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Today’s lecture 

• Lateral vibrating resonator: 
  Comb resonator 

 
– Working principle  
– Detailed modeling 

• A) ”phasor”-modeling 
• B) modeling by converting between mechanical 

and electrical energy domains 
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Lateral and vertical movement 

• Lateral movement in the resonator 
– Parallel to substrate 
– Folded beam comb structure 

• Vertical movement (next lecture) 
– Vertical to substrate 
– clamped-clamped beam (c-c beam) 
– free-free beam (f-f beam) 
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Comb resonator 
• Fixed comb + movable, suspended comb  
• Suspended by folded springs, compact layout 
• Total capacitance between the combs can be varied 
• Applied bias (+ or -) generates an electrostatic force between left anchor-comb and 

”shuttle”-comb. Shuttle pulled to the left in the plane 
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Detailed modeling 

• Modeling of lateral comb structure 
– A) ”Phasor”-modeling ala UoC, Berkeley 

• Detailed calculations included 
– B) Conversion between energy domains 

• Material from UCLA 
 

• In next lecture, LN09, the c-c beam will be modeled with reference 
to the book 
– T. Itoh et al: RF Technologies for Low Power Wireless 

Communications”, chap. 12: ”Transceiver Front-End Architectures Using 
Vibrating Micromechanical Signal Processors”, by Clark T.-C. Nguyen 
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Calculation procedure 
• A. Model the comb as a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 
• F. Compare the expression to Y for a L-C-R-circuit and find equivalent 

elements 
• G. Define and set up an equivalent circuit for the input port 
• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 
• J. Set up a two port equivalent circuit 
• K. Set up a complete two-port-model 
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A. Model the comb as a two-port. Analyze first the 
input port 
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VP1 = positive when VP >V1 
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B. When the comb moves the input capacitance 
will have a static and variable component 
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C. Find the input current versus displacement, X 

double frequency, small contribution 



11 

t
tx

x
CV

t
tvCti P ∂

∂
∂
∂

−
∂

∂
≈

)()()( 1
1

1
011

)()(

)()()(

1
11

1
1

1
11

ωωω jXj
x
CVjI

t
CV

t
tx

x
CVti

Px

PPx

⋅⋅
∂
∂

−=

∂
∂

−=
∂

∂
∂
∂

−=

Current into the DC-capacitance ”motional current” 

phasor-form of ”motional current” 

”motional current” 

= current as function of movement (“displacement”) 
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D. Calculate the input admittance, Y (”motional 
admittance”) 

• D1. Find Y versus X 
 
 
 
 
 
 
 

• D2. X depends on the electrostatic force, F, and m, b and k  
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D3. F depends on the applied bias, V 

Relationship between force and voltage can be found from: 

Potential energy, vD is independent of x 

non-linear relation 

Linearizing around a DC-point 

Substitute 

Comparing AC-terms 

 LINEAR RELATION! 
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In phasor-form 

Relation between displacement and force: 

Substitute 

D2. X depends on the electrostatic force,  
      F, and m, b and k  
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E. Find an expression for Y (dynamic behavior) 

 η defined 
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Calculation procedure 
• A. Model the comb as a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 

• F. Compare the expression to Y for a L-C-R-
circuit and find equivalent elements 

• G. Define and set up an equivalent circuit for the input port 
• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 
• J. Set up a two port equivalent circuit 
• K. Set up a complete two-port-model 
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F. 
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Current through the L-C-R-circuit 
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At resonance the impedances from L and C cancel 
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Calculation procedure 
• A. Model the comb as a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 
• F. Compare the expression to Y for a L-C-R-circuit and find equivalent 

elements 

• G. Define and set up an equivalent circuit for the 
input port 

• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 
• J. Set up a two port equivalent circuit 
• K. Set up a complete two-port-model 
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G. 
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Calculation procedure 
• A. Model the comb is a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 
• F. Compare the expression to Y for a L-C-R-circuit and find equivalent 

elements 
• G. Define and set up an equivalent circuit for the input port 

• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 
• J. Set up a two port equivalent circuit 
• K. Set up a complete two-port-model 
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H. Find the output current for a given input  

This displacement causes the output capacitance C2 also to change. 
Output current due to displacement (v2 = 0V, short-circuited): 

In phasor-form 

voltage  force  displacement  current 
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currents (”forward current gain”) 

”Forward current gain” 
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Calculation procedure 
• A. Model the comb is a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 
• F. Compare the expression to Y for a L-C-R-circuit and find equivalent 

elements 
• G. Define and set up an equivalent circuit for the input port 
• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 

• J. Set up a two port equivalent circuit 
• K. Set up a complete two-port-model 
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J. 
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Calculation procedure 
• A. Model the comb is a two-port. Analyze first the input port 
• B. When the comb moves the input capacitance will have a static and a 

variable component 
• C. Find the input current versus displacement, X, when the comb moves  
• D. Calculate the input admittance, Y (”motional admittance”) 

– D1. Find Y versus X 
– D2. X depends on the electrostatic force, F, and m, b and k 
– D3. F depends on the applied bias, V 

• E. Find an expression for Y (dynamic behavior) 
• F. Compare the expression to Y for a L-C-R-circuit and find equivalent 

elements 
• G. Define and set up an equivalent circuit for the input port 
• H. Find the output current for a given input 
• I. Calculate the ratio between the output and input currents (”forward current 

gain”) 
• J. Set up a two port equivalent circuit 

• K. Set up a complete two-port-model 
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K. 
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Alternative modeling 

