
A Case Study on the Application of UML
in Legacy Development

Bente Anda
Simula Research Laboratory

P.O. Box 134, NO-1325 Lysaker
Norway

+47 67828306

bentea@simula.no

Kai Hansen
ABB Corporate Research Center
P.O. Box 90, NO-1361 Billingstad

Norway
+47 22874638

kai.hansen@no.abb.com

ABSTRACT
Model-driven development with UML is becoming a de facto
standard in industry, but although much of today’s software
development is about enhancing existing systems, there is no well-
defined process for model-driven development in the context of
legacy systems. To ensure the relevance of research on model-
driven development with UML, there is a need for studies of
actual use of UML in software development companies. As part of
a software process initiative, we conducted a case study in a large
development project where some of the development teams
enhanced existing components, while other teams developed
software from scratch. The results from this case study showed
that those who applied UML in modelling and enhancing legacy
software experienced more challenges and fewer benefits from the
use of UML than did the developers who modelled and developed
new software. Overall our results show a need for better
methodological support on applying UML in legacy development.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods.

General Terms: Documentation, Design.

Keywords
Model-driven development, UML, Legacy software, Embedded
Software

1. INTRODUCTION
Model-driven development views software development as a
series of modelling steps, each of them refining the models of the
previous step. Modelling is seen as a way to handle the growing
complexity of software development by helping engineers work at
higher levels of abstraction. Moreover, model-driven development
is supported by the Unified Modeling Language (UML) [5], an
evolving standard that is now in widespread use across industry.
Nevertheless, there is little empirical evidence supporting the

claim that UML is an effective approach to modeling software
system, and the empirical studies that have been conducted on the
use of UML have mostly been conducted with students in
academic settings. The widespread use of UML means that there
is a need to understand challenges and benefits of applying UML-
based development in different types of development projects.
Such understanding should, among other things, be based on
evidence from actual use of, and the consequences of using, UML
in industry.

A large proportion of software development in industry is
enhancement of existing systems. Thus model-driven development
with UML must frequently be introduced in legacy development,
to leverage previous, often significant investments. To derive the
maximum benefits from using UML, model-driven development
projects should therefore be able to take advantage of legacy code
[15].

The company ABB, a large global company with more than
100000 employees in over 100 countries, decided to attempt to
improve the company’s software development projects through
the use of model-driven development with UML. The aim was to
improve, among others, communication between stakeholders in
the projects, the design and documentation of the systems as well
as the testing procedures. A UML-based development method was
developed and applied in a large development project that
comprised approximately 230 people. Much of the development in
the project was about enhancing existing systems with new
features, while some components were developed from scratch.
Consequently, ABB experienced a need to understand the
particularities of applying UML in legacy development. Hence, it
was decided to evaluate whether the experience of applying UML-
based development was positive from the perspective of the
individual practitioners and project managers. It was expected that
unless the experience was positive, the new technology would risk
rejection despite its potential for yielding benefits.

The particularities of this development project in ABB allowed us
to conduct a case study to compare the use of UML in legacy
development with new development. For the purpose of this study
we define legacy development as the development of a new
software system based on one or more existing systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISESE'06, September 21–22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/0009...$5.00.

Data on challenges and benefits of the UML-based method was
collected through interviews with, and questionnaires from,
experienced project members. Overall results from the interviews
on applying UML-based development are reported in [2]. This
paper focuses on challenges in legacy development compared with
development from scratch. Hereafter, we use the term legacy

group for those who applied UML in legacy development and the
term new-code group for those who developed from scratch.

The results show that the legacy group experienced more
difficulties than did the new-code group in the construction of the
diagrams. In particular, identifying and documenting use cases
was much more difficult for the legacy group than for the new-
code group. The use of UML diagrams also yielded fewer benefits
in legacy development, although there were some positive effects
in legacy development, in particular from applying sequence and
class diagrams. The most positive benefits were obtained with
respect to testing. We believe that these results confirm that there
is potential for model-driven development with UML in legacy
development, although the costs of introducing it are higher than
in new development. Furthermore, the results from this study
could be used as input to methodological support on constructing
and applying UML diagrams in legacy development.

The remainder of this paper is organized as follows. Section 2
describes the research method. Section 3 describes the project that
was the case for this study as well as the UML-based development
method applied in the project. Section 4 describes the results.
Section 5 describes related work. Section 6 concludes and
suggests directions for future work.

2. RESEARCH METHOD
Case studies are important if we are to understand the actual
practice of software development, and such understanding is an
essential prerequisite to the primary aim of empirical software
engineering research, which is to inform practice [14]. A major
strength of the case study approach is that it allows the study of a
phenomenon within its real-life context [16]. A software process
improvement initiative with focus on UML-based development in
the company ABB provided us with the opportunity to conduct a
case study on the use of UML-based development in a large
project.

