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Today’s lecture 
• Phase shifters 

– Function 
– Applications 
– Technology 
– Analog phase shifters 
– Digital phase shifters 

 
• Mechanical resonators 

– Basic principles  
– Operating principles for basic resonator structures 
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Function 
• A phase shifter is a 2-port 

 
 
 
 

 
• Output signal is delayed relative to the input signal 
• The effective ”path-length” of the transmission line can 

be changed 
– Signal propagates a longer distance  ”delayed”  phase 

change 
– Phase difference can be controlled by a DC bias 

IN OUT 

CNTRL 
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Important (desired) properties 

 
• Continuous tunability 
• Low loss 
• Impedance matching of signal 
• High power signal capacity 
• Low power control bias 
• Fast response 
• Low cost  
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Applications  

• ”Phased array” antenna may 
have thousands of elements 
with a phase shifter for 
every element 
– Antenna beam can be  

steered in space without 
physically moving the 
antenna 

– Antenna beam can be 
shaped 

• Use of MEMS phase shifters 
is a hot topic  
– Can be integrated with 

antenna elements on 
ceramic or quarts 
substrates 

–  Low-cost-antennas 
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Classifications  

 
• Phase shifters are classified as  

– Analog 
• Continuous phase shift 
• Change of signal propagation speed 

– Digital 
• Phase shift in discrete steps 
• Select different signal paths 
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Technology  

• Different electronically controllable phase 
shifters exist 

 
– Ferrite phase shifters 
– Semiconductor (solid state) phase shifters 

 
– MEMS phase shifters 
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Ferrite phase shifters 
• Phase shift set by a change of external magnetic field 

– Magnetic field interacts with electron-spin and influences 
magnetic permeability = µ 

– Propagation speed of electromagnetic waves is changed  
 
 

–  gives variable phase shift 

 
• + Good properties, high power capability 
• -  High cost, complex, not practical for high 

integration systems 

µ
1

≈pv
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Semiconductor phase shifters 

• Switching in/out different line segments by using 
IC switches 
– PIN-diode, GaAs FET 

 
• + Cheap, small, monolithic integration with    

 amplifiers is possible 
• -  Can not give continuous phase variation 
• -  Significant RF loss, high insertion loss 
• -  Poor power capability 
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MEMS phase shifters 

• A. Use of distributed, capacitive shunt-
switches (analog) 
– Change the effective capacitive load of 

transmission line 
– Continuous phase change 

 

[De Los Santos] 
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MEMS phase shifters, cont. 
• B. Based on MEMS switches (digital) 

– Phase shift set by switching between different paths 
– Discrete phase change 

 
 
 
 
 

– MEMS switches have high performance! 
• Better properties than semiconductor switches 

 

•  High-performance phase shifters are possible! 
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Propagation in a transmission line 

Voltage wave in positive z-direction 

(R,L,G,C per length) 

Lossless line 

The wave repeats in space when 

Propagation velocity =  
phase velocity, Vp 

Characteristic impedance 
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Analog phase shifters 
• Phase velocity for a 

transmission line 
 
 
 

– Variables are: 
inductance and 
capacitance per unit 
length 

• Idea: C-value can be 
controlled by a bias 
voltage 
– Tre result is a shunt 

capacitive loaded 
transmission line 

tt CLpv
⋅

= 1

Ct = line capacitance 

[De Los Santos] 
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Shunt capacitive loaded line 
• Transmission line (TL) is  periodically loaded with 

variable capacitors 
• Working principle 

 
–      increases        decreases 

 
– It will take a longer time for the signal to propagate a given 

distance 
 

• All C_switch capacitors change at the same time with a 
continuous phase shift by tuning the bias voltage 

• A challenge for analog phase shifters: 
– Sensitive to noise on bias voltage line 

tt CLpv
⋅

= 1
tC pv
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Distributed MEMS phase shifters 

• Capacitive shunt switches loading the line 
– Beam over centre electrode in a co-planar wave guide, CPW 
– Beam pulled down by a electrostatic force controlled by DC voltage relative to 

the bottom electrode (< pull-down voltage!) 
– Gap determines the distributed      

 MEMS-capacitance 
• ”loaded” TL-impedance changes 

– Can be modeled by simple     
 analytical expressions 

– Good for broad bandwidth signals 
 
 

