INF5490 RF MEMS

LN14: Wireless systems using RF MEMS

Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF5490: topics

- Course title: "RF MEMS"
 - \rightarrow 2 parts: **RF** and **MEMS**
 - Description and modeling of different RF MEMS components in focus
- This lecture:

- MEMS components used in RF systems

Today's lecture

- Wireless communication
 - Different coding principles for RF transmission
- Technology and components used in RF systems
- Transceiver with RF MEMS
 "RF receiver front-end" architecture
 - **Transmitter** architecture
- Relevant research topics

Wireless communication

- Radio waves are used for transmitting/receiving
 - Electromagnetic waves (Maxwell's equations apply)
- Radio "transceiver" is a basic component
 Transmitter + Receiver
- RF systems must
 - Transfer **power** at a specific **frequency**
 - Use a limited **bandwidth**
- Filtering needed to separate channels

General communication system

Bit streams are modulated (coded) onto a carrier

Radio channel introduces noise, interference, disturbances

Receiver shapes the signal for demodulation

Different coding principles

- Many different modulation schemes exist
 - F.ex. BFSK, Binary Frequency Shift Keying
 - Transfering digital data
 - Coding bits to 2 different frequencies (Tb is bitduration)

Demodulation BFSK

Coherent demodulator

logic 0:
$$s_0(t) = \int_0^{T_b} (A \cos \omega_0 t) (A \cos \omega_0 t - A \cos \omega_1 t) dt = \frac{A^2 T_b}{2};$$
 (1.1)
logic 1: $s_1(t) = \int_0^{T_b} (A \cos \omega_1 t) (A \cos \omega_0 t - A \cos \omega_1 t) dt = -\frac{A^2 T_b}{2}.$ (1.2)

BPSK

- Binary Phase-Shift Keying
- Modulate phase onto carrier

– Phase changes 180 degrees from 0 to 1 (+ π)

Demodulation BPSK

logic 1:
$$s_1(t) = \int_0^{T_b} (-A\cos\omega_0 t)(A\cos\omega_0 t) dt = -\frac{A^2 T_b}{2};$$

logic 0: $s_0(t) = \int_0^{T_b} (A\cos\omega_0 t)(A\cos\omega_0 t) dt = \frac{A^2 T_b}{2}.$

QPSK

- Quadrature Phase-Shift Keying
- Having more than 2
 representations of input data
 - Input is combined into bitgroups 00,01,10,11

- Half bit rate in each channel
- Demultiplexer sends every second bit up or down
- I and Q-channels are 90 degrees out of phase
 - In-phase component and quadrature component

QPSK, contd.

- QPSK demodulation
 - Sin and cos-signals are orthogonal
 - Each channel is demodulated independently as for BPSK

- QPSK is an ex. of **quadrature modulation** where the bit flow is split into pairs of bits (dibits)
 - Each dibit is mapped into four levels before modulation

Offset QPSK: modulator

- Each transmitting channel is non-ideal, having **finite bandwidth**:
 - → Offset QPSK can be used
 - Time delay Tb introduced in Q-channel
 - Offset = half the symbol period (2 Tb = period)
 - Hinders simultaneous signal transitions at A and B
 - Smaller phase shift. Lower requirements to channel bandwidth

Minimum Shift Keying

- Avoid large phase shifts at the end of each symbol!
 - Large, fast changes in phase mean large symbol bandwidth
 - Solution: Multiply channel signals with half sine pulses instead of rectangular pulses
- This is an example of MSK, Minimum Shift Keying
 - Continuous phase shift: not abrupt change of phase and no fast signal change
- MSK has a larger decrease in its spectrum than QPSK
 - Lower sidelobe signal influence

Receiver architecture

• Input filter, BPF1

- Band selection filter
- Narrow band RF filtering
- Reduces Gauss noise and interference
- Compromise, otherwise impractical. Good RF filtering is costly

Receiver, contd.

- LNA, RF amplifier (Low Noise Amplifier)
 - Requires high gain due to low SNR
 - LNA amplifies also interference/noise \rightarrow Saturation can result
 - High gain means high BPF1 requirements
 - "Compromise": the BPF1 must be practical
 - LNA is non-linear, adds also internal noise
 - Generates intermodulation products from interference
 - These may have the same frequency as the signal and be destructive

LNA – Low Noise Amplifier

- Amplifier is typical non-linear
 - Output may be a 3rd order polynomial of the input signal

$$y(t) = \alpha_1 s(t) + \alpha_2 s^2(t) + \alpha_3 s^3(t)$$

For a single frequency input signal, double and triple frequencies are generated

$$y(t) = \alpha_1 A \cos \omega_0 t + \alpha_2 A^2 \cos^2 \omega_0 t + \alpha_3 A^3 \cos^3 \omega_0 t$$

= $\frac{\alpha_2 A^2}{2} + \left(\alpha_1 A + \frac{3\alpha_3 A^3}{4}\right) \cos \omega_0 t + \frac{\alpha_2 A^2}{2} \cos 2\omega_0 t + \frac{\alpha_3 A^3}{4} \cos 3\omega_0 t$

Harmonics are generated HD

$$ID_3 = \frac{1}{4} \frac{\alpha_3}{\alpha_1} A^2 \quad (3. \text{ harmonic})$$

Architecture, contd.