The members of this project experienced particular problems with
applying UML in legacy development [2], and we consequently
decided to investigate the particular challenges related to such
development compared with development from scratch. The
project provided a very good opportunity for investigating the use
of UML in actual practice because safety constraints imposed by
the standard IEC61508 [9] required the developers to use a semi-
formal development method based on the use of UML.
Furthermore, some parts of the system were developed from
scratch, while other parts were enhancements of legacy code with
new functionality to satisfy market and safety requirements. We
could thus exploit natural differences in the project, as
recommended in the literature on conducting case studies [10], to
investigate differences between applying UML-based
development in legacy development and in new development
under otherwise similar conditions.

The extensive professional experience of developers at ABB was
collected through interviews and questionnaires. The collected
data thus represents the developers’ opinions on the effects of
using UML. One might, of course, have liked more objective
measures, but the scarce previous research on the topic provides
no measures that can be applied in the evaluation of UML-based
development, and it was outside the scope of this project to
attempt to develop new ones.

Interviews were conducted with 16 members of the project. The
interviews included open-ended questions about experience with
the different UML diagrams, the comprehensibility of the
diagrams, costs and benefits of UML-based development, and
experience with the use of UML diagrams in maintenance. The
complete interview guide and a description of the analysis of the
interviews can be found in [2].
A questionnaire was then developed with the aim of 1) validating
the results from the interviews on overall challenges and benefits
and 2) investigating in greater detail the differences between
development from scratch and legacy development. This latter is
the focus of this paper. The items in the questionnaire closely
follow ABB’s UML-based method (Figure 1). One project
member, who had previously been interviewed, was a pilot to test
the ease of comprehension of the questions. There were two types
of question: yes/no questions where the respondents would
indicate the use of the different diagrams, and propositions
regarding which they would give their opinion on a five-point
Likert scale (the options were: Totally agree (=1), Partially agree
(=2), Neither agree or disagree (=3), Partially disagree (=4) and
Disagree (=5).

All together, 55 project members who had not been interviewed
responded to the questionnaire. Hard copy of the questionnaires
was handed out to each respondent by an MSc student. We believe
that personal contact with respondents helped to ensure serious
responses, but a few of the project members declined to respond
because they had not worked much in detail with UML, while
others declined because their managers placed their priority on
finishing the project and worried that completing the questionnaire
would result in the loss of valuable time. There were also some
consultants who had finished their job and left the project before
the questionnaires were handed out.

All respondents were used to provide feedback to the company
and validate the interviews. For the purpose of this study we
focused on developers who had either developed from scratch or
developed using legacy code as a basis, and on the experience of
those developers with the individual UML diagrams. We
consequently omitted managers and reviewers who had not been
directly involved in development. Two respondents who answered
very few questions were removed from the analysis, leaving us
with 28 respondents, 14 in each group. There was also a group of
14 developers who had developed both from scratch and based on
legacy code. This group was omitted to ensure distinctly different
groups with respect to the focus of this study. The fact that there
were 14 developers in each group was a coincidence. The
respondents indicated themselves, on the questionnaire, what kind
of development they had been involved in. The questionnaire is
shown in Appendix A.

As part of this case study, we also had several meetings with
representatives of the development project, and we had access to
all project documents. The second author of this paper is an
employee of ABB and is thus acquainted with the development
project under study. In the interpretation and discussion of the
responses to the questionnaire, we use knowledge of the project
obtained through these sources.

External validity is about establishing the domain to which a
study’s findings can be generalized. A common criticism
regarding case studies is the impossibility of generalising results

obtained from a single case. However, according to Yin [16],
“case studies are generalisable to theoretical1 propositions and not
to populations or universes”. That is to say, the results from this
case study represent issues related to the use of UML in legacy
development that were encountered in the project under study, and
which we therefore expect would be encountered in other projects
that are similar to this one, in particular with respect to application
domain and qualifications of the team members. The results do not
represent issues that will always occur when UML is applied in
legacy development. Furthermore, this is not a study of the full
potential of UML-based development, but a study of the practical
use of UML-based development in a large, global company that
actually uses UML in their software development projects. The
level of experience and skill in UML is probably representative for
most developers in industry today.

3. THE CASE STUDY CONTEXT
This section describes the development project and the UML-
based method that was applied in the project.

3.1 The Development Project
The project developed a new version of a safety-critical system
based on several existing systems. The system was to be installed
at several locations, and each installation could program its own
logic on top of the system delivered by ABB. The workforce
comprised approximately 230 people, 100 of whom were involved
in development with UML. Some of the developers and all the
product managers were domain experts. ABB relies on having
domain expertise in-house because they sell a complete product to
its customers. Safety certifiers, UML experts, quality managers
and peer developers (also with domain knowledge) reviewed the
UML models at predefined gates in this development process. The
developers were organized in teams, which consisted of 8-10
people on average. Each team would typically be responsible for
one or several components from analysis to the finished code.