• Periodic loading by shunt capacitors gives a “Bragg-frequency” 
limiting the maximum frequency of operation (“grating” effect) 
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Formulas for lossless and loaded lines 

Lossless line 
ε = dielectric constant 
µ = magnetic permeability 

Time delay per section 

Loaded line 

Time delay per section 
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Challenges for MEMS shunt-switch phase shifters 

• Low switch speed (μs)  slow adaptation to given delay 
• High actuation voltage, Vs = 20 – 100 V 

– Vs reduced by reducing the gap 
• Complex fabrication (yield) 
• Parasitic up-state capacitance contributes significantly  
• More sensitive to pull-in 

– Vs reduced by using materials with lower Youngs modulus 
• Use  polymers (E = 5 GPa, metals have 50 – 100 GPa) 
• Polymers can give 1/3 actuation voltage compared with metals 
• [How to use micro stereo lithography to fabricate such structures is 

described in Varadan (not syllabus)] 

•  Good enough properties for phased array 
antennas 
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Digital phase shifters with series-switches 

 
 
 
 
 
 

• Working principle 
– Different line paths switched in/out 
– Interconnections through switches 

• Switches for ”180°, 90°, 45°, 22.5°, 11.25° -sections in a cascade 
arrangement 

• Several bits used 
– Controlling line sections individually 
– F.ex. 3 bits: 45/90/180° give phase shift 0, 45, 90, 135, … , 315° 
– 3 bit and 4 bit phase shifters have been demonstrated 
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Digital MEMS phase shifters 

• Based on MEMS switches  
• MEMS switches have high performance! 

 
– Negligible actuation power  
– Negligible standby power consumption 
– Low insertion loss 
– High isolation 
– Limited speed, 1 – 30 μs  

• Not always critical! 
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Rockwell’s 35 GHz MEMS phase shifter 
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Main types of digital phase shifters (De Los Santos) 
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Digital phase shifters, contd. 
• Switched line 

– Single-pole double throw (SPDT) 
– Differential phase shift given by  

 

 
• Loaded line 

– Switchable stubs introduced 
• Give contribution to phase shift 

– Each stub is terminated by a switch 
to ground 

• Phase shift depending on the 
existing/non-existing ground 
connection 

( )shortlong ll −=∆ βϕ
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Digital phase shifters, contd. 

• Switched LP/HP –filter 
– Use  dual lumped LC-circuits 
– Choose between two circuits with 

different phase delays 
• LP = phase delay 
• HP = phase advance 
• Input/output impedance can be  

chosen to Z0 

 
– Phase shift between the two 

settings can be calculated 
– Compact implementation possible 
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Reflection type phase shifters 
• Two-port terminated by short- 

circuited transmission lines with 
electrical length  

 
 

– If MEMS switches are connected to 
ground: The termination will reflect 
the signal with a smaller delay than 
if the switches were open  

– Two equal terminations  the lines 
are balanced 

• A special  Lange coupler is used 
– The signals are reflected and 

added in phase at the output port 
(”short circuit termination”) 

2/ϕ∆
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Reflection type phase shifter, N-bit 
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Reflection type phase shifters, contd. 

• Properties 
– Electric distance between switches is half the lowest 

bit resolution 
 

– Reflection type phase shifters have small dimensions 
• Give double phase delay per unit length compared to 

switched line topology 
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2 bit distributed phase shifter 

Choose upper and/or  
lower section 
 
Each section implemented 
by shunt capacitive line 
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Today’s lecture 
• Phase shifters 

– Functionality 
– Applications 
– Technology 
– Analog phase shifters 
– Digital phase shifters 

 
• Mechanical resonators 

– Basic principles 
– Operating principles for basic resonator structures 
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Mechanical resonators 

• Basic principles  
• Various types of resonators 
• Typical properties 

 
• Working principle for  

– Comb-resonator 
– Clamped-Clamped (c-c) beam resonator 
– ”free-free (f-f) beam” resonator 
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Basic principles 
• Simple oscillating mechanical system: mass/spring with damping 

– Amplitude increases when f  fr 
• Large oscillations close to the natural resonance frequency                

(non-damped resonance frequency) 
– Limited by damping 
– Electrical equivalents, 2 types: series or parallel combination of C, L and R 

