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Overview 
• Motivation 
• Micromachining 
• Modeling 
• Specific features for RF systems 
• Q-factor 
• RF MEMS components 

– Switches 
– Phase shifters 
– Resonators 
– Micromechanical filters 
– Capacitors 
– Inductors 

• Integration and packaging 
• RF MEMS in wireless systems 
• Conclusion and future prospects 



Typical RF MEMS components 
• Switches 

 

• Variable capacitors 
 

• Inductors 
 

• Resonators 
 

• Micromechanical filters 
 

• Phase shifters 



Benefits of RF MEMS 
• High performance  

– Sharp filters: - increased selectivity 
– High Q-factor: stable ”tank” frequency 
– Switch: 

• Reduced loss 
• High isolation 
• Reduced cross talk 

– Reduced signal distortion 
– Larger bandwidth 

• Low power consumption 
• Reduced cost 

– Batch processing 
• Circuit and system miniaturization 

– System integration (µelectronics + MEMS) 
• Packaging: Multi-chip module 
• Monolithic integration: SoC (System-on-Chip)  



Micromachining 

• Micromachining, definition:  
– Accurately, to define and implement any microscopic 

mechanical structure out of or on a material 
 

• Silicon micromachining is mature 
– Si processes also used by IC industry 

• ”grown out of” IC-processing 

– New specific MEMS processes also developed 
• A lot of variants, - few standards! 



Important process steps 

• Define patterns 
– Photolithography  

• Modify semiconductor material properties 
– Diffusion 

• Remove material 
– Ething 

• Adding material – build structures 
– Deposition  



Bulk micromachining 
• Selective etching and diffusion into well defined 

areas  of a substrate 
– Etching of the substrate  membranes 
– Etching from back side (wet etching: liquid is used) 
– Possibly combined with dry etching on the front side 

• More mature than surface micromachining 
• Typical examples 

– Pressure sensor, accelerometer 
• ”Wafer-bonding” may be necessary 

– Interconnect whole wafers 



Cross section overview  



Surface micromachining 

• ”Surface” micromachining 
– Deposit layers 

• Structural layer 
• Sacrificial layer = ”distance-keeping” layer 

 
– Selective etching of structural layers 
– Removing sacrificial layers 



Srinivasan 



Additive process steps 
• Techniques 

– a. Epitaxial growth 
– b. Oxidation 
– c. Vaporization 
– d. CVD, Chemical Vapor Deposition 
– e. Sputtering 
– f.  Moulding 

 
• When depositing, stress may be built into the 

structures 



Srinivasan 



Removing material: Etching 

• Wet-etching or dry-etching 
• Wet-etching 

– Deep etching of Si is essential in 
micromachining 

– Using liquids 
– Depending on 

• Concentration of liquid, time, temperature 
– Low cost batch processing 
– Both isotropic or anisotropic 



Wet-etching 
• Isotropic = uniform etching in all directions 

– HF or blends are usual 
– 0.1 – 100 μm/min etch speed 

 
• Anisotropic = etching faster along some 

directions 
– Etch speed depends of crystal orientation 
– NaOH, KOH used 
– Silicon nitride used as mask for KOH 



RIE - DRIE 

• DRIE – Deep Reactive Ion Etching 
(1995-) 
– Vertical etching 
– Can etch deep holes (> 500 μm) with 

almost perfect vertical sidewalls 
– Bosch-process 

• Figure  
• High ”aspect-ratio” 
• Etching and deposition every second 

step 
– etch: SF6, mostly at the bottom! 
– deposit: C4F8, polymer 



Transducers for (RF) MEMS 

• Electromechanical transducers 
– Transforming              

electrical energy  mechanical energy 
 

• Transducer principles 
– Electrostatic 
– Electromagnetic 
– Electro thermal 
– Piezoelectric 



Methods for modeling RF MEMS 

• 1. Simple mathematical models 
– Ex. parallel plate capacitor 

 
• 2. Converting to electrical equivalents 

 
• 3. Analysis using Finite Element 

Methods 



Parallel plate capacitor 
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Force balance 

k = spring constant 

deflection from start position 

d0 = gap at 0V and zero spring strain 
d = d0 – z 
z=d0 – d 
 
 
 
Force on upper plate at V and d: 

= 0 at equilibrium 



ς = 1 – d/d0 

Two equilibrium positions 

Senturia 



Pull-in 

Pull-in when: 



2. Converting to electrical 
equivalents 

• Mechanical behavior can be modeled using 
electrical circuit elements 
– Mechanical structure  simplifications  equivalent 

electrical circuit 
•  ex. spring/mass  R, C, L 

– Possible to “interconnect” electrical and mechanical 
energy domains 

• Simplified modeling and co-simulation of electronic and 
mechanical parts of the system 

– Proper analysis-tools can be used 
• Ex. SPICE 



e  V - convention 
• Senturia and Tilmans use the 
   eV –convention 
• Ex. electrical and mechanical circuits 

– e  V (voltage) equivalent to F (force) 
– f  I (current)  equivalent to v (velocity) 
– q Q (charge) equivalent to x (position) 
– e * f = ”power” injected into the element 

 

 
H. Tilmans, Equivalent circuit representation of electromagnetical transducers: 
 I. Lumped-parameter systems, J. Micromech. Microeng., Vol. 6, pp 157-176, 1996 



Ex. of interconnection: 
 
 ”Direct transformation” 







Skin depth 
• Resistance R increases 

towards centre of 
conductor 
– Current close to surface at 

increasing frequency 
– Formula: ”skin-depth”  

• Current density reduced 
by a factor 1/e 
 
 

• What does this mean for 
practical designs?  



