
Quality modeling of
object-oriented software

Erik Arisholm

2

Agenda

• Potential uses of quality models

• Evaluation of object-oriented design principles

• Object-oriented design metrics
– Definition of OO metrics

– Theoretical validation of OO metrics

– Empirical validation of OO metrics

• Building and evaluating quality prediction models

3

External Quality Attributes

• External metrics are those we can apply only by
observing the software product in its environment
(e.g., by running it)

• Common measures used in empirical studies
– Effort expended to develop software components or

perform changes on them

– Fault density of developed software or fault-proneness
when changing the software

4

Potential uses of quality models (1)

• Hypothesis testing to better understand how to
design (structure), develop and maintain OO
software, e.g.:
– Is there an “optimal” class size?

– Does high coupling increase the chance of developing
fault-prone software?

– Does the degree of delegation among classes affect the
ease of performing changes?

– Does it matter whether you start by performing simple
tasks or difficult change tasks first?

5

Potential uses of quality models (2)

• Build software quality prediction models that can then be
used to help decision-making during development.

• For example, we may want to predict the fault-proneness of
components in order to focus testing on those components
that are likely to contain the faults, thus finding more faults for
the same amount of effort. Example predictor variables:
– Product measures: Coupling, Cohesion, Size, Test Coverage
– Process measures: Time spent on testing, faults found in

system testing, fault history in previous releases
– People measures: Developer experience, developers’ fault

history

6

Experiment 1: The effect of using a centralized
vs delegated control style (*)

• The Delegated Control (DC) Style:
– Rebecca Wirfs-Brock: A delegated control

style ideally has clusters of well defined
responsibilities distributed among a number of
objects. To me, a delegated control
architecture feels like object design at its
best…

– Alistair Cockburn: [The delegated coffee-
machine design] is, I am happy to see, robust
with respect to change, and it is a much more
reasonable ''model of the world.'‘

• The Centralized Control (CC) Style:
– Rebecca Wirfs-Brock: A centralized control

style is characterized by single points of
control interacting with many simple objects.
To me, centralized control feels like a
"procedural solution" cloaked in objects…

– Alistair Cockburn: Any oversight in the
“mainframe” object (even a typo!) [in the
centralized coffee-machine design] means
potential damage to many modules, with
endless testing and unpredictable bugs.

* Erik Arisholm and Dag Sjøberg, ”Evaluating the Effect of a Delegated versus Centralized Control Style on
the Maintainability of Object-Oriented Software,” IEEE Transactions on Software Engineering, 2004

7

The treatments
 CC DC
CoffeeMachine Initiates the machine; knows how the

machine is put together; handles input
Initiates the machine; knows how the machine
is put together; handles input

CashBox Knows amount of money put in; gives
change; answers whether a given amount
of credit is available.

Knows amount of money put in; gives change;
answers whether a given amount of credit is
available.

FrontPanel Knows selection; knows price of
selections, and materials needed for each;
coordinates payment; knows what
products are available; knows how each
product is made; knows how to talk to the
dispensers.

Knows selection; coordinates payment;
delegates drink making to the Product.

Product Knows its recipe and price.
ProductRegister Knows what products are available.
Recipe Knows the ingredients of a given product; tells

dispensers to dispense ingredients in
sequence.

Dispensers Controls dispensing; tracks amount it has
left.

Knows which ingredient it contains; controls
dispensing; tracks amount it has left.

DispenserRegister Knows what dispensers are available
Ingredient. Knows its name only.
Output Knows how to display text to the user. Knows how to display text to the user.
Input Knows how to receive command-line input

from the user
Knows how to receive command-line input from
the user

Main Initializes the program Initializes the program
 8

Assignment of subjects:
Randomized Block Design

 CC DC Total
Undergraduate 13 14 27
Graduate 15 17 32
Junior 16 15 31
Intermediate 17 15 32
Senior 17 19 36
Total 78 80 158

9

Experiment design
Experience Questionnaire

Training Task Resolves most technical problems.
Subjects get familiar with the experiment process

Task 1: Pretest Task

Tasks 2-5

Common task to compare the programming skills of the subjects

Tasks 2-5
Subject solves 4 tasks on either the delegated or the centralized design.
Each task builds on the solution given to the previous task