• B) Exploit conversion between mechanical 
and electrical energy domains 
– Slides from UCLA 

 
• Supported by lecture notes  
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Conversion between energy domains 

• Both vertical and lateral resonator structures may 
be described by a generalized non-linear 
capacitance, C, interconnecting energy-
domains 

Electrical domain Mechanical domain 

Interconnecting where there is  no energy loss 

Transducer  
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Procedure  
• First, transform the mechanical domain impedances to 

an electrical representation  
– The mechanical components are modeled as lumped electrical 

components 

• NB! You are still in the mechanical domain! 
– C = 1/k 
– L = m 
– R = b 

 
 

• Power-variables 
– Effort = force  voltage 
– Flow = velocity  current 
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Interconnecting different energy domains 

• 1. Each energy domain is transformed to its electrical 
equivalent 

• 2. Domains are interconnected by a generalized non-
linear capacitance, C 

• 3. Transformer and gyrator may be used for 
interconnecting if a linear relationship exists between 
the power-variables! 
– Problem: Transducer C is generally NOT a linear 2-port 

• 4. Then, must linearize the 2-port transducer to be able 
to substitute it with a transformer 

• 5. The transformer can ”be removed” by recalculating the 
component values to new ones 
–  Electromechanical coupling coefficient used! = turn ratio 
–  Results in a common circuit diagram 
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Interaction between energy domains 

• Suppose linear relation between power variables 
–  A linear 2-port element can be used: 
– Use a transformer or gyrator 

power in = power out      NO POWER LOSS 
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Transformer  

n = ”turns ratio” 
Ex. V and F can be interconnected 



37 

Gyrator  
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The impedances can be transformed 

n = coupling coefficient between 
   energy domains 
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Procedure  

• Investigate relation between ”efforts” and 
”flows” in the 2 domains 

• Efforts: calculation procedure 
– 1. Start with an expression for potential 

energy 
– 2. Calculate force 
– 3. Look at perturbations around the DC-bias 
– 4. Find the relationship between AC-terms 

•  A linear relationship is obtained! 



42 

effort (mechanical domain) = const. * effort (electrical domain) 

Relation between ”efforts” 



43 flow (electrical domain) = - const. * flow (mechanical domain) 

Similarly for relationship between FLOWS: 
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Current direction, mechanical domain 

• Flow in the mechanical domain is defined as positive 
into the 2-port transducer  

• Choose the current to go out of 2-port C. Then we have: 
– Current goes into the electrical domain 
–  creates an attractive force on the comb 
–  spring stretches  
–  potential energy is built up 
–  equivalent to charging of an 1/k-capacitor 

 
– Current increases  charge on the capacitor increases  

attractive force increases  displacement (x) decreases 
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Compatible relations both between ”efforts” 
and ”flows” 

 
 
 
 
 

• effort (mechanical domain) = n * effort (electrical domain) 
• flow (mechanical domain) = -1/n * flow (electrical domain) 

 
• A linearized capacitive transducer implemented as a 

transformer can be used! 
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Transformation of impedances 
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Both methods result in the same equivalent circuit: 
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Comb resonator, summary 
• Summary of modeling: 
• Force: Fe = ½ dC/dx V ^2 (force is always attractive) 

– Input signal Va * cos (ωt) 
– Fe ~ Va^2 * ½ [1 + cos (2ωt)] 
– Driving force is 2x input-frequency + DC: NOT DESIRABLE 

• Add DC bias, Vd  
– Fe ~ Vd ^2 + 2 Vd * Va * cos ω t + negligible term (2ωt) 
– Keep linearized AC force-component ~ Vd * Va, which oscillates 

with the same frequency as  Va: ω 
• C increases when finger-overlap increases (comb 

moves) 
– ε * A/d        (A = comb-thickness * overlap-length) 

• dC/dx = constant for a given design (linear change, C is 
proportional to length-variation) 
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Comb-resonator, output current 

• A time varying capacitance is established 
at the output comb 
– Calculate output current when Vd is kept 

constant and C is varying 
• I0 = d/dt (Q) = d/dt (C*V) = Vd * dC/dt =                    

Vd * dC/dx * dx/dt 
• I0 = Vd * dC/dx * ω * x_max 
• I0 plotted versus frequency, shows a BP-

characteristic 
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Comb-resonator, spring constant 
 

• Spring constant for simple beam deflected to the side 
– k_beam = const * E * t * (w/L) exp3 

• E = Youngs modul, t = thickness, w = width, L = length 

• Example in figure 7.9: 
– const = 1 = 4 * ¼ (e.g. cantilevers)  
– k_total = 2 * k_beam 
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Design parameters 
• To obtain a higher resonance frequency: 
• Total spring constant must increase 
• Dynamic mass must decrease 

– Difficult to achieve because a minimum number of fingers are needed 
• To have good electrostatic coupling (voltage  force) 

– Process resolution determines how small the lateral structures can be 
fabricated (geometrical design rules) 
 

• Frequency can be increased by using  another material with larger 
E/ρ than Si 
– E/ρ is a measure of the spring constant relative to weight 

• Elastic modulus versus material density 
– Aluminum and titanium has E/ρ lower than Si 
– Si carbide, poly diamond has E/ρ  higher than for Si (poly diamond is a 

research topic) 
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