Transmission line  
• A conductor has to be modeled as a 

transmission line 
 



Solution: 2 waves 
• The solution is waves in a positive and negative 

direction 
 

Characteristic line-impedance: 

(Jmfr.2.27) 



Impedance for lossless transmission line 

 
 

How to avoid reflections and have good signal propagation? 



Reflection coefficient 
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 definition of reflection coefficient for z = 0 

Impedance for z = 0: 

= load impedance 



Various terminations 
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Open line 
 reflection with equal polarity 

Short circuit 
 Reflection with inverse polarity 

No reflection when: 
 
 ”MATCHING” 



Interpretation of S-parameters 



Q-value 

• Q-factor characterizes loss due to power dissipation in  
elements 

• Q should be as high as possible to reduce Insertion 
loss 
 



Relation between Q-factor and oscillator stability 

• Q-factor is critical for RF circuit performance! 



Benefits and typical characteristics of RF MEMS switches 

 
 

Ionescu, EPFL 



Two basic switch configurations 

Varadan fig. 3.2 



Basic switch structures 

• Series switch 
– Contact switch, ohmic (relay) * 

• Cantilever beam 
– Capacitive switch (“contact less”) 

• RF-signals short-circuited via C ( Z=1/jωC ) 
– Impedance depends on value of C 

• Shunt switch 
– Shunt capacitive switch * 

• clamped-clamped beam (c-c beam) 
– Shunt contact switch 

* most used 



Series switch 

Rebeiz fig.2.12 



Typical shunt switch 

Rebeiz 



Electromechanical operation 

• The operation is based on the pull-in effect 
– Characteristics at pull-in 

• Membrane/beam pulls in at 1/3 of gap 
• Pull-in voltage:  

 
 
 

• Definition of parameters:  
– K spring constant 
– g0 initial gap 
– A=W*w = area 



Hysteresis 

• A capacitive 
switch shows 
hysteresis when 
being switched 
on/off 

 

Varadan fig. 3.18 



Deflection of beam 
• Suppose the following approximations: 

– Actuation electrode is not deflected 
– Electrostatic force concentrated at the end of the flexible beam 

with length L 

 

I =  (area) moment of inertia 

Bending moment in x 

W = width 
w(x) = vertical displacement 

Euler beam equation 

point load 

beam 



Max. deflection at x = L 

Compare with 

Beam stiffness represents a spring 
with spring constant k_cantilever 



Switch speed and damping 

• Switch speed depends of damping 
– Air, gas must be pushed/pulled 
– ”squeezed-film damping” 
– Method of modeling from fluid dynamics 

 
• How to reduce damping? 

– Operate in vacuum 
• Hermetic sealed packages 

– Make holes in membrane 
• Perforated membrane 



Gap vs. Time for various Q-factors 



Acceleration limited switch 

Note: The system becomes more acceleration limited  
when damping decreases (eg. Q-factor increases).  
High Vs/Vp is good. 



Switch speed for increased Vs 

• Switch-speed 
strongly depends on 
actuation voltage, Vs 
– Vs is usually larger 

than Vpi 
– Vs = const * Vpi (pull-

in) = (”actuation voltage”) 

– Larger voltage gives 
larger electrostatic 
force 

•  increased switch 
speed 



RF modeling: Shunt configuration 





Phase shifter 

• A phase shifter is a 2-port 
 
 
 
 

 
• Output signal is delayed relative to the input signal 
• The effective ”path-length” of the transmission line can 

be changed 
– Signal propagates a longer distance  ”delayed”  phase 

change 
– Phase difference can be controlled by a DC bias 

 

IN OUT 

CNTRL 



Analog phase shifters 
• Phase velocity for a 

transmission line 
 
 
 

– Variables are 
inductance and 
capacitance per unit 
length 

• Idea: C-value can be 
controlled by a bias 
voltage 
– For example by 

shunt capacitive 
loaded line 

tt CLpv
⋅

= 1

Ct = line capacitance 

De Los Santos 



Digital phase shifters with series-switches 

 
 
 
 
 
 

• Working principle 
– Different line paths connected in/out 
– Interconnections through switches 

• Switches for ”180°, 90°, 45°, 22.5°, 11.25° -sections in a cascade 
arrangement 

• Several bits used 
– Controlling line sections individually 
– F.ex. 3 bits: 45/90/180° give phase shift 0, 45, 90, 135, … , 315° 
– 3 bit and 4 bit phase shifters have been demonstrated 



Reflection type phase shifter, N-bit 
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