The existing systems consisted of 3-4 million lines of code and
there were approximately 1000 requirements for this version, one
third of which concerned satisfying safety requirements and the
remainder of which consisted of requirements for new
functionality from the product management. C and C++ were used
in the software implementation. UML version 1.3 and Rational
Rose was used for modelling. The tool Doxygen2 was used for the
reverse engineering of code. Much of the software was embedded.
This software project was ABB’s most ambitious project
regarding quality assurance in that it followed the requirements of
IEC 61508 [9]. It was these requirements that motivated the use of
UML-based development.

Most of the developers on the projects had a great deal of
experience with software and hardware development. Most of
them had previously used SDL, but the company had previously
not used a standardized method for the analysis, design and
documentation. The majority received training in UML, the UML-
based method and Rational Rose before the start of the project.

1 There is no existing theory on the use of UML, but we expect

that this one and other explorative studies could be used to
formulate initial theories.

2 http://www.stack.nl/~dimitri/doxygen/

Some also had experience with UML-based development from
previous projects.

The UML-models in this project were large and complex, and
there were many challenges related to obtaining high quality
models (these are described in detail in [2]). However, the UML-
models were reviewed for syntactic and semantic errors at several
stages in their construction to ensure good quality of the final
models.

3.2 The UML-based Development Method
The overall development method in ABB is an implementation of
the V-model, and the projects follow a Gate Model with
predefined gates. The UML-based method was developed
internally. It was not based on any particular method for UML-
based development, but those responsible for it had experience
with development based on UML, and were familiar with basic
literature on such development, for example [5,7,8].

Figure 1 gives an overview of the requirements analysis and
analysis phases of the UML-based development. The use of
activity and state diagrams was optional in the method, and such
diagrams were therefore used by only a few of the developers, and
hence were not a subject of study.

The method description recommended some iteration over the
different phases and activities, in practice, however, the
development mostly followed a waterfall model due to the gate
model, but with some return to update previously developed
models. Complete method descriptions are confidential.

In detailed design the high-level classes are realized with
implementation class diagrams, and the classes are grouped into
components.

The UML diagrams were recommended used as input to test
cases. Use cases were input to functional test specifications,
sequence diagrams were input to integration testing, and the class
diagrams were input to unit testing. There was, however, no
detailed method description regarding how the diagrams should be
applied in testing.

There exists no well-defined process for the use of UML in legacy
development. Consequently ABB’s UML-based method was not
specifically tailored to such development. Nevertheless, the UML-
based method stated that existing code could be reverse
engineered into classes, which would be included in top-down
analysis and design of the system. New code that uses the existing
code base should use the classes’ interfaces when representing the
existing code in sequence and class diagrams. In practice,
however, it was considered too costly and consequently infeasible
to completely reverse engineer the existing code, because of its
size and because the existing code was not always designed
according to object-oriented principles. At the outset of the
project, it was not clear which parts of the legacy code should be
completely reverse engineered into object-oriented code and
which parts should be kept as they were, but wrapped to be used
as objects in the new models. This decision was at the discretion
of the different development teams, and was dependent on how
much change was necessary to each component in order to satisfy
the new requirements. Future versions of the system will further
reverse engineer and improve the design of these components.

1. Use case modelling
1.1 Identify and document actors
Actors are the system’s external interfaces. Humans, timers,
sensors or anything else that interacts with the system can be an
actor. For a use case diagram in a subsystem, other (interacting)
subsystems should also be defined as actors.
1.2.a Identify and document use cases
Use cases define the system seen from the actors’ point of view.
They capture the requirements and represent the different usage of
the system. A use case is always initiated by an actor.
1.2.b Describe flow of events inside the use cases
Each use case has at least one normal flow of events. Then capture
the exceptional flows of events for each use case. This is done in
several iterations. (We investigated activities 1.2.a and 1.2.b
together since the interviewees did not distinguish between the
first identification of use cases and their textual description).
Templates, with basic and alternative flows of events, pre and post
conditions, and extension points, were used for this purpose.
1.3. Group use cases and actors into subsystems
There should be strong cohesion within the subsystems and weak
coupling between the subsystems.
(It is commonly recommended in UML development methods to
identify high-level classes before the division into subsystems.
ABB decided to do it this way because many of the actors and use
cases described legacy code)
1.4 Refine the use cases and identify dependencies
If some use cases show common behaviour that can be extracted
without disturbing the main functionality, it can be factored out as
a separate use case and included into the diagrams using the
<<include>> stereotype. If some use cases have behaviour that
can be seen as additions to, or variations of, normal behaviour,
such forms of behaviour can be factored out as separate use cases
and included into the use cases using the <<extend>> stereotype.

2. Sequence diagrams
2.1 Create high-level sequence diagrams
High-level sequence diagrams model the textual description of
each use case. The sequence diagrams should show the dynamics
between the objects involved in the use case and the actors
interfacing them, for both normal and exceptional flows of events.
2.2 Define interfaces between use cases in different subsystems
Define interfaces between interacting sequence diagrams of
different subsystems.

