
Teaching Evidence-Based Software Engineering to University Students

Magne Jørgensen1,2, Tore Dybå2,3, Barbara Kitchenham4,5
1) Hedmark University College, Rena, Norway, 2) Simula Research Laboratory, Norway, 3) SINTEF, Norway, 4)
National ICT, Australia, 5) Keele University, UK

magnej@simula.no, Tore.Dyba@sintef.no, Barbara.Kitchenham@nicta.com.au

Abstract

Evidence-based software engineering (EBSE)

describes a process of identifying, understanding and
evaluating findings from research and practice-based
experience. This process aims at improving software
engineering decisions. For the last three years, EBSE
has been taught to university students at Hedmark
University College, Rena, Norway. The motivation for
the EBSE-course is that it is essential for the students,
as future practitioners, to learn how to base important
software engineering decisions on the systematic and
critical evaluation of the best available evidence. The
main purpose of this paper is to inspire and support
other universities in their work on developing their
own EBSE-courses. For this purpose we report on how
our course has been organized and what lessons have
been learned. There are currently no studies available
on the effects of teaching EBSE and, as far as we
know, only we have gained practice-based experience.
To acquire more knowledge about the costs and
benefits of teaching EBSE we hope that other
universities will develop their own EBSE-courses and
report their experience.

1. Introduction

In [1, 2] we introduce "Evidence-Based Software
Engineering" (EBSE). The aim of EBSE is to improve
decision making related to software development and
maintenance by collecting and evaluating the best
evidence from research studies and practice-based
experience. Without good skills in identifying,
understanding and evaluating findings from research
and relevant practice-based experience, important
findings may be transferred to the software industry
slowly, or not at all. However, efficient search, reliable
interpretation and the proper use of relevant results
may require a basic understanding of scientific method

together with the adoption of an inquisitive and
skeptical approach. Training in these skills may be
necessary to derive the potential benefits of EBSE.

The main steps of EBSE are as follows:
1. Convert a relevant problem or need for

information into an answerable question.
2. Search the literature for the best available

evidence to answer the question.
3. Critically appraise the evidence for its

validity, impact, and applicability.
4. Integrate the appraised evidence with

practical experience and the client's values
and circumstances to make decisions about
practice.

5. Evaluate performance in comparison with
previous performance and seek ways to
improve it.

A more complete description of EBSE and its
related activities can be found in [1, 2].

This paper reports the lessons learned from teaching
EBSE to students at Hedmark University College in
Rena, Norway in the period 2003-2005. The main
purpose is to stimulate other universities to develop
similar courses. Our EBSE course is, as far as we
know, the earliest, and possibly the only, EBSE course
taught in the world.

The paper is organized as follows:
• Section 2 motivates our teaching of EBSE

to software engineering students.
• Section 3 outlines the structure of our

EBSE course and gives example of course
elements and lessons learned.

• Section 4 discusses the rationale for
teaching EBSE.

• Section 5 concludes.

2. Motivation for teaching EBSE

The main motivation for the EBSE course is to
provide future software professionals with the

knowledge, experience, attitude and skill to enable
them to make better decisions. Our belief in the value
of teaching EBSE to university students is based on,
amongst other things, the following assumptions and
beliefs:

• The software industry will benefit from
moving in the direction of evidence-based
software engineering. We argue for this
claim in [1, 2].

• Software engineering students, in general,
have insufficient knowledge and practice
regarding the evaluation of arguments. In
their professional lives, they are frequently
required to arbitrate between the
conflicting conclusions of different lines of
argument. An EBSE course may support
the critical and systematic evaluation of
arguments.

• Students need to learn to collect
information from all types of sources, e.g.,
from library data bases, textbooks, the
internet and other people's experiences,
and to assess critically the relevance and
validity of this information. In our
experience, few software engineering
university courses address this. For
example, the students we have taught
EBSE had never had any teaching in how
to examine scientific studies critically or
how to systematically evaluate the
arguments presented in course textbooks
and computer magazines.

• Universities should have a stronger focus
on how to acquire new knowledge and
skill. Knowledge of, and skill in applying,
particular technologies may soon be
outdated. Skills in the formulation of
meaningful questions, the identification of
relevant information and the critical
assessment of studies/arguments are, by
contrast, of more long-lasting value.