DC CC

Randomized block assignment:
Students: "undergraduate", "graduate",
Professionals: "junior*company", "intermediate*company", "senior*company",

10

Results

DC
CC

Undergraduate Graduate Junior Intermediate Senior

70

80

90

100

110

Design

M
ea

n
Ef

fo
rt

(m
in

ut
es

)

DC
CC

Undergraduate Graduate Junior Intermediate Senior

0

50

100

Design

%
 C

or
re

ct
 S

ol
ut

io
ns

DC = Delegated Control Style
CC = Centralized Control Style

The effect of control style depends mainly on the experience of the developers!

11

Discussion point

• What are the main threats to validity
of this study?

12

Experiment 2: The Effect of Task Order on the
Maintainability of Object-Oriented Software (*)

• Research questions
– RQ1: Does the order in which you perform

maintenance tasks affect maintainability?

– RQ2: Does the effect of task order depend on
how the system is structured?

* Wang & Arisholm, The Effect of Task Order on the Maintainability of Object-
Oriented Software, Submitted to Information and software Technology 2007.

13

Another way to look at RQ1 and RQ2

14

Experiment design

15

Results

16

Discussion point

• What are the main threats to validity
of this study?

• What are the practical limitations of
this study?

17

Object-oriented metrics
• A large number of object-oriented metrics have been defined in the

literature.
– Measures of the software code, design or functionality
– Size, coupling, cohesion, inheritance, complexity, …

• Theoretical validation:
– It is not always clear which attributes of the program they

characterize (if any)

• Empirical validation:
– Determine whether they are actually useful, significant indicators of

any relevant, external quality attribute.
– We also need to investigate how they can be applied in practice,

whether they lead to cost-effective models in a specific application
context.

18

Example: Coupling
• Intuitively, coupling captures the amount of relationship between the

elements belonging to different modules of a system.

• There are different types of coupling among classes, methods, attributes

• Classes and methods can be coupled more or less strongly, depending
on 1) the type of connections between them and 2) the frequency of
connections between them

• A distinction can be made between import and export coupling (client-
server relationships)

• Both direct and indirect coupling may be relevant

• The server class can be stable or unstable

• The effect of inheritance on coupling has to be considered.

19

Theoretical Properties of Coupling (*)
Nonnegativety: We expect coupling to be nonnegative

Null values: Coupling is 0 when there are no relationships among modules

Monotonicity: When additional relationships are created across modules, we
expect coupling not to decrease since these modules become more
interdependent

Impact of merging: Merging modules can only decrease coupling since there
may exist relationships among them and therefore, intermodule
relationships may have disappeared

Disjoint module additivity: The coupling of a module obtained by merging two
unrelated modules is equal to the sum of the couplings of the two original
modules

* Briand et al.: Property-Based Software Engineering Measurement, IEEE Transactions on Software Engineering,
22 (1),1996

20

Theoretical validation:
Coupling Between Objects (CBO*) breaks the
property “disjoint module additivity” (**)

CBO(c) + CBO(d) = 4 CBO(c’) = 3

* Chidamber & Kemerer: A metrics suite for object-oriented design, IEEE Transactions on Software Engineering, 20(6), 1994

** Briand et al.: A Unified Framework for Coupling Measurement in Object Oriented Systems, IEEE Transactions on Software
Engineering, 25 (1),1999

c’ = c U d

21

Exercise

Design a controlled experiment to
determine whether the degree of coupling
affects the effort required to change
software.

- In particular, define your treatments and
target (subject) population.

- List the most important threats

22

Empirical validation with Multiple Regression

Simple linear regression:
We would probably find that tall people buy more expensive cars, i.e., that there is a positive correlation
between height and the amount of money spent on a car.
A plausible explanation is that expensive cars are bigger, and taller people would tend to need bigger cars

Multiple linear regression: if we were to add the variable Gender into the multiple regression equation,
this correlation with height would probably be much smaller, since men in general are taller but also buy
more expensive cars than women for other reasons than increased height ;-)
Then let’s add age, salary, occupation, … (are we able to identify all the potential factors??)