3. Class diagrams
Identify high-level classes that describe the commonality between
similar objects in the sequence diagrams and define the structure
and behaviour for each object in the class. Assign objects to the
correct classes. The interactions between the objects in the
sequence diagrams help to identify the operations in the classes.
The different messages will identify operations in the class of the
receiving object. Find the information necessary to process each
message in the sequence diagrams. This information will end up as
attributes in the class of the receiving object. The class diagram
should show associations between the classes. Finally, update
sequence diagrams with correct class and operation names.

Figure 1. Brief description of the UML-based method

Since they were all developing one system, the overall
architecture, as well as the non-functional requirements were, in
principle, the same for all. Nevertheless, those who enhanced

legacy code generally obtained a less object-oriented architecture
within the components than did those who developed from
scratch.

The method description was applied by both those developing
from scratch and those enhancing the legacy code, but there were
some differences between the actual development processes of the
two groups:
1. Use cases: Both the new-code and the legacy group used

requirements as input to constructing use cases for new
functionality. The legacy group also documented the legacy
code with use cases. They based the use cases on the existing
code and their experiences with that code. Some of the
legacy use cases were then enhanced with new functionality.
Extending use cases were often used for adding new
functionality to existing use cases.

2. Sequence diagrams: The new-code group made sequence
diagrams based on the use cases. The legacy group used, in
addition, the existing code, their experiences with that code
and the reverse engineered classes.

3. Class diagrams: The new-code group identified class
diagrams in parallel with developing sequence diagrams. The
legacy group reverse engineered and manually improved the
results of reverse engineering, also with the use of sequence
diagrams.

4. RESULTS
This section reports the results with respect to ease of constructing
the diagrams, and how they were used and utilised in the areas of
improvements desired by ABB.

4.1 Ease of Constructing Diagrams
The respondents were asked how easy it had been to construct the
different diagrams. The questionnaire closely followed the ABB
method description with most focus on use case modelling. We
also knew from the interviews that the project members had most
opinions about use case modelling, since this technique was new
for all of them and the starting point for the use of the UML based
method. Consequently, the questionnaire included more questions
on use case modelling than on the construction of sequence and
class diagrams.

4.1.1 Use cases
Figure 2 shows boxplots of the responses to the questions 1.1– 1.4
for those developing from scratch, denoted new, and those
enhancing legacy code, denoted legacy. The figure should be read
as follows
• The median response is denoted by the cross circle.
• The rectangle shows the interquartile range of the responses

for each question. The top of the rectangle is the third
quartile (Q3), 75% of the data values are less than or equal to
this value. The bottom of the rectangle is the first quartile
(Q1), 25% of the data values are less than or equal to this
value.

• The upper whisker extends to the highest data value within
the upper limit (upper limit = Q3 + 1.5(Q3-Q1). The lower
whisker extends to the lowest value within the lower limit
(Q1 – 1.5(Q3-Q1).

• Outliers are values beyond the whiskers and denoted with an
*.

RefineGroupUse case Actors
LegacyNewLegacyNewLegacyNewLegacyNew

Disagree

Part. disagree

Neither

Part. agree

Tot. agree

Figure 2. Ease of use case modelling

Class diagramsInterfacesSequence diagrams
LegacyNewLegacyNewLegacyNew

Disagree

Part. disagree

Neither

Part. agree

Tot. agree

Figure 3. Ease of constructing sequence and class diagrams

Identifying and documenting actors was considered a rather
easy activity for the new-code group, but was more difficult for
the legacy group. Those who enhanced legacy code had actors that
were other (interacting) legacy subsystems. This required them to
view those subsystems as actors with goals with respect to their
own subsystem. From the interviews we learned that this was
difficult conceptually, and it was also difficult because the
different legacy subsystems often lacked appropriate descriptions
of their interfaces at the outset of the project.
Identifying and documenting use cases was considered rather
easy by the new-code group, but was much more difficult for the
legacy group. This was the question in our questionnaire with the
largest difference in median response between the two groups of
respondents. From the interviews we learned that the legacy group
experienced two difficulties:
1. Actors in the form of legacy subsystems do not have goals in

the standard sense that can be used to derive use cases.
Hence, it was particularly difficult to describe and delimit use
cases initiated by such actors.

2. It was difficult to ensure a focus on functionality and top-
down development when describing use cases for which
there was already existing code. Little documentation of the
existing systems meant that the code was an important source
of information regarding functionality, and the code was also
often more familiar to both developers and reviewers than
was the external functionality.

Grouping actors and use cases into subsystems was considered
rather difficult by most of the respondents, but was most difficult
for the legacy group. From the interviews, we know that lack of
documentation and traceability in the legacy code, in the cases
where the existing code was unfamiliar, made it difficult to relate
existing functionality, described as use cases, to code.
Consequently, it was particularly difficult to group legacy actors
and use cases into subsystems.

