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Agenda

• Potential uses of quality models

• Evaluation of object-oriented design principles

• Object-oriented design metrics
– Definition of OO metrics

– Theoretical validation of OO metrics

– Empirical validation of OO metrics

• Building and evaluating quality prediction models 
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External Quality Attributes

• External metrics are those we can apply only by 
observing the software product in its environment 
(e.g., by running it)

• Common measures used in empirical studies
– Effort expended to develop software components or 

perform changes on them

– Fault density of developed software or fault-proneness 
when changing the software
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Potential uses of quality models (1)

• Hypothesis testing to better understand how to 
design (structure), develop and maintain OO 
software, e.g.:
– Is there an “optimal” class size? 

– Does high coupling increase the chance of developing 
fault-prone software? 

– Does the degree of delegation among classes affect the 
ease of performing changes? 

– Does it matter whether you start by performing simple 
tasks or difficult change tasks first?
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Potential uses of quality models (2)

• Build software quality prediction models that can then be 
used to help decision-making during development. 

• For example, we may want to predict the fault-proneness of 
components in order to focus testing on those components 
that are likely to contain the faults, thus finding more faults for 
the same amount of effort. Example predictor variables: 
– Product measures: Coupling, Cohesion, Size, Test Coverage
– Process measures: Time spent on testing, faults found in 

system testing, fault history in previous releases
– People measures: Developer experience, developers’ fault 

history
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Experiment 1: The effect of using a centralized 
vs delegated control style (*)

• The Delegated Control (DC) Style: 
– Rebecca Wirfs-Brock: A delegated control 

style ideally has clusters of well defined 
responsibilities distributed among a number of 
objects. To me, a delegated control 
architecture feels like object design at its 
best…

– Alistair Cockburn: [The delegated coffee-
machine design] is, I am happy to see, robust 
with respect to change, and it is a much more 
reasonable ''model of the world.'‘

• The Centralized Control (CC) Style: 
– Rebecca Wirfs-Brock: A centralized control 

style is characterized by single points of 
control interacting with many simple objects. 
To me, centralized control feels like a 
"procedural solution" cloaked in objects…

– Alistair Cockburn: Any oversight in the 
“mainframe” object (even a typo!) [in the 
centralized coffee-machine design] means 
potential damage to many modules, with 
endless testing and unpredictable bugs.

* Erik Arisholm and Dag Sjøberg, ”Evaluating the Effect of a Delegated versus Centralized Control Style on 
the Maintainability of Object-Oriented Software,” IEEE Transactions on Software Engineering, 2004
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The treatments
 CC DC 
CoffeeMachine Initiates the machine; knows how the 

machine is put together; handles input 
Initiates the machine; knows how the machine 
is put together; handles input 

CashBox Knows amount of money put in; gives 
change; answers whether a given amount 
of credit is available. 

Knows amount of money put in; gives change; 
answers whether a given amount of credit is 
available. 

FrontPanel Knows selection; knows price of 
selections, and materials needed for each; 
coordinates payment; knows what 
products are available; knows how each 
product is made; knows how to talk to the 
dispensers.  

Knows selection; coordinates payment; 
delegates drink making to the Product. 

Product  Knows its recipe and price. 
ProductRegister  Knows what products are available. 
Recipe  Knows the ingredients of a given product; tells 

dispensers to dispense ingredients in 
sequence. 

Dispensers Controls dispensing; tracks amount it has 
left.  

Knows which ingredient it contains; controls 
dispensing; tracks amount it has left. 