• The software industry is full of "hype",
e.g., small changes of old methods heavily
marketed as methods that will
revolutionize the productivity to the
software industry. Teaching EBSE to
university students may be an important
means for software engineering to become
a more mature discipline with more
resistance towards "hype". In particular,
we believe that EBSE may lead to more
critical assessment of development
methods and marketing ploys.

Other studies and argumentation in support of the
need for training in the evaluation of claims and
evidence can be found in [3] (in particular, pages
383-392 are relevant).

It is not easy to study the degree to which these
assumptions are true and the degree to which EBSE
will have a positive impact on software practice. It is,
for example, not obvious what to compare EBSE
practice with, out of all the other decision-making
practices. Further, we should obviously not expect a
university course in EBSE to revolutionize the world
of software development. However, if there are even a
few occasions when the EBSE skills acquired prove to
be of significant value in actual industry practice, it
may be worth the effort of teaching EBSE. The
rationale for teaching EBSE is discussed in Section 4.

3. Teaching EBSE to university students

3.1. Learning goal

The learning goal of our EBSE-course is formulated
as: "... to learn to practice evidence-based software
engineering. This means the ability to identify,
evaluate and apply valid and relevant research results
and practice-related experience as the basis for
judgments and decisions in software development."

3.2. Participants

The participants of the EBSE course have, so far,

been students at Hedmark University College
("høgskole"), Rena, Norway in 2003, 2004 and 2005.
The course is mandatory for students following the
systems development program at the university
college. About 10-20 students have taken the EBSE
course each year. These students are in their 3rd year
(their final year at the university college) and they are
about to complete their Bachelor degree. Many of them
will start working as software professionals
immediately after completing the EBSE course and
some will continue as MSc students at other
universities. The lecturer is the first author of this
paper. The course elements have been based on input
from all three authors.

3.3. Course structure

The course has two intensive teaching modules and
a supervised project task. The work load is about 1/6th
of the total load in the Winter/Spring semester, which
represents an average work-load of 6-8 hours per
week. The supervised project task, to be completed

individually, constitutes the examination. The project
task consists of completing EBSE steps 1-4. The
students typically start their project work immediately
after the first teaching module. The timeline of the
lectures and project deliveries are as follows:

Week 1: Teaching module 1 (6 hours)
Week 1-4: Supervised individual project work.
Week 5: Delivery of first version of problem

formulation.
Week 5: Teaching module 2 (12 hours)
Week 5-11: Supervised individual project work.
Week 11: Delivery of complete project report

to be evaluated.

The project delivery (the EBSE practice work) is

evaluated as "passed" or "not passed". In order to pass,
a project must fulfill the following criteria:

• An answerable software engineering
question/problem must be formulated
properly. This requires that terminology be
explained and that the problem be
specified precisely. The question/problem
should be relevant for software
practitioners. An example of a proper
problem formulation is the following:
"What is the effect of X, for
organizations/developers of type Y, in
situations of type Z."

• An extensive search for relevant research
results and practice-related experience
must be conducted. In practice, we have
required that, a) Available university
library search facilities are used with
appropriate search terminology, b) At least
one expert on the topic is identified and
contacted for information, and, c) At least
two companies with relevant practice-
based experience are contacted.

• The relevance and validity of the results,
opinions, viewpoints received from the
different sources must be evaluated
properly.

• A cogent argument must be constructed
that marshals the available evidence to
support a conclusion. (The conclusion may
be that it is not possible to form a
definitive opinion, or that the evidence in
favor of a particular decision or answer is
weak.)

The students are stimulated to discuss with each
other, but the project task is carried out individually,
i.e., each student has his/her own problem formulation

and project report. Our decision to have individual
project work is based principally on practical
considerations related to examination-based
evaluation. Team work would, on the other hand, be
more realistic.

3.4. Lectures

The main elements of the EBSE lectures taught are
as follows:

• Motivation for EBSE (see Section 2).
• The steps of EBSE. This part of the

lectures includes several examples of how
to, and how not to, conduct the decision
steps.