- Anti-image filter used before mixing, BPF2
- Mixing
 - Frequency transformed to Intermediate Frequency, IF
 - Variable or fixed local oscillator (LO) -frequency

Mixing

- Mixing is mathematically equivalent to multiplication
- Multiplication of 2 frequencies, ω_{rf}
 - Intermediate frequency generated ω_{if} with difference between ω_{rf} and ω_{lo}

which is the

 ω_{lo}

 $V_{\rm if}(t) = A \cos \omega_{\rm rf} t \times A \cos \omega_{\rm lo} t$

$$V_{if}(t) = \frac{1}{2}A^{2}(\cos(\omega_{rf} + \omega_{lo})t + \cos(\omega_{rf} - \omega_{lo})t)$$
$$= \frac{1}{2}A^{2}(\cos(\omega_{rf} + \omega_{lo})t + \cos\omega_{if}t)$$

• Suppose a frequency

$$- \omega_{image} = \omega_{rf} - 2 \times \omega_{if}$$

- The frequency is below the oscillator frequency
- Calculations show that this is mixed to the same IF \rightarrow

Mixing of image frequency with local oscillator frequency

$$\cos(\omega_{image} - \omega_{lo})t$$

$$= \cos(\omega_{rf} - 2\omega_{if} - \omega_{lo})$$

$$= \cos(\omega_{rf} - \omega_{lo} - 2\omega_{if})$$

$$= \cos(\omega_{if} - 2\omega_{if})$$

$$= \cos(-\omega_{if})$$

$$= \cos\omega_{if}$$

→ Same intermediate frequency generated!

BPF2 Image rejection filter

- Must remove image frequency using a filter, BPF2
 - For low IF, the difference is small, interference may come from neighboring channels within the transmission standard
 - For high IF, the difference is large, interference may come from signals following other standards

- "Trade-offs" between the various filters
 - Must select correct channel
 - On the same time remove
 - Image-frequency
 - Other interfering frequencies

Superheterodyne receiver (cont'd)

Architecture, contd.

- Following band-pass filter, BPF3
 - Operates at intermediate frequency, IF
 - Not so high Q-factor requirement, more practical to implement
- Amplifier at IF

Transition to RF results in

- Increased frequency:
 - \rightarrow Shorter wavelength
 - in vacuum:

$$\lambda \cdot f = c$$

- \rightarrow Signals vary over short distances
 - voltage V, current I
- \rightarrow Smaller component dimensions required
 - High precision fabrication required
 - → micro machining

Present technology

- Technology and components used today
 - **Discrete**, **passive** components with good properties
 - R, C, L
 - Ex. Crystal oscillators, inductors
 - Such components needed due to high performance and precision requirements
 - Off-chip solutions are the result
 - PCB assembly of discrete components
 - Systems take a lot of space
 - Integrated solutions not possible
 - Active components
 - Amplifiers, switches
 - GaAs, bipolar Si, CMOS Si, PIN-diodes

Present RF technology has limitations

- The discrete components have **limited performance**
 - Conventional PIN-diodes are inefficient for high frequencies
- High performance RF filters are especially difficult to implement
 - High Q-factor is difficult to achieve
 - Costly

• Systems may not be fully integrated

- PCB implementations
- → Efficient integration is important for reducing cost, volume and increasing reliability

Transceivers using RF MEMS

- How micromechanical circuits can be used in communication systems
- Ex.: "RF receiver front-end"-architecture
 - A. Direct substitution of off-chip passive components
 - B. Special RF MEMS blocks
 - C. RF front-end with **only mechanical** components
- Architectures are somewhat "speculative"
 - We are not there yet!
 - Gives motivation for further progress!

Transceivers using RF MEMS

- How micromechanical circuits can be used in communication systems
- Ex.: "RF receiver front-end"-architecture
- A. Direct substitution of off-chip passive components
 - B. Special RF MEMS blocks
 - C. RF front-end with **only mechanical** components
 - Architectures are somewhat "speculative"
 - We are not there yet!
 - Gives motivation for further progress!

