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INF5490: topics 

• Course title: ”RF MEMS” 
– 2 parts: RF and MEMS 
– Description and modeling of different RF 

MEMS components in focus 
 

• This lecture: 
– MEMS components used in RF systems 
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Today’s lecture 

• Wireless communication  
– Different coding principles for RF transmission 

 

• Technology and components used in RF 
systems 

 

• Transceiver with RF MEMS 
– ”RF receiver front-end” architecture 
– Transmitter architecture 

 

• Relevant research topics 
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Wireless communication 

• Radio waves are used for transmitting/receiving 
– Electromagnetic waves (Maxwell´s equations apply) 

• Radio ”transceiver” is a basic component 
– Transmitter + Receiver 

• RF systems must 
– Transfer power at a specific frequency 
– Use a limited bandwidth 

 
• Filtering needed to separate channels 
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General communication system 

Bit streams are modulated (coded) onto a carrier 
 
Radio channel introduces noise, interference, disturbances 
 
Receiver shapes the signal for demodulation 
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Different coding principles 
• Many different modulation schemes exist 

– F.ex. BFSK, Binary Frequency Shift Keying 
– Transfering digital data 
– Coding bits to 2 different frequencies (Tb is bit-

duration) 
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Demodulation BFSK 

• Coherent demodulator 
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BPSK 
• Binary Phase-Shift Keying 
• Modulate phase onto carrier 

– Phase changes 180 degrees from 0 to 1 (+ π) 
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Demodulation BPSK 
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QPSK 
• Quadrature Phase-Shift 

Keying 
• Having more than 2 

representations of input data 
– Input is combined into  bit-

groups 00,01,10,11 

• Half bit rate in each channel 
• Demultiplexer sends every 

second bit up or down 
• I and Q-channels are 90 

degrees out of phase 
– In-phase component and 

quadrature component 
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QPSK, contd. 
• QPSK demodulation 

– Sin and cos-signals are orthogonal 
– Each channel is demodulated independently as for BPSK 

 

 
 
 

 
• QPSK is an ex. of quadrature modulation where the bit 

flow is split into pairs of bits (dibits) 
– Each dibit is mapped into four levels before modulation 
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Offset QPSK: modulator 
• Each transmitting channel is non-ideal, having finite 

bandwidth:  
–  Offset QPSK can be used 
– Time delay Tb introduced in Q-channel 

• Offset = half the symbol period (2 Tb = period) 
• Hinders simultaneous signal transitions at A and B 
• Smaller phase shift. Lower requirements to channel bandwidth 
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Minimum Shift Keying 
• Avoid large phase shifts at the end of each symbol! 

– Large, fast changes in phase mean large symbol bandwidth 
– Solution: Multiply channel signals with half sine pulses instead 

of rectangular pulses 
 

• This is an example of MSK, Minimum Shift Keying 
– Continuous phase shift: not abrupt change of phase and no fast 

signal change 
 

• MSK has a larger decrease in its spectrum than QPSK 
– Lower sidelobe signal influence 
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Receiver architecture 
• Input filter, BPF1 

• Band selection filter 
• Narrow band RF filtering 
• Reduces Gauss noise and interference 
• Compromise, otherwise impractical. Good RF filtering is 

costly 
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Receiver, contd. 

• LNA, RF amplifier (Low Noise Amplifier) 
– Requires high gain due to low SNR  
– LNA amplifies also interference/noise  Saturation can result 
– High gain means high BPF1 requirements 

• ”Compromise”: the BPF1 must be practical 
– LNA is non-linear, adds also internal noise 

• Generates intermodulation products from interference 
• These may have the same frequency as the signal and be destructive 
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LNA – Low Noise Amplifier 

• Amplifier is typical non-linear 
– Output may be a 3rd order polynomial of the input 

signal  
 

 

– For a single frequency input signal, double and triple 
frequencies are generated 

Harmonics are generated (3. harmonic) 
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Architecture, contd. 