Refining use cases and deciding dependencies was also
considered rather difficult by most of the respondents. Extending
use cases were often used for adding functionality to existing use
cases. From the interviews we know that this additional use of the

extends construct had been difficult, which is a reason why the
legacy group had more difficulties in this activity.

4.1.2 Sequence diagrams
Figure 3 shows the respondents’ opinions on ease of constructing
sequence diagrams, and of defining interfaces between them,
questions 2.1 and 2.2 in the questionnaire.

Constructing sequence diagrams was rather easy for the
majority of the new-code group (based on the median value of the
responses), but that was not the case for the legacy group.
Sequence diagrams detailed out use case flows, so it is to be
expected that more difficulties with modelling use cases led to
more difficulties in constructing sequence diagrams for the legacy
group.

From the interviews we know that those who used sequence
diagrams to model legacy code with which they were familiar,
tended to include actual function calls in the high-level sequence
diagrams. Many of the interviewees also complained that
reviewers who were familiar with the code often had a focus on
discussing details in the code, rather than the higher level
description of interactions between objects that is the focus of the
sequence diagrams. A consequence of the latter was that more
time was spent in reviews before the sequence diagrams were
formally accepted, and consequently there was a feeling of more
difficulties in the construction of sequence diagrams. The variation
in the responses in the new-code group is very large on this
question. Our data does not allow us to investigate in detail the
causes for this. However, we know from the interviews that the
developers had varying experience with SDL (System Design
Language), which means that some had more previous experience
with sequence diagrams than others. Some also felt that the syntax
of UML 1.3 lacked expressive power, with respect to, for
example, loops and guard conditions. We can thus speculate that
some such factors have influenced the results on this question.

Defining interfaces to other subsystems was difficult and most
difficult for the legacy group. From the interviews we know that it
was difficult to identify appropriate interfaces to other subsystems
also at this level. In practice, the interfaces tended to be actual

function calls in the code, and it required good knowledge of the
interacting subsystem to model this correctly.

4.1.3 Class diagrams
Figure 3 shows that the difference between the two groups was
small with respect to the construction of class diagrams. The
medians of the two groups show that neither of them found this
activity easy, but more were positive in the new-code group. In
practice, the legacy group did not manage to reverse engineer the
legacy software completely, partly because the software was not
completely object-oriented, and partly because of its size. From
the interviews we know that it was particularly difficult to make
interfaces for the old code, and to decide how much of the legacy
code should be included in the new models to render them
intelligible. Such decisions required good knowledge of the legacy
code, as well as an ability to abstract away details. Some
developers circumvented this by inventing classes to be used in
the models and simulated interfaces to the old code. The class
diagrams that modelled existing code were often very large.
Nevertheless, the small difference between the groups indicates
that it may not be much easier to model class diagrams from
scratch than developing them based on the reverse engineering of
existing code.

4.2 Use of the Diagrams
This section investigates the use of the different diagrams in the
project activities that ABB wanted to improve by introducing
UML based development; design, testing, communication in
reviews and within teams, and documentation. All developers
applied the UML diagrams in design and documentation, but
although it was recommended to use the UML diagrams also in
reviews, testing and in the communication within the teams, it was
not compulsory. Hence, the respondents were asked to indicate if
they had applied the diagrams in those activities. Table 1 shows
how many of the 14 respondents in each of the groups had applied
each of the diagrams in the different activities, for example 7 of
the developers in the new-code group and 8 of the developers in
the legacy group had applied use cases as input to testing.

Table 1 shows that the diagrams had been used little in code
reviews, more in communication within the teams, but most in
testing. The diagrams had been used equally much in the two
groups. The diagram which was used the most was the sequence
diagram.

TABLE 1. Use of diagrams
 Use case Sequence diagr. Class diagr.
 New Legacy New Legacy New Legacy
Review 0 2 1 4 5 4
Test 7 8 9 9 6 7
Comm. 5 4 7 7 6 6

CommunicationTestDesignDocumentation
LegacyNewLegacyNewLegacyNewLegacyNew

Disagree

Part. disagree

Neither

Part. agree

Tot. agree

Figure 4. Utility of use cases

CommunicationTestDesignDocumentation
legacyNewlegacyNewlegacyNewlegacyNew

Disagree

Part. disagree

Neither

Part. agree

Tot. agree

Figure 5. Utility of sequence diagrams

CommunicationTestDesignDocumentation
LegacyNewLegacyNewLegacyNewLegacyNew

Disagree

Part. disagree

Neither

Part. agree

Tot. agree

Figure 6. Utility of class diagrams

4.3 Utility of diagrams
ABB hoped for improvements from using UML-based
development with respect to design, test, documentation and
communication. Hence, the respondents were asked, for each of
the diagrams, whether they had experienced any positive effect
from using them in these activities. Figures 4 to 6 show the
responses to questions 7 to 9 in the questionnaire. The responses
are from those who had actually applied the diagrams in the
specific activity. All the respondents had used the diagrams in
design and as a means of documentation, but for test and
communication the number of respondents is equal to the number
of users shown in Table 1 (on question 7.4, about the effects on
test cases, there were for example 7 respondents in the new group
and 8 respondents in the legacy group). We have omitted the
effects of diagrams on code reviews because of the small number
who had actually used the diagrams in that activity.