• Introduction to scientific method. We
found it unrealistic to explain to the
student all the steps and elements of
scientific inquiry and had to make a
selection. The course focuses on:

o The general steps of scientific
method. We found Wallace’s
cyclic model of science [4] useful
for this purpose. In particular, this
model illustrates well the role of
induction and deduction in theory
building.

o Strengths and weaknesses of the
experimental and the
observational method. The
difference between correlation
and cause-effect studies is
emphasized.

o Basic knowledge on how to
evaluate scientific studies. We use
the empirical study guidelines
described in [5] as the starting
point for this part of the lectures.

o Common biases found in
scientific engineering studies,
e.g., the "Hawthorne effect",
"question framing effects" and
"theory-loaded observation".

o Basic statistics. Here, the focus is
not on teaching the students
sophisticated statistical methods,
but on teaching the strengths and
weaknesses of commonly applied
statistical techniques. In
particular, we have found it useful
to train the students in the
identification of biased sampling
and biased allocation to

treatments. This part includes
several practical exercises and
discussions, e.g., a discussion on
whether increase in number of
observations can compensate for a
biased sampling or treatment
allocation method.

• How to evaluate practice-based evidence.
This includes guidelines on how to
evaluate the basis and relevance of
experiences and opinions. In our
experience, there are no large conceptual
differences in how to evaluate scientific
papers and how to evaluate practice-based
experience, i.e., the guidelines are much
the same. The types of evidence and the
formality of the argumentation are,
however, different and require practice to
master properly.

• Argumentation theory. This part of the
course is based mainly on the textbook
"Attacking faulty reasoning: A practical
guide to fallacy-free arguments" [6].
Examples of content:

o Building the elements of an
argument based on Toulmin's
model [7], see Appendix 1.

o Types of argument, e.g.,
arguments based on cause-effect,
correlation, generalization,
similarity, and authority.

o Potentially manipulative elements
in arguments, e.g., inappropriate
generalizations, irrelevant
arguments, circular
argumentation, appeal to
emotions, biased or imprecise use
of terminology, use of humor, and
reference to tradition.

o How to construct a good
argument, e.g., avoidance of
premature formulation before the
information is collected and
analyzed, inclusion of relevant
evidence only, clarification of the
scope of the argument,
clarification of important
terminology, balanced analysis of
evidence for and against, focused
argumentation, and logical
connection between evidence and
conclusion.

3.5. Exercises on the evaluation of arguments

About 30% of the lectures consist of practical
exercises in evaluating scientific studies and expert
opinion articles that contain arguments pertaining to
software engineering. Most of the study material is
currently based on articles found in IEEE Software.
We have found articles in IEEE Software to be very
useful as material upon which to practice the critical
evaluation of arguments, experience and opinions in
software engineering. These articles are meant to be
read and understood by educated practitioners.
Examples of papers from IEEE Software used in the
critical evaluation exercises are [8, 9].

Possibly, these exercises are the most important part
of the EBSE course and the part regarding which we
have received the best (informal) feedback from the
students. For example, several students have, when
learning how to assess arguments critically and read
scientific and opinion-based papers efficiently, given
feedback like: "Why didn't we learn this in the
beginning of our studies? This is really useful." This
type of feedback suggests that teaching EBSE may
have a positive impact on the students' performance in
other courses at the university. The models for the
evaluation of argument and checklist used by the
students for the critical reading exercises and for the
project work are described in Appendices 1 and 2.

3.6. Student projects

The completion of the project task demands quite a
lot from the students. As opposed to previous courses
they have had, they have to define the problem
themselves, find relevant information themselves and
assess critically every piece of information identified.
We have, not surprisingly, observed large variation in
how well the principles of EBSE principles are
applied. In particular, some students struggle with the
difference between summarizing a study and critically
assessing the relevance and validity of a study. Most
students in our courses were, with supervision from the
course instructor, able to do a good job on formulating
problems, searching for information, assessing the
information critically and using the information to
come to a better understanding of the problem
solution. The best project reports would, in our
opinion, provide good input to real-world software
engineering decisions.

Examples of problem areas addressed by the
students are the following:

• What are the benefits of using pair
programming, as opposed to individual

programming, and what are the conditions
for deriving these benefits?

• What are the relations between project size
and benefits from the use of XP?

• When are IT projects with a great deal of
user contribution more successful than
those with less user contribution?

The terminology used in the formulation of the
problem, e.g., the meaning of "benefit" and
"successful", and the scope of the assessment is (at
least in the best project reports) defined and explained.