• Anti-image filter used before mixing, BPF2 
• Mixing 

• Frequency transformed to Intermediate Frequency, IF 
• Variable or fixed local oscillator (LO) -frequency 
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Mixing  
• Mixing is mathematically equivalent to 

multiplication 
• Multiplication of 2 frequencies,         

– Intermediate frequency generated            which is the 
difference between         and   
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imageω rfω ifω
• Suppose a frequency 

–              =             -       2 x  
– The frequency is below the oscillator frequency 
– Calculations show that this is mixed to the same IF  

ifω
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Mixing of image frequency with local oscillator frequency 

 Same intermediate frequency generated! 
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BPF2 Image rejection filter 
• Must remove image frequency 

using a filter, BPF2 
– For low IF, the difference is small, 

interference may come from 
neighboring channels within the 
transmission standard 

– For high IF, the difference is large, 
interference may come from 
signals following other standards 

• ”Trade-offs” between the various 
filters 

– Must select correct channel 
– On the same time remove  

• Image-frequency 
• Other interfering frequencies 
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Architecture, contd. 

• Following band-pass filter, BPF3 
• Operates at  intermediate frequency, IF 
• Not so high Q-factor requirement, - more practical to 

implement 

• Amplifier at IF 
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Transition to RF results in 

• Increased frequency:  
–  Shorter wavelength 

• in vacuum:         

–  Signals vary over short distances 
• voltage V, current I  

 
–  Smaller component dimensions required 

• High precision fabrication required 
•  micro machining 

cf =⋅λ
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Present technology 

• Technology and components used today 
– Discrete, passive components with good properties 

• R, C, L 
• Ex. Crystal oscillators, inductors 

– Such components needed due to high performance and 
precision requirements 

– Off-chip solutions are the result 
• PCB assembly of discrete components 
• Systems take a lot of space 
• Integrated solutions not possible 

 
– Active components 

• Amplifiers, switches 
• GaAs, bipolar Si, CMOS Si, PIN-diodes 
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Present RF technology has limitations 

• The discrete components have limited performance 
– Conventional PIN-diodes are inefficient for high frequencies 

 

• High performance RF filters are especially difficult to 
implement 
– High Q-factor is difficult to achieve 
– Costly 

 

• Systems may not be fully integrated 
– PCB implementations 
–  Efficient integration is important for reducing cost, volume and 

increasing reliability 
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Transceivers using RF MEMS  
• How micromechanical circuits can be used in 

communication systems 
 

• Ex.: ”RF receiver front-end”-architecture 
– A. Direct substitution of off-chip passive 

components 
– B. Special RF MEMS blocks 
– C. RF front-end with only mechanical components 

 
• Architectures are somewhat ”speculative” 

– We are not there yet! 
– Gives motivation for further progress! 
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Transceivers using RF MEMS  
• How micromechanical circuits can be used in 

communication systems 
 

• Ex.: ”RF receiver front-end”-architecture 
– A. Direct substitution of off-chip passive 

components 
– B. Special RF MEMS blocks 
– C. RF front-end with only mechanical components 

 
• Architectures are somewhat ”speculative” 

– We are not there yet! 
– Gives motivation for further progress! 
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A. Direct substitution 
• Different types of MEMS-based components 

–  Inductors with medium Q-value 
– Tunable capacitors (varactors) 

• Used in VCO and matching networks 
– Low loss MEMS switches (~0.1 dB) 

• Increases flexibility of antenna 
– Resonators 

 
• Used for 

– RF-filters (replace ceramic filters) 
• ”preselect filter”, ”image-reject filter” 

– IF-filters (replace SAW filters) 
•  ”channel-select filter” 

– Crystal reference oscillator 



32 Itoh et al, fig 12.1 
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Benefits of MEMS substitutes 
• Reduction of dimensions 
• Possible integration 

– Multi-chip 
– Monolithic 

• Power reduction 
• More flexibility for impedance 

matching of MEMS filters 

• Termination impedance 
matched to the following LNA 
(Low Noise Amplifier) 
– ”Higher” (than 50 Ω) LNA input 

impedance can be used  
power reduction and reduced 
noise 
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Transceivers using RF MEMS  
• How micromechanical circuits can be used in 

communication systems 
 

• Ex.: ”RF receiver front-end”-architecture 
– A. Direct substitution of off-chip passive 

components 
– B. Special RF MEMS blocks 
– C. RF front-end with only mechanical components 