DispenserRegister  Knows what dispensers are available 
Ingredient.   Knows its name only. 
Output Knows how to display text to the user. Knows how to display text to the user. 
Input Knows how to receive command-line input 

from the user 
Knows how to receive command-line input from 
the user 

Main Initializes the program Initializes the program 
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Assignment of subjects: 
Randomized Block Design

 CC DC Total 
Undergraduate 13 14 27 
Graduate 15 17 32 
Junior 16 15 31 
Intermediate 17 15 32 
Senior 17 19 36 
Total 78 80 158 
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Experiment design
Experience Questionnaire

Training Task Resolves most technical problems. 
Subjects get familiar with the experiment process

Task 1: Pretest Task

Tasks 2-5

Common task to compare the programming skills of the subjects

Tasks 2-5
Subject solves 4 tasks on either the delegated  or the centralized design. 
Each task builds on the solution given to the previous task

DC CC

Randomized block assignment: 
Students: "undergraduate", "graduate", 
Professionals: "junior*company", "intermediate*company", "senior*company", 
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Results
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DC = Delegated Control Style
CC = Centralized Control Style

The effect of control style depends mainly on the experience of the developers!
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Discussion point

• What are the main threats to validity 
of this study?
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Experiment 2: The Effect of Task Order on the 
Maintainability of Object-Oriented Software (*)

• Research questions
– RQ1: Does the order in which you perform 

maintenance tasks affect maintainability?

– RQ2: Does the effect of task order depend on 
how the system is structured?

* Wang & Arisholm, The Effect of Task Order on the Maintainability of Object-
Oriented Software, Submitted to Information and software Technology 2007.
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Another way to look at RQ1 and RQ2
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Experiment design

15

Results
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Discussion point

• What are the main threats to validity 
of this study?

• What are the practical limitations of 
this study?
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Object-oriented metrics
• A large number of object-oriented metrics have been defined in the 

literature. 
– Measures of the software code, design or functionality
– Size, coupling, cohesion, inheritance, complexity, …

• Theoretical validation:
– It is not always clear which attributes of the program they 

characterize (if any)

• Empirical validation:
– Determine whether they are actually useful, significant indicators of 

any relevant, external quality attribute. 
– We also need to investigate how they can be applied in practice,

whether they lead to cost-effective models in a specific application 
context.
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Example: Coupling
• Intuitively, coupling captures the amount of relationship between the 

elements belonging to different modules of a system. 

• There are different types of coupling among classes, methods, attributes

• Classes and methods can be coupled more or less strongly, depending 
on 1) the type of connections between them and 2) the frequency of 
connections between them

• A distinction can be made between import and export coupling (client-
server relationships)

• Both direct and indirect coupling may be relevant

• The server class can be stable or unstable

• The effect of inheritance on coupling has to be considered.
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Theoretical Properties of Coupling (*)
Nonnegativety: We expect coupling to be nonnegative

Null values: Coupling is 0 when there are no relationships among modules

Monotonicity: When additional relationships are created across modules, we 
expect coupling not to decrease since these modules become more 
interdependent

Impact of merging: Merging modules can only decrease coupling since there 
may exist relationships among them and therefore, intermodule
relationships may have disappeared

Disjoint module additivity: The coupling of a module obtained by merging two 
unrelated modules is equal to the sum of the couplings of the two original 
modules

* Briand et al.: Property-Based Software Engineering Measurement, IEEE Transactions on Software Engineering, 
22 (1),1996
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Theoretical validation: 
Coupling Between Objects (CBO*) breaks the 
property “disjoint module additivity” (**)

CBO(c) + CBO(d) = 4 CBO(c’) = 3

* Chidamber & Kemerer: A metrics suite for object-oriented design, IEEE Transactions on Software Engineering, 20(6), 1994

** Briand et al.: A Unified Framework for Coupling Measurement in Object Oriented Systems, IEEE Transactions on Software 
Engineering, 25 (1),1999

c’ = c U d



21

Exercise

Design a controlled experiment to 
determine whether the degree of coupling 
affects the effort required to change 
software. 

- In particular, define your treatments and 
target (subject) population. 

- List the most important threats
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Empirical validation with Multiple Regression

Simple linear regression: 
We would probably find that tall people buy more expensive cars, i.e., that there is a positive correlation 
between height and the amount of money spent on a car. 
A plausible explanation is that expensive cars are bigger, and taller people would tend to need bigger cars

Multiple linear regression: if we were to add the variable Gender into the multiple regression equation, 
this correlation with height would probably be much smaller, since men in general are taller but also buy 
more expensive cars than women for other reasons than increased height ;-)
Then let’s add age, salary, occupation, … (are we able to identify all the potential factors??)