An R-square value is an indicator of how well the model fits
the data (e.g., an R-square close to 1.0 indicates that we
have accounted for almost all of the variability with the
variables specified in the model).

In general, multiple regression allows the researcher to ask
(and hopefully answer) questions like "what is the best
predictor of Y among the available candidates X1, … , Xp, ".

For example, in linear regression, the dependent variable is
modeled as a linear function of the independent variable(s):

23

Multicolinearity in multiple regression
• Multicolinearity is present when a number of predictor variables

are highly positively or negatively correlated. The consequences
of multicolinearity are many fold;
– it causes unstable coefficients,
– misleading statistical tests, and
– unexpected coefficient signs.

• For example:
– Effort = 0.3 NA – 0.2 NM

(NA: Number of attributes, NM: Number of methods)

shows clear signs of multicolinearity.

Note: Multicolinearity is mainly a problem if you want to perform
formal tests of hypotheses on the relationship between X and Y,
less so if the goal is prediction of Y (and you don’t care why).

24

Principal Component Analysis (PCA)
Variable PC1 PC2
LCOM1 0.084 0.980
LCOM2 0.041 0.983
LCOM3 -0.218 0.929
LCOM4 -0.604 0.224
LCOM5 -0.878 0.057
Coh 0.872 -0.113
Co 0.820 0.139
LCC 0.869 0.320
TCC 0.945 0.132
ICH 0.148 0.927

• Principal component analysis (PCA) is a standard
technique to identify the underlying, orthogonal
dimensions (which correspond to properties that are
directly or indirectly measured) that explain relations
between the variables in the data set.
• For example, analyzing a data set using PCA may
lead to the conclusions that all your cohesion measures
come down to measuring two underlying dimensions or
aspect of cohesion.
• By using only one candidate variable from each
principal component, it is unlikely that the resulting
model suffers from multicolinearity problems. In turn,
this means that the model coefficients and the
corresponding statistical tests will be easier to interpret

25

Evaluating model accuracy
• Model-fit (does the model adequately “explain” the observations?)

– DV=Effort: R-Square, Mean Magnitude of Relative Error (MMRE)
– DV=Fault-proneness: precision, recall, ROC, Cost-effectiveness

• Checking for over-fit and assessing predictive power:
– Cross-validation

• a technique to obtain a realistic estimate of the predictive power of
models, when they are applied to data sets other than those the
models were derived from, but no other test data set is available.

• In short, a V-cross validation divides the data set into V parts, each
part being used to assess a model built on the remainder of the
data set.

– Using (cross-system or cross-release) test sets

26

Common problems…

• Hypothesis testing:
– Case studies: Lack of control, confounding factors
– Controlled experiments: Construct and External validity
– Model misspecification

• Prediction:
– High reliance on “naive” measures of predictive power ,

such as R-Square for the data used to build the model
• No test sets (or even cross-validation) are used to evaluate

the predictive power of models

– No practical evaluation of the usefulness of the models to
guide development or improve some aspect of quality

Data Mining Techniques for Building
Fault-proneness Models

in Telecom Java Software

Erik Arisholm, Lionel Briand & Magnus Fuglerud
International Symposium on Software Reliability Engineering (ISSRE’07)

28

The development project at Telenor
• COS – large telecom system, evolved over eight years,

30-60 developers, currently in its 23rd main release

• We collected data from 12 recent main releases:
– #Core application classes in each release: 1728-2579
– #KLOC in each release: 128-148
– #Fault MRs in each release: 1-117
– #Faulty classes in each release: 7-83

=> The fault data suggest strong potential for focused
testing since faults are typically contained within less than
5% of the classes

29

Predicting the location of faults
com

...

c
o...

com...

com.teleno
...

c...

co...
co
...

co...
com.te

...
com.tel
enor.co
s.adapt...

com.telenor.
cos.adapter.
simnum.ejb

com.tel...
co
... co...

co
...
co...

com.tele...
com.tele

...

com.t
eleno

...
com....

com.tel
...

com.tel
enor.co...

c
...

com.
...

com.te
lenor.c...

co
m.t
ele
...

com.telen
or.cos.cr...
com.telen

...
com.

...
com....

co... co...
com.tel

...
com
.tele
nor.