 
• Architectures are somewhat ”speculative” 

– We are not there yet! 
– Gives motivation for further progress! 
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B. Special  RF MEMS blocks 

• Figure shows 3 basic blocks that are substituted by RF 
MEMS 
– B1. Switchable RF channel-select filter bank 
– B2. Switchable micromechanical frequency synthesizer 
– B3. Micromechanical mixer-filter block 
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B1. Switchable RF channel-select filter bank 

• Idea 
– Use many, simple, non-

tunable filters with high Q 
– One for each channel, - 

switched on command 
– A communication standard 

needs 100 – 1000 of filters  
 

• Block diagram 
– Common input and output 
– Controlled by Vp from 

decoder 
• With no Vp the outputs are 

effectively ”open-circuited” 
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Use of RF filter bank 
• Narrow RF channel can be selected directly  

– Signal will not be influenced by adjacent channels  
– A succeeding electronic block can be simplified! 

 
• LNA can be simplified! 

– Dynamic range can be reduced, meaning reduced power consumption 
– Less stringent requirements to IIP3 (intermodulation product 3) gives an 

order of magnitude reduction in LNA power consumption: 
• Ex. CDMA cell phone, test results: 
• Single tone signal 900 kHz outside of centre frequency 
• LNA IIP3 > + 7.6 dBm by conventional implementation (intermodulation!) 
• By using a filter bank the tone is damped 40 dB  IIP3 < -29.3 dBm 

– Requirements to LNA linearity is reduced 
• Then LNA gain can be increased  improving SNR for the following blocks 

– Reduced phase noise requirements for LO (Local Oscillator)  
•  also power reduction 
• On-chip implementation of LO might be possible 
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B2. Switchable  MEMS frequency synthesizer 

• Implementing VCO with  MEMS resonators 
– Oscillator can be implemented using a switchable resonator bank 
– Resonators oscillate with the frequencies needed for the given 

standard 
– Resonators must have high Q and should be thermally stabilized 

(mechanically or by electronic compensation) 
• Might allow the VCO to operate without crystal reference 
•  significant power reduction, f.ex. 90 nW versus 1-4 mW 
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B3. Micromechanical mixer-filter 
• Use of a micro-machined mixer-filter eliminates the DC power 

consumption compared to what present commercial mixers need 
• Two input ports used in the mixer-filter: one for RF, one for LO 

– RF-input port can be made capacitive 
– Output port can be tailored to a specific impedance level 
–  LNA can be simplified and does not need a separate impedance matching 

circuit 
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Transceivers using RF MEMS  
• How micromechanical circuits can be used in 

communication systems 
 

• Ex.: ”RF receiver front-end”-architecture 
– A. Direct substitution of off-chip passive 

components 
– B. Special RF MEMS blocks 
– C. RF front-end with only mechanical components 

 
• Architectures are somewhat ”speculative” 

– We are not there yet! 
– Gives motivation for further progress! 
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C. RF front-end with RF MEMS only 

• Do we need LNA for RF? 
– Use of relatively broadbanded ”image-reject” MEMS RF filter 

followed by a narrowband IF-mixer-filter 
• The only active RF-component are then the LO  
•  This gives low power consumption 
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Benefits of using RF MEMS only 

• System is power efficient 
– Power consumption of LNA and mixer eliminated 
– Can increase standby-time for cell phones significantly! 

