



but, First Impressions can be Misleading

[simula . research laboratory]

Some of this information is (on purpose or accidentally)...

- irrelevant,
- misleading,
- incorrect.

RESEARCH QUESTION:

To what extent are software professionals able to adjust their judgments (evaluation, opinions,...) when they are informed about the lack of validity of the information?

[simula . research laboratory]

5

Study 1: Risk-seeking programmers

PARTICIPANTS: Study 1 was conducted at a large developer conference in Oslo, Norway (JavaZone 2007). The participants consisted of 160 software professionals attending a seminar on evidence-based software engineering.

[simula . research laboratory]

ŝ

Study 1: Risk-seeking programmers

CONTEXT: "There is a large difference in how risk-seeking programmers are. Some programmers frequently try new ways of programming, while others stick to what they know best and know will work. Assume that we define a risk-seeking programmer as one who agrees in the statement: "I like to find own, innovative ways of solve problems" and that a programmer is better than another if she/he develops software with similar quality (measured as number of errors and perceived maintainability) more efficiently."

[simula , research laboratory]

Study 1: Risk-seeking programmers

TREATMENTS:

- T1a: "A recent Canadian study showed that the **risk-willing** programmers performed better."
- T1b: "A recent Canadian study showed that the **risk-averse** programmers performed better."
- T2a: "Provide one argument i favor of that the **risk-willing** programmers perform better."
- T2b: "Provide one argument i favor of that the **risk-averse** programmers perform better."
- T3: "The Canadian study was invented to impact your judgment."

[simula . research laboratory]

Study 1: Risk-seeking programmers

JUDGMENT (J): All situations taken into consideration, which of the statements below to you think is most correct? (Select only one.)

- 1) The risk-seeking always perform better
- 2) The risk-seeking almost always perform better
- 3) The risk-seeking perform better most of the time
- 4) The risk-seeking perform better in slightly more than half of the situations
- 5) The risk-seeking perform better in about half of the situations
- 6) The risk-seeking perform worse in slightly more than half of the situations
- 7) The risk-seeking perform worse most of the time
- 8) The risk-seeking almost always perform worse
- 9) The risk-seeking always perform worse

[simula . research laboratory]

.

Study 1: Risk-seeking programmers

TABLE I design of study 1

Group	Phase 1	Phase 2 (immediately after)	Phase 3 (two weeks later)
A	J (control group)	-	-
В	T1a, T2a, then J	T3, then J	J
С	T1b, T2b, then J	T3, then J	J
D	T1a, then J	T3, then J	J
Е	T1b, then J	T3, then J	J
F	T2a, then J	T1a, then J	-
G	T2b, then J	T1b, then J	-

T1a/b: Canadian study, risk-willing better/worse.

T2a/b: Own argument, risk-willing better/worse

T3: Informed that the Canadian study was not real.

J: Judgment

[simula . research laboratory]

TABLE II TREATMENT EFFECTS

Group – Phase – Treatment	Mean	
A: Control group.		
B - Phase 1 - Misleading study, then one-sided argument. Both in favor of risk-willing programmers.	3,6	
C – Phase 1 - Misleading study, then one-sided argument. Both in favor or risk-averse programmers.	5,6	
D – Phase 1 - Misleading study in favor of risk-willing programmers.	4,1	
E – Phase 1 - Misleading study in favor of risk-averse programmers.	5,5	
F – Phase 1 - One-sided argument in favor of risk-willing programmers	4,6	
G – Phase 1 - One-sided argument in favor of risk-averse programmers.		
F – Phase 2 - Initial judgment in-between one-sided argument and study in favor of risk-willing programmers.		
G – Phase 2 - Initial judgment in-between one-sided argument and study in favor of risk-averse programmers.	5,1	

[simula . research laboratory]

1

TABLE III Judgment when informed about the validity of the study (original judgment in brackets)

Group	Mean
B – Phase 2 (Phase 1: Misleading study, then one-sided argument. Both in favor of risk-willing programmers.)	4,0 (3,6)
C – Phase 2 (Phase 1: Misleading study, then one-sided argument. Both in favor of risk-averse programmers.)	5,1 (5,6)
D – Phase 2 (Phase 1: Misleading study in favor of risk-willing programmers.)	4,2 (4,1)
E – Phase 2 (Phase 1: Misleading study in favor of risk-averse programmers.)	4,9 (5,5)

[simula . research laboratory]

TABLE IV judgments, phase 1, 2 and 3 (two weeks later)

Group	Mean Phase 1	Mean Phase 2	Mean Phase 3
BD-Phase 1	3,3	3,5	3,5
CE-Phase 1	5,4	5,0	4,9

[simula . research laboratory]

13

Why didn't they re-adjust to a neutral state of mind?

- They didn't know how much they had been impacted by the study and/or the generation of an one-sided argument.
 - Re-adjustment is difficult.

Why under-adjustment?

- Comprehension as accepting (de-accepting difficult?)
- Primacy effect (lasting first impressions)
- Cognitive dissonance (I wasn't that much impacted...)

[simula . research laboratory]

What should we learn?

- Avoid exposure to misleading information.
 - If already exposed, let other make important decisions.
- Do not believe you can re-adjust to an unimpacted state-of-mind.
- Avoid situations that are likely to bias your judgment:
 - demonstrations of tools
 - dinners with vendors
 - reports written by people with vested interests
 -

[simula . research laboratory]