...

com.tele...
co
m.t...

com...
c... c...

com.tel
enor.c...

co
...

com.
telen...

co...
co...

com.tel
...

com.te
lenor.c...

com.... co... com...
com...
com

...

co... com....
com.tel

...
com.tele
nor.cos.

...

com.t
eleno

...

com.t
elenor...

com.teleno
r.cos.dom
ain.core.c...

co... com...

com.t
...

com
.tele

...

com.teleno
r.cos.doma
in.core.sub...

com... co...
com.tel
enor.c...

com.
telen
or.co...

com.telenor.cos.dom
ain.customer.model
com.telen
or.cos.do
main.deal
er.model

com.teleno
r.cos.doma
in.invoicec

ontrol

com.tele
nor.cos.
domain....

com.telen
or.cos.do
main.orde

...

com.
...

com....
com.telen
or.cos.do

...
co
... com....

co
m....

com.t
elenor...

com.telenor....
com.telenor.c
os.domain.pro
ductcatalog.m

odel

com.telen
...

c... co... co...

com.telenor.cos.do
main.sim

c
...

com.t
eleno...

com.te...
com.te...

co
m.
tel
...

com.telen
or.cos.ext
ension.ap

...

c... com.tel
enor.co

...

com.tel...
com.tel...

c... co...

c
... co...

com.t... com....
co... com.... c...

com.tel...

com
.tele

...
c... com.t

...

com.telen
or.cos.se

...

co
m.t...

com.tele
nor.cos....

com.telenor.cos.servic
e.customer.client

com.telenor.
cos.service.
customer.ej

b

com.tel
enor.co
s.servic

...

com.telen
or.cos.se
rvice.deal

...
com.teleno
r.cos.servi

...
c
...

com.tel
enor.c...

com.teleno
...

com.te
...

co
...

com.telenor.c
os.service.lp.e

jb

com.telen
or.cos.se
rvice.mes...

co... c...
com.telen
or.cos.se

...
com.t
eleno

...

com.tel...
com.t

...
com.te
lenor.c
os.ser

...

com.t
...

com.t
...

c
o...

com.telenor.cos.s
ervice.numport.ejb

com.tele
nor.cos.
service.
numport....

com.teleno
r.cos.servi
ce.order.cl

...
com.tele
nor.cos.s
ervice.or
der.ejb

com
.tele...

com...

com.telenor.cos.serv
ice.ordergenerator.e

...

c...
co
...

com.telenor.cos.service.
productcatalog.client

com.telenor.c
os.service.pr
oductcatalog.

ejb

com.telenor.c
...

com.... com.tel
enor.co...

com
...

com.telenor.cos
.service.simnu...

com.telenor.cos.serv
ice.simnum.dto

com.tel
enor.c
os.serv...

com.t
eleno
r.cos...

com.te
lenor.c

...

com.
...

co
m.t...

com.tel
enor.co...

com.tel
enor.co
s.syste

...

com.tele
nor.cos.
system....

co...
co...

com
... co...

com.telenor.
cos.system.s

...
c...

co
...

com.t
...

com
...

com.tele
...

com.t...

com.telenor.c
os.system.wr

apper.sql

com.t...
com.t...
com.t

...

com.tele
nor.cos.t
est.util

co...

com.t...

com.t
...

c... co...
com.telenor
.cos.type.si

...

co...
co...

com.tel
enor.c...

co
...

c
...

com.te
lenor.c...

c...
com.te

...
com.telenor.c
os.wrapper.js

...

c
...

co
...

com.
...

com.t...
co...

co...

com.te
lenor.c...

com.t
...

co
...

co
...

co
...

co...
co...

com....

com.
telen...

com.t...
com.t...

com.telenor
...

co
m.
...

com.tele
nor.cos...

com.te
...

com... c...

com.
...

devtool
s.boge

...
devt
ool
...

devt...

devtools.wrapp
ergenerator

30

Practical evaluation of costs and
benefits of using the models to focus

testing in the COS project
• Our hypothesis: Differentiating the unit test coverage goals among

classes according to the class fault proneness can greatly increase
testing productivity