An R-square value is an indicator of how well the model fits 
the data (e.g., an R-square close to 1.0 indicates that we 
have accounted for almost all of the variability with the 
variables specified in the model). 

In general, multiple regression allows the researcher to ask 
(and hopefully answer) questions like "what is the best 
predictor of Y among the available candidates X1, … , Xp, ". 

For example, in linear regression, the dependent variable is 
modeled as a linear function of the independent variable(s):
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Multicolinearity in multiple regression
• Multicolinearity is present when a number of predictor variables 

are highly positively or negatively correlated. The consequences 
of multicolinearity are many fold; 
– it causes unstable coefficients,
– misleading statistical tests, and 
– unexpected coefficient signs. 

• For example:
– Effort = 0.3 NA – 0.2 NM 

(NA: Number of attributes, NM: Number of methods)

shows clear signs of multicolinearity.

Note: Multicolinearity is mainly a problem if you want to perform 
formal tests of hypotheses on the relationship between X and Y, 
less so if the goal is prediction of Y (and you don’t care why).
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Principal Component Analysis (PCA)
Variable PC1 PC2 
LCOM1 0.084 0.980 
LCOM2 0.041 0.983 
LCOM3 -0.218 0.929 
LCOM4 -0.604 0.224 
LCOM5 -0.878 0.057 
Coh 0.872 -0.113 
Co 0.820 0.139 
LCC 0.869 0.320 
TCC 0.945 0.132 
ICH 0.148 0.927 
 

• Principal component analysis (PCA) is a standard 
technique to identify the underlying, orthogonal 
dimensions (which correspond to properties that are 
directly or indirectly measured) that explain relations 
between the variables in the data set. 
• For example, analyzing a data set using PCA may 
lead to the conclusions that all your cohesion measures 
come down to measuring two underlying dimensions or  
aspect of cohesion.
• By using only one candidate variable from each 
principal component, it is unlikely that the resulting 
model suffers from multicolinearity problems. In turn, 
this means that the model coefficients and the 
corresponding statistical tests will be easier to interpret



25

Evaluating model accuracy 
• Model-fit (does the model adequately “explain” the observations?)

– DV=Effort: R-Square, Mean Magnitude of Relative Error (MMRE)
– DV=Fault-proneness: precision, recall, ROC, Cost-effectiveness

• Checking for over-fit and assessing predictive power: 
– Cross-validation 

• a technique to obtain a realistic estimate of the predictive power of 
models, when they are applied to data sets other than those the 
models were derived from, but no other test data set is available.

• In short, a V-cross validation divides the data set into V parts, each 
part being used to assess a model built on the remainder of the 
data set.

– Using (cross-system or cross-release) test sets
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Common problems…

• Hypothesis testing: 
– Case studies: Lack of control, confounding factors
– Controlled experiments: Construct and External validity
– Model misspecification

• Prediction: 
– High reliance on “naive” measures of predictive power , 

such as R-Square for the data used to build the model
• No test sets (or even cross-validation) are used to evaluate 

the predictive power of models

– No practical evaluation of the usefulness of the models to 
guide development or improve some aspect of quality

Data Mining Techniques for Building 
Fault-proneness Models 

in Telecom Java Software

Erik Arisholm, Lionel Briand & Magnus Fuglerud
International Symposium on Software Reliability Engineering (ISSRE’07)
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The development project at Telenor
• COS – large telecom system, evolved over eight years, 

30-60 developers, currently in its 23rd main release

• We collected data from 12 recent main releases:
– #Core application classes in each release: 1728-2579
– #KLOC in each release: 128-148
– #Fault MRs in each release: 1-117
– #Faulty classes in each release: 7-83

=> The fault data suggest strong potential for focused 
testing since faults are typically contained within less than 
5% of the classes
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Predicting the location of faults
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Practical evaluation of costs and 
benefits of using the models to focus 

testing in the COS project
• Our hypothesis: Differentiating the unit test coverage goals among 

classes according to the class fault proneness can greatly increase 
testing productivity