Miniaturization of Transceivers

A. Direct substitution

- Different types of MEMS-based components
 - Inductors with medium Q-value
 - Tunable capacitors (varactors)
 - Used in VCO and matching networks
 - Low loss MEMS switches (~0.1 dB)
 - Increases flexibility of antenna
 - Resonators
- Used for
 - RF-filters (replace ceramic filters)
 - "preselect filter", "image-reject filter"
 - IF-filters (replace SAW filters)
 - "channel-select filter"
 - Crystal reference oscillator

Benefits of MEMS substitutes

- Reduction of dimensions
- Possible integration
 - Multi-chip
 - Monolithic
- Power reduction
- More flexibility for impedance matching of MEMS filters

- Termination impedance
 matched to the following LNA
 (Low Noise Amplifier)
 - "Higher" (than 50 Ω) LNA input impedance can be used → power reduction and reduced noise

Transceivers using RF MEMS

- How micromechanical circuits can be used in communication systems
- Ex.: "RF receiver front-end"-architecture
 - A. Direct substitution of off-chip passive components
- - C. RF front-end with **only mechanical** components
 - Architectures are somewhat "speculative"
 - We are not there yet!
 - Gives motivation for further progress!

B. Special RF MEMS blocks

- Figure shows 3 basic blocks that are substituted by RF MEMS
 - B1. Switchable RF channel-select filter bank
 - B2. Switchable micromechanical frequency synthesizer
 - **B3.** Micromechanical mixer-filter block

Figure 12.21. System block diagram for an RF channel-select receiver architecture utilizing large numbers of micromechanical resonators in banks to trade Q for power consumption. (On-chip µmechanics are shaded.)

B1. Switchable RF channel-select filter bank

- Idea
 - Use many, simple, nontunable filters with high Q
 - One for each channel, switched on command
 - A communication standard needs 100 1000 of filters
- Block diagram
 - Common input and output
 - Controlled by Vp from decoder
 - With no Vp the outputs are effectively "open-circuited"

Use of RF filter bank

- Narrow RF channel can be selected directly
 - Signal will not be influenced by adjacent channels
 - A succeeding electronic block can be simplified!
- LNA can be simplified!
 - **Dynamic range** can be reduced, meaning reduced power consumption
 - Less stringent requirements to IIP3 (intermodulation product 3) gives an order of magnitude reduction in LNA power consumption:
 - Ex. CDMA cell phone, test results:
 - Single tone signal 900 kHz outside of centre frequency
 - LNA IIP3 > + 7.6 dBm by conventional implementation (intermodulation!)
 - By using a filter bank the tone is damped 40 dB \rightarrow IIP3 < -29.3 dBm
 - Requirements to LNA linearity is reduced
 - Then LNA gain can be increased \rightarrow improving SNR for the following blocks
 - Reduced phase noise requirements for LO (Local Oscillator)
 - \rightarrow also power reduction
 - On-chip implementation of LO might be possible

B2. Switchable MEMS frequency synthesizer

- Implementing VCO with MEMS resonators
 - Oscillator can be implemented using a switchable resonator bank
 - Resonators oscillate with the frequencies needed for the given standard
 - Resonators must have high Q and should be thermally stabilized (mechanically or by electronic compensation)
 - Might allow the VCO to operate without crystal reference
 - → significant power reduction, f.ex. 90 nW versus 1-4 mW

B3. Micromechanical mixer-filter

- Use of a micro-machined mixer-filter eliminates the DC power consumption compared to what present commercial mixers need
- Two input ports used in the mixer-filter: one for RF, one for LO
 - RF-input port can be made capacitive
 - Output port can be tailored to a specific impedance level
 - → LNA can be simplified and does not need a separate impedance matching circuit[™]

Transceivers using RF MEMS

- How micromechanical circuits can be used in communication systems
- Ex.: "RF receiver front-end"-architecture
 - A. Direct substitution of off-chip passive components
 - B. Special RF MEMS blocks
- - Architectures are somewhat "speculative"
 - We are not there yet!
 - Gives motivation for further progress!

C. RF front-end with RF MEMS only

- Do we need LNA for RF?
 - Use of relatively broadbanded "image-reject" MEMS RF filter followed by a narrowband IF-mixer-filter
 - The only active RF-component are then the LO
 - \rightarrow This gives low power consumption

Figure 12.23. System block diagram for an all-MEMS RF front-end receiver architecture. (On-chip µmechanics are shaded.)

Benefits of using RF MEMS only

- System is power efficient
 - Power consumption of LNA and mixer eliminated
 - Can increase standby-time for cell phones significantly!
- Some of the actual components have already been demonstrated
 - Filter and mixer circuits
 - Ex. image-reject filters at UHF with 3 dB insertion loss has been demonstrated
- A promising implementation technology is to use high Q f-f- beams
 - Higher frequencies than c-c beam

RF MEMS transmitter architecture

- Little done in using RF MEMS in transmitters
 - Due to lack of high power capability
 - Transmitting power is a significant parameter
- Active research being performed on this matter

Figure 12.24. RF channel-select transmitter architecture, possible only if high-power µmechanical resonators can be achieved. Here, on-chip µmechanical blocks are shaded, and the PA is not necessarily implemented on-chip.