• Approach: Just before the normal system test phase started and
after all functionality in the release was implemented, the
developers wrote unit tests prioritized by class fault proneness for
an additional two working days
– For selected classes: ensure statement, branch and loop

coverage

• Costs: The time required to write the tests, run them, check their
results and correct any defects

• Benefits: Finding and correcting more defects early – less defects
slipping through to later phases where they might be more costly to
detect and fix

31

Fault proneness in an evolving system

• The probability that a class will undergo one or
more fault corrections (due to field failures in
the current release) in the next release of the
system

• Binary dependent variable:
1: One or more fault corrections in a class in the next

release
0: No fault corrections in a class in the next release

32

Explanatory Variables
The fundamental hypothesis underlying our work is that the fault
proneness of classes in a legacy, object-oriented system can be affected
by the following factors (and their interactions):

– the structural characteristics of classes (e.g., their coupling)
– the amount of change (refactoring, requirement changes or fault corrections)

undertaken by the class to obtain the current release
– the experience of the individuals performing the changes, number of

developers involved in changes
– other, unknown factors that are captured by the change history (refactoring,

requirements or fault corrections) of classes in previous releases.
The inclusion of change and fault history data is essential in order to build
practically useful fault-proneness prediction models for the evolving legacy-
system. (*)
We use a unique ID that does not change even if the file location changes from
one release to the next to track the history. Important due to the heavy use of
refactoring throughout the project

A total of 112 candidate variables
* E. Arisholm and L. C. Briand, "Predicting Fault-prone Components in a Java Legacy System," Proc. 5th ACM-IEEE
International Symposium on Empirical Software Engineering (ISESE), Rio de Janeiro, Brazil, pp. 8-17, 2006.

33

Class fault-proneness prediction model

Class complexity
- Class size
- Coupling
- Cohesion
- …

For each type of CR involving this class
- Number of CRs
- Lines of code added and deleted in this class
- Number of CPs involving this class
- Total number of files changed in CRs
- Total number of tests failed in CRs
- Total number of developers involved in CRs
- Total number of past CRs of the developers

1.0

0.0Not fault-prone

Highly fault-prone

Neural Network
C4.5
Logistic regression, etc

Class change and fault history
For each type of CR involving this class
for the past three releases:

-number of CRs (n-1, n-2, n-3)

34

Evaluated data mining techniques
• Decision Trees (C4.5)

• Coverage Rule Learning (PART)

• Back-propagation Neural Networks (NN)

• Stepwise Logistic Regression (LR)

• Support Vector Machines (SVM)

• For C4.5, we also report results when using:
– Meta-learners (AdaBoost, Decorate)
– Correlation-based Feature Selection (CFS)
– C4.5 + PART hybrid model

• Select a prediction from either the C4.5 or PART model, depending on
which prediction is furthest away from 0.5

35

Model building and evaluation datasets
11 releases

66.6% 33.3%

COS20

= training data set (build a model)

= two distinct test/evaluation data sets
(to assess classification accuracy and
cost effectiveness) 36

Classification Accuracy:
Precision, Recall and ROC area
• Precision: the percentage of classes classified as faulty

(e.g., with a fault prob >=0.5) that are actually faulty
– a measure of how effective we are at identifying where faults

are located. Low precision means that we are including a lot of
“non-faulty” classes

• Recall: the percentage of faulty classes that are predicted
as faulty (e.g., with a fault prob >= 0.5)
– a measure of how many faulty classes we are likely to miss if

we use the prediction model.

• Receiver Operating Characteristic (ROC): A ROC curve
is built by plotting on the Y-axis the number of faults
contained in a percentage of classes on the X-axis. Classes
are ordered by decreasing order of fault probability as
estimated by a given prediction model.
– The larger the area under the ROC curve (the ROC area), the

better the model.

37

Cost-effectiveness assessment on
COS20 (C4.5)Assumption: the number of lines

of code is proportional to the
verification effort of the
predicted fault-prone classes

Baseline: a random selection of
classes to test would require
the testing of 60% of the
code to detect a maximum of
60% of the faults.

Model: Using our model we bring
this percentage down to less
than 20% of the code, thus
potentially requiring only
20/60 = 1/3 of the verification
effort.