• Approach: Just before the normal system test phase started and 
after all functionality in the release was implemented, the 
developers wrote unit tests prioritized by class fault proneness for 
an additional two working days
– For selected classes: ensure statement, branch and loop 

coverage

• Costs: The time required to write the tests, run them, check their 
results and correct any defects

• Benefits: Finding and correcting more defects early – less defects 
slipping through to later phases where they might be more costly to 
detect and fix
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Fault proneness in an evolving system

• The probability that a class will undergo one or 
more fault corrections (due to field failures in 
the current release) in the next release of the 
system

• Binary dependent variable: 
1: One or more fault corrections in a class in the next 

release
0: No fault corrections in a class in the next release
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Explanatory Variables 
The fundamental hypothesis underlying our work is that the fault
proneness of classes in a legacy, object-oriented system can be affected 
by the following factors (and their interactions): 

– the structural characteristics of classes (e.g., their coupling)
– the amount of change (refactoring, requirement changes or fault corrections) 

undertaken by the class to obtain the current release
– the experience of the individuals performing the changes, number of 

developers involved in changes
– other, unknown factors that are captured by the change history (refactoring, 

requirements or fault corrections) of classes in previous releases. 
The inclusion of change and fault history data is essential in order to build 
practically useful fault-proneness prediction models for the evolving legacy-
system. (*) 
We use a unique ID that does not change even if the file location changes from 
one release to the next to track the history. Important due to the heavy use of 
refactoring throughout the project

A total of 112 candidate variables
* E. Arisholm and L. C. Briand, "Predicting Fault-prone Components in a Java Legacy System," Proc. 5th ACM-IEEE 
International Symposium on Empirical Software Engineering (ISESE), Rio de Janeiro, Brazil, pp. 8-17, 2006. 
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Class fault-proneness prediction model

Class complexity
- Class size
- Coupling
- Cohesion
- …

For each type of CR involving this class
- Number of CRs
- Lines of code added and deleted in this class
- Number of CPs involving this class
- Total number of files changed in CRs
- Total number of tests failed in CRs
- Total number of developers involved in CRs
- Total number of past CRs of the developers

1.0

0.0Not fault-prone

Highly fault-prone

Neural Network
C4.5
Logistic regression, etc

Class change and fault history
For each type of CR involving this class
for the past three releases:

-number of CRs (n-1, n-2, n-3)
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Evaluated data mining techniques 
• Decision Trees (C4.5)

• Coverage Rule Learning (PART)

• Back-propagation Neural Networks (NN)

• Stepwise Logistic Regression (LR)

• Support Vector Machines (SVM) 

• For C4.5, we also report results when using: 
– Meta-learners (AdaBoost, Decorate)
– Correlation-based Feature Selection (CFS)
– C4.5 + PART hybrid model

• Select a prediction from either the C4.5 or PART model, depending on 
which prediction is furthest away from 0.5
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Model building and evaluation datasets
11 releases

66.6% 33.3%

COS20

= training data set (build a model)

= two distinct test/evaluation data sets 
(to assess classification accuracy and 
cost effectiveness) 36

Classification Accuracy: 
Precision, Recall and ROC area
• Precision: the percentage of classes classified as faulty 

(e.g., with a fault prob >=0.5) that are actually faulty 
– a measure of how effective we are at identifying where faults 

are located. Low precision means that we are including a lot of 
“non-faulty” classes

• Recall: the percentage of faulty classes that are predicted 
as faulty (e.g., with a fault prob >= 0.5)
– a measure of how many faulty classes we are likely to miss if 

we use the prediction model. 

• Receiver Operating Characteristic (ROC): A ROC curve 
is built by plotting on the Y-axis the number of faults 
contained in a percentage of classes on the X-axis. Classes 
are ordered by decreasing order of fault probability as 
estimated by a given prediction model. 
– The larger the area under the ROC curve (the ROC area), the 

better the model. 
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Cost-effectiveness assessment on 
COS20 (C4.5)Assumption: the number of lines 

of code is proportional to the 
verification effort of the 
predicted fault-prone classes 

Baseline: a random selection of 
classes to test would require 
the testing of 60% of the 
code to detect a maximum of 
60% of the faults. 