Perhaps the most important challenge with many of
the problem formulations has been to identify relevant
scientific studies. We did not want the students to
change from a problem relevant to industry to one of
less industry relevance because of this challenge.
Especially, in this regard, we did not want them to fit
the problem to the evidence too much. This meant that
many projects had to base their argumentation on
critical assessments of expert opinions and practice-
based experience alone. This challenge, we think,
illustrates an important difference between EBSE and
its origin (evidence-based medicine), i.e., there may
typically be more relevant scientific studies pertaining
to problems in evidence-based medicine. A possible
consequence of this difference is that teaching EBSE
should have less focus on evaluating scientific studies
and more on evaluating practice-based evidence and
argument. Our course has gradually changed its focus
in accordance with that observation.

4. Should we teach EBSE?

We cannot claim that we have demonstrated that
teaching EBSE has a significant positive effect on real-
world software development work (though it is our
hope that it does).

In accordance with our checklist for the evaluation
of arguments, the reader of this paper should be
skeptical about our opinions and findings. We were the
first to describe the steps of evidence-based software
engineering and have taught the first course on this
topic, so we certainly have vested interests and our
reported findings may be biased by those interests.

4.1. Empirical evidence

There are no scientific studies on the effects of
EBSE. The empirical evidence regarding its
effectiveness is constituted only by our own practice-
based (possibly biased) experience of teaching it.
There are, however, studies on teaching a similar topic,
i.e., evidence-based medicine. As stated earlier, EBSE

borrows the principles and steps from evidence-based
medicine and the two disciplines have many
similarities. An examination of the presentation
material in several evidence-based medicine courses
(see www.ebmny.org/teach.html for a sample of
courses) suggests that there are important domain-
specific differences, and differences in focus on the
evaluation of scientific studies compared to practice-
based experience. Hence, the wholesale transfer of
results from teaching evidence-based medicine to
teaching EBSE is of uncertain value. It is, on the other
hand, perhaps the best empirical evidence that
currently exists.

We began our search for information about the
effects of teaching evidence-based medicine with a
search for systematic reviews. The Cochrane database
(www.cochrane.org) was developed for the purpose of
helping people to make well-informed decisions by
preparing, maintaining and promoting the accessibility
of systematic reviews of the effects of healthcare
interventions. Fortunately, this database includes a
review of the effects of teaching evidence-based
medicine [10]. In the abstract of the review it is stated
that: "There is evidence that critical appraisal teaching
[a subset of evidence-based medicine teaching] has
positive effects on participants' knowledge, but as only
one study met the inclusion criteria the validity of
drawing general conclusions about the effects of
teaching critical appraisal is debatable. There are
large gaps in the evidence as to whether teaching
critical appraisal impacts on decision-making or
patient outcomes. It is also unclear whether the size of
benefit seen is large enough to be of practical
significance, or whether this varies according to
participant background or teaching method. The
evidence supporting all outcomes is weakened by the
generally poorly designed, executed and reported
studies that we found."

The empirical evidence is, consequently, weak and
uncertain, but nevertheless in favor of teaching EBSE.

4.2. Analytical argumentation

This section provides what we believe are the major

arguments in favor and disfavor of teaching EBSE.
The claims (arguments) we make are mainly based on
our own observations, knowledge and beliefs and their
strengths should be interpreted accordingly. This
section builds on the discussion in Section 2, where we
motivate the EBSE-course.

Major arguments in favor of teaching EBSE:

• The critical evaluation of arguments is a
useful skill for software engineering
practitioners. This skill is frequently not
sufficiently developed by practice alone,
and has to be taught. The skill is currently
not part of most programs of education on
software engineering.

• The introduction of an EBSE course would
replace another course also believed to
have value. The question is, consequently,
whether EBSE is more valuable than
certain other courses currently taught. We
believe that an important argument in favor
of EBSE is that university courses should
increase the focus on more robust
knowledge. For example, while much of
the knowledge acquired in courses
teaching the use of particular technologies
may soon be outdated, the ability to
evaluate and construct arguments is of life-
long value.