(small) 
– Resonance when reactances cancel each other 
– Can calculate resonance frequency from the s-polynomial for the oscillating 

circuit 
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Q-factor for oscillating circuits 

• Q-factor limited by resistive loss 
• High Q gives large displacement at resonance frequency 

– Higher peak, smaller bandwidth 
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Today´s resonators 

 
• Quarts crystals used a lot 

– Q  10,000 
 

• RCL-resonators 
– Q < 1,000 
– Resistive, parasitic loss 
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Different resonator types 

 We focus on real vibrating resonators! 
Ionescu, EPFL 
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Typical properties 
• Vibrating resonators can be scaled down to micrometer 

lengths 
– Analogy with IC-technology 
– Reduced dimensions give mass reduction and increased spring 

constant  increased resonance frequency 
 

• Vibrating MEMS resonators can give high Q-factor 
 

• MEMS resonators with high Q over a large bandwidth 
and integrated with electronics enable effective 
miniaturization of complete systems! 
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MEMS resonators 

• MEMS resonators can be used for basic 
circuit functions 
– Frequency reference: oscillator 

•  Can be realized without external discrete passive 
components! 

• Relevant frequencies for MEMS resonators 
– 0.8 – 2.5 GHz for front-end wireless systems 
– 500 kHz  for IF frequency 

– Filtering 
– Mixing and filtering (”mixlers”, Nguyen) 
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Vibrating MEMS resonators 

• Classification (De Los Santos) 
 
– One-port: same electrode used for excitation 

and detection of beam vibration 
 

– Two-port: separate electrodes for excitation 
and detection of the vibrating beam structure 
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Lateral and vertical movement 

• Lateral movement 
– Parallel to substrate 
– Ex.: Folded beam comb-structure 

• Vertical movement 
– Perpendicular to substrate 
– Ex.: clamped-clamped beam (c-c beam) 
– ”free-free beam” (f-f beam) 
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Working principles for basic resonator structures 

 
• Resonator using folded beam comb-structure 

– Developed at UoC, Berkeley 
– One of the earliest resonator designs fabricated 

 
• Comb-structures are in general used in many types of 

MEMS systems 
– For example used for accelerometer, gyro, variable 

capacitance 
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Comb-resonator 
• Fixed comb + movable, suspended comb  
• Using folded springs, compact layout 
• Total capacitance between combs can be varied 
• Applied voltage (+ or -) generates electrostatic force between left anchor comb and 

”shuttle”-comb. Plate pulled left laterally controlled by drive voltage 
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Comb-resonator, spring constant 

• Spring constant for 
simple c-c beam 
deflected to the side 
– k_beam = 4* ¼ * E * t * 

(w/L) ^3 
• E = Youngs 

modulus, t = 
thickness, w = width, 
L = length 

• eg. 4 folded= 4 *¼ 
(¼ for each 
cantilever) 

• In figure k_total = 2 * 
k_beam 
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Comb-resonator, mass 
• m-contributions to resonance frequency 

– Spring moves less than shuttle mass 
– Beam mass is partly added to shuttle mass 

 



42 

Comb-resonator, summary 
• Summary of modeling: 
• Force: Fe = ½ dC/dx V ^2 (force is always attractive) 

– Input signal Va * cos (ωt) 
– Fe ~ Va^2 * ½ [1 + cos (2ωt)] 
– Driving force is 2x input frequency + DC: NOT DESIRABLE 

• Add DC bias, Vd  
– Fe ~ Vd ^2 + 2 Vd * Va * cos ω t + negligible term (2ωt) 
– Linear AC force-component ~ Vd * Va, has same frequency as 

Va: ω. Is emphasized! 
• C increases when finger-overlap increases 

– ε * A/d        (A = comb thickness * overlap-length) 
• dC/dx = constant for a given design (linear change, C is 

proportional to length variation) 
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Comb-resonator, output current 

• A time varying capacitance at the output comb is 
established 
– Calculating of output current when Vd is constant and 

C is varying 
• I0 = d/dt (Q) = d/dt (C*V) = Vd * dC/dt = Vd * dC/dx * dx/dt 
• I0 = Vd * dC/dx * ω * x_max 
• I0 plotted versus frequency, shows a BP -characteristic 

 

– Detailed modeling in next lecture! 
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Feedback  oscillator  