4.3.1 Design
The respondents were asked whether the UML diagrams had a
positive effect on the design of the system. For those developing
from scratch, this question was about the extent to which the use
of UML had been a help in obtaining a good design. The legacy
group started out with code that was not always designed
according to object-oriented principles. For that group this
question was about whether the different UML diagrams had
helped in improving the code structure towards a better and more
object-oriented design.

Figure 4 shows that modelling use cases had not contributed
positively to design for either of the two groups. There were,
however, slightly more positive responses in the legacy group.
From the interviews we know that both groups experienced
difficulties with deriving classes and methods from use cases in
design, but also that describing the existing code with use cases
led to the identification of some possible improvements in the
structure of the legacy code.

Sequence diagrams, however, had positive effects on design
(Figure 5), and the new-code group had experienced more positive
effects in design from applying sequence diagrams, than had the
legacy group.

Class diagrams had contributed very positively to the design in the
new-code group with the responses to this question being the most
positive in the whole questionnaire (Figure 6). The legacy group
was a bit more reluctant, but still this was the diagram that had had
the best effect on design for this group.

From the interviews we know that the project members considered
that the process of model-driven development, and consequently a
focus on top-down development, leads to earlier and more focus
on design. Using UML it was also easier to discuss a design
among the developers and see how it would work.

4.3.2 Test
The responses about effects on testing in Figures 4 to 6 show that
testing was the activity in which the effects of applying UML-
based development were the most noticeable.

Having use cases had a positive effect on functional testing for
both groups, but most for the new-code group. From the
interviews we learned that functional test cases were quicker and
easier to define when use cases were used as a basis, they were

also defined earlier than before; and they were defined in a more
structured way.

Sequence diagrams had been useful as input to integration test for
the new-code group. Also in the legacy group some developers
had experienced positive effects. From the interviews we learned
that sequence diagrams were considered particularly useful for
ensuring completeness of integration testing.

Class diagrams were also useful in unit test for all the respondents,
and the responses from the new-code group were unanimous on
this issue.

4.3.3 Documentation and communication
The opinions on documentation and communication were very
similar, and these two uses of the diagrams were related in that
good documentation was perceived as a prerequisite for successful
use of it in communication.

For those developing from scratch, use case modelling had a
positive effect on documentation and communication. Most
members of the legacy group had, however, not experienced
positive effects in these activities. We believe that that was
because the legacy group experienced more problems in
constructing use cases. From the interviews we know that use
cases had improved the documentation of the new code because
use cases enforced one structure on all the functional descriptions.
The use cases made by the legacy group were also often too
detailed to give an overall understanding of the functionality.

Sequence diagrams had had a positive effect on documentation
and communication for most respondents. This indicates that the
final sequence diagrams were of sufficient quality to be useful in
providing an increased understanding of the system. From the
interviews we learned that the sequence diagrams were found to
be particularly useful for obtaining an overall understanding of the
system.

Class diagrams had a positive effect on documentation and
communication, in particular for the new-code group. Many
interviewees meant that the “class diagrams were the code” and
thus that the graphical representation of the class diagrams
facilitated the understanding of the code.

From the interviews we know that communication within the
teams was considered to have improved, due to having the UML
models as a basis for discussions. It was for example easier to
come up with suggestions for solutions when the UML diagrams
were used in the discussions.

In the code reviews, however, there had been little use of the UML
diagrams, and thus no improvements due to having UML
diagrams. One reason for this may be that many of the participants
in the code reviews were unfamiliar with UML.

Overall the respondents were most satisfied with the effects of
class diagrams and least satisfied with the effects of use cases. We
believe that is because the class diagrams are the closest to code,
and thus it was easier for the respondents to have an opinion on
the effects of this diagram.

5. RELATED WORK
There are few empirical studies on model-driven development and
the use of UML to which we can relate the results of this study. To
the authors’ knowledge, there is only one study that evaluates
model-driven development in a legacy environment [11]. In that
study, an existing component from an industrial system was
redeveloped and integrated back into the system by a student. The
results of that study support our results in that they show
difficulties with defining the boundary between model and legacy
code, but also positive effects in communication due to the use of
UML. In turn, together with a graphical notation that could easily
be navigated, maintainability was improved.

In another study, the usability of use cases, sequence diagrams and
class diagrams was investigated through the use of a questionnaire
completed by students with experience of using UML on students’
projects [1]. The results from that study showed that the students
did not find UML diagrams to be very usable, and that, for
beginners, use cases and state diagrams were easier to use than
class and interaction diagrams. Our results were based on the
opinions of professional developers with experience from
applying UML on a large development project. Our results do not
confirm that use cases are easier to use than class and interaction
diagrams. This may be because of differences in the application
domain, as the application domain has been shown to impact the
ease of use of UML diagrams [12]. The different results may also
indicate that the ease of use of the UML depends on the
background of the developers.