Major arguments against teaching EBSE:

• There are skills other than EBSE skills that
may be more important for good software
engineering decisions, e.g., good
knowledge about the technology to be
evaluated, good organization and domain
knowledge, and, good ability to conduct
empirical effect studies. Teaching EBSE
skills instead of other potentially important
decision-making skills may have a
negative net effect on software engineering
practice, even if the EBSE course has a
positive effect.

• A change from the status quo to something
else should require good evidence. The
burden of evidence is on those who
propose a change. Work needs to be done
to assess the effectiveness of EBSE on
industry practice. Current evidence in
favor of EBSE is available only from
comparison with the effectiveness of the
teaching of evidence-based medicine and
the authors’ observations of the results of
their own EBSE course.

5. Conclusion

The goal of this paper is to inspire universities to
include a course in evidence-based software
engineering (EBSE) in their software engineering
education, and to support them in their endeavor. To

that end, we describe elements of the course and
lessons learned.

The scientific evidence in favor of teaching EBSE
is weak (based on transfer of results from studies on
teaching evidence-based medicine) and our practice-
based experience is potentially biased (we may have
vested interests in describing the results positively).
There is consequently a need for more trials on
teaching EBSE to university students before we can
make confident claims about the cost/benefit. We hope
that other university employees will be inspired by this
paper and will report their experience and, preferably,
their measurements of the effects. When more people
have experience of teaching EBSE, forums for the
exchange of course material and experience could be
established, as in evidence-based medicine (see for
example "Evidence-based medicine Resource center"
at www.ebmny.org./teach.html).

Trials in industrial and more controlled contexts
should be conducted, as well. Teaching EBSE to
software practitioners may lead to a more immediate
impact on real-world decisions and require only minor
changes in the course material. Controlled experiments
comparing real-world decisions of students or software
professionals, with or without EBSE skills, would be
useful for acquiring more, and more objective,
evidence about the costs and benefits of
teaching/learning EBSE.

References:

1. Dybå, T., B. Kitchenham, and M. Jørgensen,

Evidence-Based Software Engineering for
Practitioners. IEEE Software, 2005. 22(1): p.
58-65.

2. Kitchenham, B., T. Dybå, and M. Jørgensen.
Evidence-based Software Engineering. in
International Conference on Software
Engineering (ICSE). 2004. Edinburgh: p. 273-
281.

3. Presley, M. and C.B. McCormick, Advanced
educational psychology. 1995, New York:
HarperCollins College Publishers.

4. Wallace, W.L., Sociological theory. 1969,
Chicago: Aldine.

5. Kitchenham, B., et al., Preliminary
Guidelines for Empirical Research in
Software Engineering. IEEE Transactions on
Software Engineering, 2002. 8(8): p. 721-734.

6. Damer, T.E., Attacking faulty reasoning: A
practical guide to fallacy-free arguments.
2001: International Thomson Publishing.

7. Toulmin, S., The Uses of Argument. 1958,
Cambridge: Cambridge University Press.

8. Beck, K., Aim, Fire. IEEE Software, 2001.
18(5): p. 87-89.

9. Williams, L., et al., Strengthening the Case
for Pair Programming. IEEE Software, 2000.
17(4): p. 19-25.

10. Parkes, J., C. Hyde, and R. Milne, Teaching
critical appraisal skills in health care
settings. The Cochrane Database of
Systematic Reviews, 2001(3).

APPENDIX 1: Toulmin's model of
argumentation

Figure 1: Toulmin's model of argumentation

Figure 1 graphically displays the elements of

Toulmin's model. The primary elements of an
argument, according to Toulmin's model, are in bold
letters, and the secondary elements in italic.

Toulmin's model of argumentation can be viewed as
a layout of argument. This layout of argument, we
believe, is useful for the students as a mental model
when evaluating and/or constructing arguments. In
particular, we find the model useful during the
exercises on the evaluation of arguments. The checklist
in Appendix 2 is based on Toulmin's model of
argumentation.

We recommend that the student start with the
identification of the claims or conclusions made by the
authors. These are normally found in the conclusion
section of the papers or in the abstract, but may be
found other places as well. Poor papers may, in fact,
have no explicit claims at all. The students are
requested to evaluate the claim, e.g., whether the claim
is circular or vague. We also ask the students to
identify the qualifiers, i.e., statements about the
strength of the claim, and the reservations, i.e.,
statements about the limitations of the claim. These are
important when later evaluating the relevance of the
evidence and the connection between evidence and
claim. For example, a claim that is qualified with "this

weakly indicates a cause-effect relationship" should be
evaluated differently from the claim "there is a cause-
effect relationship."