RF MEMS transmitter architecture

- RF MEMS channel selector can be placed after PA ("power amplifier")
 - Use MEMS filter bank
 - MEMS resonators should sustain high power, have high Q and low "insertion loss" (<1 dB)
 - "Pure signals" are sent out
 - + PA requirements may be reduced, since all spectral noise due to nonlinearity in the PA is filtered out after the PA!
- Architecture may give significant reduction of power consumption
- "Up-converter" can be realized using MEMS mixer-filter structure

Relevant research topics

- Remember: The architectures shown are to some extent based on resonators with performance not yet achieved
- Research topics
 - 1. Obtain required high Q at UHF
 - 2. Set specific impedance levels
 - 3. Good enough linearity and capability to sustain power
 - 4. Efficient integration methods

1. Frequency and Q-value

• Frequency

- What frequency range can be covered?
- Structures/ geometry are critical issues
 - Research shows that 10 MHz 2.5 GHz can be achieved by using realistic element dimensions
 - Today components exist that have Q ~ 1000 at 3 GHz
- Absolute value and tolerances in resonance frequency
 - Depends on fabrication, trimming and tuning
- Stability of resonator frequency
 - Dependent on temperature variations and aging
- Competing resonator types for high frequency and Q
 - "Thin-film Bulk Acoustic Resonators"
 - High frequencies (UHF and over), Q > 1000
 - Use of piezolectric materials

Frequency and Q-value, contd.

• Q-factor

- Energy loss in material influences Q value
- Q-factor depends on
 - Material type
 - Fabrication process
 - Surface cleanness
 - Doping: diffusion and implantation give different properties
 - Damping
 - Loss via anchors
 - "Anchor-less" structures: f-f beam is beneficial
 - Balanced tuning fork structure
 - Disk resonators

2. Custom-set impedance level

- Serial "motional resistance" R_Q is often high
- Value of resistance should be matched directly to other transceiver components
 - Components before and after resonator
- Should be ~ minimized
 - Realistic requirements: some hundred Ω 's
 - Value depends on how small the gap, d, can be made

Resonator impedance

- "Motional" impedance and gap for 2-resonator structures
 - − Ex. By reducing gap (ca. 140 \rightarrow 70 Å) the resonance impedance will be **reduced** from 5000 Ω \rightarrow 300 Ω (870 MHz)
 - BUT this will also degrade linearity!
 - → important to balance linearity requirements to impedance requirements

TABLE 12.3. Two-Resonator µMechanical Filter Electrode-to-Resonator Gap Spacing Design^a

Frequency	Gap Spacing, d , for R_Q of:				
	300 Ω	500 Ω	1000 Ω	2000 Ω	5000 Ω
70 MHz ^b 870 MHz ^c	160 Å 68 Å	178 Å 77 Å	207 Å 92 Å	243 Å 109 Å	301 Å 137 Å

^{*a*} Determined with Q = 10,000, $W_e = 0.54$, $V_P = 10$ V, using Timoshenko methods and ignoring beam topography.

^b CCBeam, polysilicon, $L_r = 14.92 \ \mu\text{m}$, $W_r = 8 \ \mu\text{m}$, $h = 2 \ \mu\text{m}$, BW = 200 kHz

^c CCBeam, diamond, $L_r = 5.97 \ \mu m$, $W_r = 8 \ \mu m$, $h = 2 \ \mu m$, BW = 1.25 MHz.

Itoh et al

Example of compromise

- If impedance matching means that a smaller gap has to be used than linearity requirements allow:
 - Eg. d_min for desired impedance matching < d_min for desired linearity

• Solution: use several micromachined parallel filters

- With identical frequency response
- F.ex. 10 filters in parallel with R_Q = 2000 Ω give R_Q_total = 2000 Ω /10 = 200 Ω
- Parallel filters also increase power capability! →
 - 10 filters in parallel with 10 mW each, give totally 100 mW

3. Linearity and power capability

- Linearity and power capability are reduced when dimensions get smaller
 - Present ceramic or SAW filters have very high linearity
- MEMS structures based on c-c beams have OK linearity
 - Good enough, except for some standards allowing simultaneous transmit and receive
 - Ex. CDMA needs transmit-reject filter in front of the receiver filter bank
- Increased power capability
 - Use alternative geometries
 - Use alternative transduction
 - Piezoelectric
 - Magnetostrictive
 - Parallel units

4. Efficient integration methods

- Critical research topics
 - Combination of MEMS with transistors on-chip
 - Monolithic integration!
 - CMOS-MEMS
 - Jmfr. Lecture on integration and packaging
 - LN13

Thanks to Ulrik Hanke, HVE, for his help with translation of RF MEMS slides from Norwegian to English in 2008!

