring 

• Folded springs are often used 
• Why? 

– To obtain low actuation voltage (< 5V) for mobile 
communication systems 

 
•  Folded springs give low K on a small area 
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Reduced actuation voltage 

• Actuation voltage 
– ”pull-down”  needed 
– Should be < tens of V 

 
• Membrane should 

not be too stiff 
– Use meanders 
– Folded spring has 

lower k 
– Area effective! meander 
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Different folded springs 

Rebeiz fig. 2.10 
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Ionescu, EPFL 



61 

Spring materials? 

Ionescu, EPFL 
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Spring materials, contd. 

• Summary  
– Metal seems to be a better choice for RF MEMS 

spring structures than polySi 
• Metal has lower actuation voltage (+) 
• Metal has lower resistivity (+) 

 
– BUT: PolySi is stiffer  

• Higher spring constant (+) 
• Mechanical release force is larger (+) 

– ”stiction” avoided! 
• Higher actuation voltage (÷) 

– Might not be CMOS compatible 
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Additional switch parameters 

• Bandwidth 
– An upper limit is usually specified 

• Resistances and parasitic reactances influence the value 
• Resonance frequency 

– Specifies the frequency where the switch “resonates” 
– Resonance when potential and kinetic energy are “equal”  

• jωL = - 1/ jωC 
• E.g. reactances are of equal magnitude 
• Frequency depends on k and m  1/C and L 

 
• Operational bandwidth should be outside the frequency of natural 

resonance mode 
•  Limits minimum or maximum switching speed 
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Additional switch parameters, contd.  
• Phase and amplitude ”tracking” and ”matching” 

– Specifies how well the signal keeps the ”shape” 
– Important for ”multi-throw” switches 
– Each branch may have different length and loss, giving phase 

and amplitude differences 
 

• ”Intercept” point 
– Specifies when distortion of output power versus input power 

“starts” 
 

• Switch transients 
– Voltage transients at input/output due to changes in actuation 

voltage 
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Additional switch parameters, contd.  

 
• Life cycle and degradation 

– Influences from the environment 
– Fatigue fracture 
– This aspect is important for all parts containing 

movable structures! 
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