A controlled experiment with students found that for complex task
and when the subjects have passed a certain learning curve, the
availability of UML documentation may result in significant
improvements of the design quality of changes [3]. These results
agree with our results in that we also found that the use of UML
documentation may have a positive effect on design. Our results
do not, however, support positive effects of UML diagrams in
design quality in maintenance of large, complex systems. Our
results are obtained in a very different context where the
developers also had to construct the UML diagrams. Hence, the
diagrams were not as “perfect” as the diagrams in the
abovementioned study, thus the results are not directly
comparable.

An experience report based on 15 years experience with model-
driven engineering in a large company support our results in that
they found improvement in testing to be the most important
improvements due to the application of model-driven engineering
[4].

Another experience report, based on the author’s experience from
several applications of UML in the design of embedded systems,
claims that one of the most immediate benefits observed from
adopting a use case driven UML design is the improved visibility
to stakeholders [13]. Through the application of UML, software
engineers were able to more readily communicate with systems
engineers and end customers. This supports our results on
communication to some extent, although our results on the lack of
use of the UML diagrams in code reviews indicate that the UML
diagrams are not always useful for stakeholders who are not
familiar with UML. The experience report also pointed at
challenges with respect to describing interfaces between UML
models.

Furthermore, a web-based survey on the use of UML is reported in
[6]. That study investigated to what extent key components of
UML (including use case diagrams, use case narratives, sequence
diagrams and class diagrams) are used and how useful those
components are in clarifying technical issues, as programmer
specifications and as maintenance documentation. The survey
collected 171 responses from analysts using UML and 11
responses from people using UML components as part of another
methodology. The results showed that use case, sequence and
class diagrams are frequently used in software development; more
than 50% of the respondents used the diagrams in more than 2/3 of
their projects. Use case narratives were slightly less used with
44% using them in more than 2/3 of their projects. Class diagrams
were considered very useful, 93% of those having used them in
more than 1/3 of their projects found them useful in clarifying
technical issues, 89% found them useful as programmer
specifications, and 92% found class diagrams useful as
maintenance documentation. Sequence diagrams were also
considered very useful in these activities, although slightly less
than class diagrams, while use case diagrams and narratives were
found useful by between 60% and 80% depending on activity.
These results on usefulness agree with our results on the utility of
those UML diagrams with respect to documentation and
communication.

6. CONCLUSIONS AND FUTURE WORK
A case study was conducted as part of a software process
improvement initiative related to the introduction of model-driven
development in a large company. The study investigated the ease
of constructing, the use and the utility of use cases, sequence
diagrams and class diagrams in modelling and enhancing legacy
software compared with development from scratch. The case was
a large development project applying UML in the development of
a new version of existing systems, with most of the software being
embedded. Some parts of the system were developed from scratch
while others were based on existing components.

The results show that adopting the abovementioned diagrams in a
legacy environment, where it was necessary to model existing
code and functionality, as well as to introduce functional
enhancements, yielded more challenges and was consequently
more costly, than adopting UML in development from scratch. In
particular, identifying and documenting use cases was much more
difficult in legacy development than in development from scratch.
The use of UML diagrams also yielded fewer benefits in legacy
development, although there were some positive effects also in
legacy development, in particular from applying sequence and
class diagrams. The most positive benefits were obtained with
respect to using UML diagrams as input to testing.

We believe that our results confirm that there is potential for
model-driven development with UML, also in legacy
development. Our results support a previous study that showed
challenges with applying UML in legacy development, as well as
previous studies showing that the use of UML may be beneficial
in testing, documentation and communication. Nevertheless, the
results also show a need for more methodological support on
constructing and applying UML diagrams in legacy development,
in particular, steps should be taken to improve methodological
support for (i) reverse engineering from code to UML models, and
(ii) the application of UML in the design of enhancements of
legacy code.

The positive results with respect to UML-based testing has led
ABB to an increased focus on how the UML-models can be used
in a more systematic way to further improve the company’s
testing procedures. A follow-up study to this one is planned on the
project developing the next version of the same system in order to
continue gathering experiences with the use of model-driven
development with UML in the company.

7. ACKNOWLEDGMENTS
We acknowledge all the employees of ABB in Sweden and
Norway who participated in the interviews and completed the
questionnaires; in particular, Cato Bratt and Ulf Hagberg. We also
thank Hanne Kristin Thorsen for her help with transcribing the
interviews and administering the questionnaires, and Dag Sjøberg
and Ray Welland for comments on this paper. The reported work
was funded by The Research Council of Norway through the
industry project SPIKE (Software Process Improvement based on
Knowledge and Experience).

8. REFERENCES
[1] Agarwal, R. and Sinha, A.P. Object-Oriented Modeling with

UML: A Study of Developers’ Perceptions. Communications
of the ACM, Vol. 46, No. 9, pp. 248–256, September 2003.