 

• Some of the actual components have already been 
demonstrated 
– Filter and mixer circuits 
– Ex. image-reject filters at UHF with 3 dB insertion loss has been 

demonstrated 
 

• A promising implementation technology is to use high Q 
f-f- beams 
– Higher frequencies than c-c beam 
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RF MEMS transmitter architecture 

• Little done in using RF MEMS in transmitters 
– Due to lack of high power capability 

• Transmitting power is a significant parameter 

• Active research being performed on this matter 
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RF MEMS transmitter architecture 
• RF MEMS channel selector can be placed after PA (”power 

amplifier”) 
– Use MEMS filter bank 
– MEMS resonators should sustain high power, have high Q and low ”insertion 

loss” (<1 dB) 
– ”Pure signals” are sent out 
– + PA requirements may be reduced, since all spectral noise due to non-

linearity in the PA is filtered out after the PA! 
• Architecture may give significant reduction of power consumption 
• ”Up-converter” can be realized using MEMS mixer-filter structure 
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Relevant research topics 

• Remember: The architectures shown are to 
some extent based on resonators with 
performance not yet achieved 
 

• Research topics 
– 1. Obtain required high Q at UHF 
– 2. Set specific impedance levels 
– 3. Good enough linearity and capability to sustain 

power  
– 4. Efficient integration methods 
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1. Frequency and Q-value 
• Frequency 

– What frequency range can be covered? 
– Structures/ geometry are critical issues 

• Research shows that 10 MHz – 2.5 GHz can be achieved by using 
realistic element dimensions 

• Today components exist that have Q ~ 1000 at 3 GHz 
– Absolute value and tolerances in resonance frequency 

• Depends on fabrication, trimming and tuning 
– Stability of resonator frequency 

• Dependent on temperature variations and aging 
• Competing resonator types for high frequency and Q 

– ”Thin-film Bulk Acoustic Resonators” 
• High frequencies (UHF and over), Q > 1000 

– Use of piezolectric materials 
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Frequency and Q-value, contd. 

• Q-factor 
– Energy loss in material influences Q value 

• Q-factor depends on 
– Material type 
– Fabrication process 

• Surface cleanness 
• Doping: diffusion and implantation give different properties 

– Damping 
– Loss via anchors 

• ”Anchor-less” structures: f-f beam is beneficial 
• Balanced tuning fork structure 
• Disk resonators 
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2. Custom-set impedance level 

• Serial ”motional resistance”  is often high 
 

• Value of resistance should be matched 
directly to other transceiver components 
– Components before and after resonator 

 
• Should be ~ minimized 

– Realistic requirements: some hundred Ω´s 
– Value depends on how small the gap, d, can be 

made 

QR
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Resonator impedance 

• ”Motional” impedance and gap for 2-resonator structures 
– Ex. By reducing gap (ca. 140  70 Å) the resonance impedance will be 

reduced from 5000 Ω  300 Ω (870 MHz) 
– BUT this will also degrade linearity! 
–  important to balance linearity requirements to impedance 

requirements 

Itoh et al 
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Example of compromise 
• If impedance matching means that a smaller gap has to 

be used than linearity requirements allow: 
– Eg. d_min for desired impedance matching  <  d_min for desired 

linearity  
 

• Solution: use several micromachined parallel filters 
– With identical frequency response 
– F.ex. 10 filters in parallel with R_Q = 2000 Ω give R_Q_total = 2000 Ω 

/10 = 200 Ω 
 

• Parallel filters also increase power capability!  
– 10 filters in parallel with 10 mW each, give totally 100 mW 
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3. Linearity and power capability 
• Linearity and power capability are reduced when 

dimensions get smaller 
– Present ceramic or SAW filters have very high linearity 

• MEMS structures based on c-c beams have OK linearity 
– Good enough, except for some standards allowing 

simultaneous transmit and receive 
• Ex. CDMA needs transmit-reject filter in front of the receiver filter 

bank 
 

• Increased power capability 
– Use alternative geometries 
– Use alternative transduction 

• Piezoelectric 
• Magnetostrictive 

– Parallel units 
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4. Efficient integration methods 

• Critical research topics 
– Combination of MEMS with transistors        

on-chip 
• Monolithic integration! 
• CMOS-MEMS 

– Jmfr. Lecture on integration and packaging 
• LN13 
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Thanks to Ulrik Hanke, HVE, for his 
help with translation of RF MEMS slides  
from Norwegian to English in 2008! 
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