Optimal: If we somehow knew
where the faults were
located, we could potentially
test only 5% of the code to
detect a maximum of 100%
of the faults.

38

Cost-effectiveness assessment on
COS20 (C4.5)Assumption: the number of lines

of code is proportional to the
verification effort of the
predicted fault-prone classes

Baseline: a random selection
of classes to test would
require the testing of 60%
of the code to detect a
maximum of 60% of the
faults.

Model: Using our model we bring
this percentage down to less
than 20% of the code, thus
potentially requiring only
20/60 = 1/3 of the verification
effort.

Optimal: If we somehow knew
where the faults were
located, we could potentially
test only 5% of the code to
detect a maximum of 100%
of the faults.

39

Cost-effectiveness assessment on
COS20 (C4.5)Assumption: the number of lines

of code is proportional to the
verification effort of the
predicted fault-prone classes

Baseline: a random selection of
classes to test would require
the testing of 60% of the
code to detect a maximum of
60% of the faults.

Model: Using our model we
bring this percentage
down to less than 20% of
the code, thus potentially
requiring only 20/60 = 1/3
of the verification effort.

Optimal: If we somehow knew
where the faults were
located, we could potentially
test only 5% of the code to
detect a maximum of 100%
of the faults.

40

Cost-effectiveness assessment on
COS20 (C4.5)Assumption: the number of lines

of code is proportional to the
verification effort of the
predicted fault-prone classes

Baseline: a random selection of
classes to test would require
the testing of 60% of the
code to detect a maximum of
60% of the faults.

Model: Using our model we bring
this percentage down to less
than 20% of the code, thus
potentially requiring only
20/60 = 1/3 of the verification
effort.

Optimal: If we somehow knew
where the faults were
located, we could
potentially test only 5% of
the code to detect a
maximum of 100% of the
faults.

41

Classification Accuracy vs Cost Effectiveness
Classification

Accuracy

Cost Effectiveness area
when selecting x % of the NOS for

testing Model

Prec. Rec. ROC 1 % 5 % 20 % 100 %

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32

SVM 4.7 74.5 80.7 0.005 0.117 2.43 17.78

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22

Neural Net 5.8 73.2 82.6 0.031 0.193 1.50 12.79

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12

42

Example: Classification Accuracy for C4.5 vs PART

Classification
Accuracy

Cost Effectiveness area
when selecting x % of the NOS for

testing Model

Prec. Rec. ROC 1 % 5 % 20 % 100 %

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32

SVM 4.7 74.5 80.7 0.005 0.117 2.43 17.78

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22

Neural Net 5.8 73.2 82.6 0.031 0.193 1.50 12.79

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12

43

Example: Cost Effectiveness Area for C4.5 vs PART

Classification
Accuracy

Cost Effectiveness area
when selecting x % of the NOS for

testing Model

Prec. Rec. ROC 1 % 5 % 20 % 100 %

C4.5 4.7 71.1 79.0 0.026 0.397 3.56 18.03

PART 4.6 78.5 81.7 0.010 0.014 1.55 18.32

SVM 4.7 74.5 80.7 0.005 0.117 2.43 17.78

Logistic Reg. 5.4 75.8 82.0 0.028 0.222 2.72 18.22

Neural Net 5.8 73.2 82.6 0.031 0.193 1.50 12.79

DecorateC4.5 5.5 76.5 83.6 0.003 0.210 4.18 19.06

Boost C4.5 4.7 75.2 79.4 0.020 0.406 2.73 16.04

CFS C4.5 4.8 77.9 79.6 0.026 0.320 3.19 17.46

C4.5+PART 5.1 77.9 81.0 0.026 0.210 2.47 19.12

44

Summary of results

• The C4.5 decision tree seems to be the best
overall choice for focused testing in terms of our
cost-effectiveness indicator for useful
percentages of code size and fault coverage
– In our COS release 20 evaluation dataset, it identifies

about 30% of the faults in 5% of the code and about
60% of the faults in 20% of the code

• If we had used ROC, Precision, Recall as
selection criteria we would probably have
chosen a suboptimal model for focusing testing

45

Generalizability of results

• What aspects of of this study do you
think apply to other development
projects?