[2] Anda, B., Hansen, K., Gullesen, I. and Thorsen H.K.
Experiences from Using a UML-based Development Method
in a Large Safety-Critical Project. Forthcoming in Empirical
Software Engineering, 2006 (available as Simula Research
Laboratory, Technical Report 2005-5).

[3] Arisholm, E., Briand, L.C., Hove, S.E. and Labiche, Y. The
Impact of UML Documentation on Software Maintenance:
An Experimental Evaluation, IEEE Transactions on Software
Engineering,Vol. 32, No. 6, pp. 365–381, 2006.

[4] Baker, P., Loh, S. and Weil, F. Model-Driven Engineering in
a Large Industrial Context — Motorola Case Study. In L.
Briand and C. Williams (Eds.) in MoDELS 2005, LNCS
3713, pp. 476-491, Springer-Verlag, 2005.

[5] Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[6] Dobing, B. and Parsons, J. How UML is used.
Communications of the ACM, Vol. 49, No. 5, pp. 109–113,
May 2006.

[7] Douglass, B.P. Real Time UML: Advances in the UML for
Real-Time Systems. 3rd edition, Addison-Wesley, Boston,
MA, 2004.

[8] Fowler, M. UML Distilled. A Brief Guide to the Standard
Object Modelling Language, 3rd edition, Addison-Wesley,
Boston, MA, 2003.

[9] IEC 61508: Functional safety of
electrical/electronic/programmable electronic safety-related
systems, (http://www.iec.ch/),1998.

[10] Lee, A.S. A scientific methodology for MIS case studies.
Management and Information Systems Quarterly, Vol. 13,
No. 1, pp. 33-50, 1989.

[11] MacDonald, A., Russell, D. and Atchison, B. Model-driven
Development within a Legacy System: An industry
experience report. Proceedings of the 2005 Australian
Software Engineering Conference (ASWEC’2005). IEEE
Computer Society, 2005.

[12] Otero, M.C. and Dolado, J.J. Evaluation of the
comprehension of the dynamic modeling in UML.
Information and Software Technology, Vol. 46, pp. 35-53,
2004.

[13] Pettit, R.G. Lessons Learned Applying UML in Embedded
Software Systems Designs. Proceedings of the Second IEEE
Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (WSTFEUS’04), pp. 75-79, Vienna,
Austria, May 11-12, 2004.

[14] Segal, J. When Software Engineers meet Research Scientists:
A Case Study. Empirical Software Engineering. Vol. 10, pp.
517-536, 2005.

[15] Selic, B. The Pragmatics of Model-Driven Development.
IEEE Software, Vol. 20, No. 5, pp. 19-25,
September/October 2003.

[16] Yin, R. Case Study Research: Design and Methods. 3rd
edition. SAGE Publications, Inc., Thousand Oaks, CA, 2003.

http://www.iec.ch/

APPENDIX A – EXCERPT FROM
QUESTIONNAIRE

(All propositions in 1, 2, 3, 7, 8 and 9 are rated on a scale from
totally agree to disagree. Several alternatives can be ticked in
questions 4 – 6)

I was involved in:
development from scratch □
enhancements of an existing system □
both □

Construction:
1. Use case modelling
1.1 Identifying and documenting actors is easy
1.2 Identifying and documenting use cases is easy
1.3 Grouping use cases and actors into different subsystems is
easy
1.4 Refining the use cases and identifying dependencies that can
be modelled using included and extending use cases is easy

2. Sequence diagrams
2.1 Constructing sequence diagrams is easy
2.2 Defining interfaces between subsystems is easy

3. Constructing class diagrams is easy

Use:
4. How did you apply the use cases in the project?
In code reviews □

As a basis for functional tests □

As a means of communication □

5. How did you apply the sequence diagrams in the project?
In code reviews □

As a basis for integration tests □

As a means of communication □

6. How did you apply the class diagrams in the project?
In code reviews □

As a basis for unit tests □

As a means of communication □

Utility:
7. Use cases contributes to
7.1 Good documentation of the system
7.2 Good design of the system
7.3 Efficient code reviews
7.4 Thorough testing
7.5 Good communication within the development team

8. Sequence diagrams contributes to
8.1 Good documentation of the system
8.2 Good design of the system
8.3 Efficient code reviews
8.4 Thorough testing
8.5 Good communication within the development team

9. Class diagrams contributes to
9.1 Good documentation of the system
9.2 Good design of code
9.3 Efficient code reviews
9.4 Thorough testing
9.5 Good communication within the development team

	INTRODUCTION
	RESEARCH METHOD
	THE CASE STUDY CONTEXT
	The Development Project
	The UML-based Development Method

	RESULTS
	Ease of Constructing Diagrams
	Use cases
	Sequence diagrams
	Class diagrams

	Use of the Diagrams
	Utility of diagrams
	Design
	Test
	Documentation and communication

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A – EXCERPT FROM QUESTIONNAIRE