Then, we ask the students to look for the data, i.e.,
the evidence supporting the claim. In particular, we ask
them to evaluate the relevance of the evidence. We
frequently find that the students are surprised by how
little relevant evidence a lengthy software engineering
paper contains.

Finally, we ask the students to look for the
warrant, i.e., the supporting connection between the
data and the claim. This is frequently the most difficult
part of the evaluation of the argumentation, where the
critical appraisal ability and analytical skill of the
students is most important. The students are requested
to evaluate the degree to which the relevant data
supports the claim. To support this evaluation step, the
students are taught guidelines for how empirical
studies should be conducted [5] and general guidelines
on ethical issues pertaining to such studies when
conducted on human subjects. The warrants may have
a backing, i.e., an argument that supports a connection
of confirmation or deduction between the data and the
claim. When it is not obvious that the connection
between data and claim is valid (or invalid), we ask the
students to search for elements that the authors use to
support it (the backing). This may, for example,
consist of analytical argumentation or evidence
supporting the specific interpretation of data conducted
by the authors.

We have experienced that familiarity with the
model just outlined does more than change how the
students evaluate argumentations. It also seems to lead
to a more efficient and critical reading of software
engineering texts that may be useful for the student in
other contexts. For example, we have observed that
most of them replace the mechanical reading of papers
from the first to the last page, with a more information
seeking, flexible reading strategy. If the information
about potential vested interests and the claims are
found in the last page of papers (as it is in most IEEE
Software papers), it may be useful to start the reading
there. In addition, more knowledge about the elements
of argumentation may have enabled the students to
improve the quality of their own arguments.

Data Claim

Backing

Warrant

Qualifier Reservation

Data Claim

Backing

Warrant

Qualifier Reservation

APPENDIX 2: Checklist for the evaluation
of argumentation

1. Be a skeptic!
2. Remember that it is the argument that you

are supposed to evaluate, not how much
you agree with the claims.

3. Start with the identification of the main
claims.

4. Assess the relevance of the claims for your
purpose.

5. Before you read the paper, assess whether it
is likely that the authors have vested
interests in the claims. If yes, how might
this affect the results? What is the
background and scope of the previous
experience of the author? Is it likely that
this biases the search for evidence and the
conclusion?

6. Read the paper with the purpose of
identifying evidence that supports the
claims. Skip the less relevant parts the first
time you read the paper.

7. Evaluate the relevance and validity of the
evidence. Assess whether it is opinion-
based, example-based, based on a
systematic review of scientific studies, etc.
Is the evidence credible?

8. Evaluate the connection between the
evidence and the claim. Is the claim a
possible, likely, or, necessary consequence?

9. Check the use of measures and statistical
methods. In particular, assess randomness
in selection of subjects and allocation of
treatment when statistical hypothesis testing
is used. If not random, assess the effect of
the non-randomness.

10. Search for manipulating elements, e.g., text
that is not relevant for the argument, or
loaded use of terminology used to create
sympathy or antipathy. If large parts of the
text are not relevant, evaluate the intended
function of that part. Be aware of rhetorical
elements.

11. Assess the degree to which the norms of
ethical argument are broken (these norms
are part of the course material).

12. Assess whether the inclusion of evidence is
one-sided or gives a wrong picture.

13. Assess whether weaknesses of the study are
properly discussed. If not discussed at all,
why not?

14. Try to identify missing evidence or missing
counter-arguments. Be aware of your
tendency to evaluate only what is present
and forget what is not included.

15. Be particularly careful with the evaluation
of the argumentation if you are sympathetic
to the conclusion. Our defense against
"theory-loaded evaluation" and "wishful
thinking" is poor and must be trained. Put
in extra effort to find errors if you feel
disposed to accept the conclusion in
situations with weak or contradictory
evidence.

16. Do not dismiss an argument as having no
value, if it has shortcomings. There are very
few bullet-proof arguments and we
frequently have to select between weak and
even weaker arguments in software
engineering contexts. A weak argument is
frequently better than no argument at all.