• Structure can have 
2 output ports 
– Feedback is 

isolated from any 
variation of output 
load 

– Ex. 16.5 kHz 
oscillator, Q = 
50.000 in vacuum 

Nguyen, 1995 
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Micro resonator oscillator 

Nguyen, 1993 
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Design parameters for comb-structure 

• To achieve high resonance frequency 
– Total spring constant should increase 
– Or dynamic mass should decrease 

• Difficult, since a given number of fingers are needed for electrostatic 
actuation 

– k and m depend on material choice, layout, dimensions 
• E/ρ expresses the spring constant relative to mass 

– Frequency can increase by using a material with larger E/ρ ratio 
than Si 

• Aluminium and Titanium has E/ρ lower than for Si 
• Si carbide, poly diamond has E/ρ  higher than for Si (poly diamond 

is a relevant research topic) 

• Alternatively: use of other structures  
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Beam-resonator 

• Obtain higher resonance frequency than comb structure  
– Mass must be reduced more  beam resonator 

• Studied in detail at UoMichigan 
– Commercialized by Discera, Inc., Ann Arbor, Michigan 

• Produces reference frequency oscillators substituting quarts crystals in 
mobile phones 
 

• Clamped-clamped beam 
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Beam-resonator, contd. 
• Electrode under beam, electrostatic actuation 
• Plate attracted for both positive and negative wave. Actuated with double 

frequency 
–  Need a polarization voltage, Vd, between beam and actuation electrode 
– As for ”lateral shuttle”: When Vd is combined with ac-signal, then beam 

oscillates with same frequency as ac signal 
– At resonance the amplitude is maximum 
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Beam-resonator, contd. 
• Detection of output signal 

–  Mechanical vibrations 
establish a time varying 
capacitance with constant 
voltage, Vp, on the beam 

– Q = Vp * C will then vary 
– A displacement current is 

generated  
• i0 ~ dC/dx * dx/dt 
• I0 versus frequency shows 

a BP -behaviour 
– Q ~ 10,000 in vacuum 



50 

Benefits of beam-resonators 

• Simple structure 
 

• Smaller dimensions, smaller mass  higher resonance 
frequency 
 

• Can have many frequency references on one single chip 
 

• More linear frequency variation with respect to temp over 
a larger interval 
 

• Integration with electronics possible  reduced cost 
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c-c beam 

• c-c beam can be used as a reference-oscillator 
or HF/VHF filter/mixer 
 

• An example: poly beam [Nguyen et al] 
– l = 41 μm, w = 8 μm, t = 1.9 μm 
– g = 130 nm, Vd = 10 V, va = 3 mV 
– fr = 8.5 MHz 
– Deflection amplitude = 4.9 nm at beam centre 
– Q = 8,000 at 9 Pa 
– Q < 1,000 at 1 atm 

• Reduction of Q at 1 atm! 
 
 

 



52 

Loss in c-c-beam 
• Reasons for Q degradation for MEMS resonators 

– Energy loss to substrate via anchors 
– Air/gas damping 
– Intrinsic friction 
– Small dimensions (low stored energy compared with energy loss) 

 
• To obtain higher resonance frequency: stiffness of a given resonator 

beam has to be increased 
– More energy pr cycle leaks to substrate via anchors 
–  Q-factor decreases 

 
• c-c-beam is not the best structure for high frequencies! 

– Eks. Q = 8,000 at 10 MHz, Q = 300 at 70 MHz 
•  ”free-free beam” can be used to reduce substrate loss via 

anchors! 
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”free-free-beam” 
• f-f-beam is suspended with 4 

support-beams in width-
direction 
– Torsion-springs 
– Suspension points at nodes 

for beam ”flexural mode” 
• Support-dimension is a 

quarter-wavelength of f-f-
beam resonance frequency 
– The impedance seen at the 

nodes is infinite preventing 
energy propagating along 
the beam to the anchor  

– Beam is free to vibrate as if 
it was not anchored 

– Beneficial for reducing 
energy loss via anchors to 
substrate 

Nguyen, 1999 
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free-free-beam 
• Higher Q can be obtained with f-f-beams 

– Ex. Q= 20,000 at 10 – 200 MHz 
– Used as reference oscillators, HF/VHF-filters/mixers 

 Other structures, vibrating discs, in a future lecture 
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