Model: Using our model we bring 
this percentage down to less 
than 20% of the code, thus 
potentially requiring only 
20/60 = 1/3 of the verification 
effort.

Optimal: If we somehow knew
where the faults were 
located, we could potentially 
test only 5% of the code to 
detect a maximum of 100% 
of the faults. 
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Cost-effectiveness assessment on 
COS20 (C4.5)Assumption: the number of lines 

of code is proportional to the 
verification effort of the 
predicted fault-prone classes 

Baseline: a random selection 
of classes to test would 
require the testing of 60% 
of the code to detect a 
maximum of 60% of the 
faults. 

Model: Using our model we bring 
this percentage down to less 
than 20% of the code, thus 
potentially requiring only 
20/60 = 1/3 of the verification 
effort.

Optimal: If we somehow knew
where the faults were 
located, we could potentially 
test only 5% of the code to 
detect a maximum of 100% 
of the faults. 

39

Cost-effectiveness assessment on 
COS20 (C4.5)Assumption: the number of lines 

of code is proportional to the 
verification effort of the 
predicted fault-prone classes 

Baseline: a random selection of 
classes to test would require 
the testing of 60% of the 
code to detect a maximum of 
60% of the faults. 

Model: Using our model we 
bring this percentage 
down to less than 20% of 
the code, thus potentially 
requiring only 20/60 = 1/3 
of the verification effort.

Optimal: If we somehow knew
where the faults were 
located, we could potentially 
test only 5% of the code to 
detect a maximum of 100% 
of the faults. 
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Cost-effectiveness assessment on 
COS20 (C4.5)Assumption: the number of lines 

of code is proportional to the 
verification effort of the 
predicted fault-prone classes 

Baseline: a random selection of 
classes to test would require 
the testing of 60% of the 
code to detect a maximum of 
60% of the faults. 

Model: Using our model we bring 
this percentage down to less 
than 20% of the code, thus 
potentially requiring only 
20/60 = 1/3 of the verification 
effort.

Optimal: If we somehow knew
where the faults were 
located, we could 
potentially test only 5% of 
the code to detect a 
maximum of 100% of the 
faults. 
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Classification Accuracy vs Cost Effectiveness
Classification 

Accuracy 

Cost Effectiveness area  
when selecting x % of the NOS for 

testing Model 

Prec. Rec. ROC  1 % 5 %  20 % 100 %

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32

SVM  4.7 74.5 80.7 0.005 0.117 2.43 17.78

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22

Neural Net  5.8 73.2 82.6 0.031 0.193 1.50 12.79

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12
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Example: Classification Accuracy for C4.5 vs PART

Classification 
Accuracy 

Cost Effectiveness area  
when selecting x % of the NOS for 

testing Model 

Prec. Rec. ROC  1 % 5 %  20 % 100 % 

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03 

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32 

SVM  4.7 74.5 80.7 0.005 0.117 2.43 17.78 

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22 

Neural Net  5.8 73.2 82.6 0.031 0.193 1.50 12.79 

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06 

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04 

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46 

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12 
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Example: Cost Effectiveness Area for C4.5 vs PART

Classification 
Accuracy 

Cost Effectiveness area  
when selecting x % of the NOS for 

testing Model 

Prec. Rec. ROC  1 % 5 %  20 % 100 %

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32

SVM  4.7 74.5 80.7 0.005 0.117 2.43 17.78

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22

Neural Net  5.8 73.2 82.6 0.031 0.193 1.50 12.79

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12
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Summary of results

• The C4.5 decision tree seems to be the best 
overall choice for focused testing in terms of our 
cost-effectiveness indicator for useful 
percentages of code size and fault coverage
– In our COS release 20 evaluation dataset, it identifies 

about 30% of the faults in 5% of the code and about 
60% of the faults in 20% of the code

• If we had used ROC, Precision, Recall as 
selection criteria we would probably have 
chosen a suboptimal model for focusing testing
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Generalizability of results

• What aspects of of this study do you 
think apply to other development 
projects?


