Diffusion

The conservation law for a compound with concentration c:

rate change of ¢ = local production + accumulation due to

transport.
d
—/ch:/pdV—/ J-ndA
dt Jq Q 50

Model:
Here p represents the production and J is the flux of c.
The divergence theorem:

/ J-ndA:/V-JdV
o0 Q

The law is valid for every volume, thus:

dc

V-]
g P~V

Models for p and J are needed to compute c.
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Fick’s Law

J=—-DVec

The diffusion coefficient D depends upon the solute and the
temperature of the embedding fluid:

kT
- f

T Is the temperature measured on Kelvin, f is a frictional
constant and & is the Boltzmann’s constant.

The conservation law with this assumption is a reaction-diffusion
equation:

D

oc
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1D Diffusion through a pore in the membrane

oc O?%c
5~ Pas

Fixed intra and extra cellular concentration:

c(0,t) =[C]; c(L,t) =[Cle

At steady state:
oc o?c dc
_ D— p— — p—
oy 0 = 52, 0 = 0 =0 = c(r) =axr+b

Taking the boundary condition into consideration yields:

and a constant flux: J = —Dg¢ = 2([C); — [C].)
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Flow through a semi-preamble membrane

Consider two solutions:

9
K

A: Contains 100mM CI~ ions and 100mM Na™ ions
B: Contains 10mM CI~ ions and 10mM Na™* ions

Both are neutral. If they are only separated by a membrane
permeable to CI~ but not Na™, this will happen:

9

© o o o @

Cl™ will diffuse from A to B due the concentration gradient
|Cl" ] 4 will drop and [Cl™ | g will increase

[INa™] 4 and [Na™]z will remain fixed (no flow)

A and B will no longer be neutral

INa™]4 > [Cl7]a = A>0,[Cl"]g > [NaT]p = B <0.

Cl™ will be attracted to A and repelled from B
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he Nernst Equilibrium Potential

We now have two forces driving ClI~ across the membrane:
#® Flow from A to B due to the concentration gradient
® Flow from B to A due to the charge gradient

At some point an equilibrium is reached were the net flow is zero.
The transmembrane potential at that point is called the Nernst
Equilibrium Potential.

An expression for this potential will now be derived
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Plank’s equation

Models the ion-flux caused by an electrical field:

J=—mi

cVo
z|
with

m - mobility of the ions in the liquid

z/|z| - sign of the charge of the ion

¢ - the concentration of the ion

V¢ - the electrical field
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Fick’s law:
J=—DVe

Relationship between m and D:

2| F
RT

m=2D

here R is the gas constant and F' is Faraday’s constant.
Combined effect of concentration gradient and an electric field:

2 F
= —D(V —cV
J ( C+RTC gb)
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Nernst Equilibrium Potential

Consider equilibrium in 1D flow:

dc zF do
dr | RT ds =0
lde zF do
cde " RTdr 0

Integrating from inside (x=0) to outside (x=L) yields:

«© T RT

We define the transmembrane potential to be v = ¢; — ¢. The
value of the transmembrane potential at zero flux is then

RT (1)

’Ueq — Z—F 11’1( )
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Accumulation around the membrane

The membrane has properties similar to a capacitor

#® Consists of two conducting medias (intra- and extra cellular
space)

® These are separated by an insulating material (the
membrane)

The potential over a capacitor is proportional to the separated
charge (q):

v=gq/c
The factor c is called the capacitance of the capacitor.
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he cell membrane modeled as a leaky capacit

As any real capacitor the membrane conducts some current. The
flux of lons (Ii,,) will cause a change in ¢ and thus v.

Consider the change over a time interval At. It follows that
Av

A
av = 1 A+ and in the limit we get:

d_v_ 1dq
dt ~ cdt

The term 1 is called the capacitive current and is denoted I..
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Electrical circuit model of the cell membrane

Extracellular space

B — — |

Intracellular space
The membrane behaves like resistor and capacitor in parallel:

It = lion + L

If the loop is closed then I; = 0. In that case all the ions passing
the membrane accumulate and change the membrane potential
accordingly.
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lonic currents

For passive ionic channels the flow through it must obey the
equilibrium potential, I.e. be zero when v = vegq.
An number of models exists, two common are:

Linear:
I(v) = g(v — veq)

Here ¢ is the conductance of the channel.

Goldman-Hodgkin-Katz:

—zv F

C; — Co€ RT

I('U) — g'U —zvF
1 — e RT

Derived from Nernst-Planck equation with assuming a constant
(non-zero) field strength.
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Nernst-Plack equation:

2 F
= —D(V —cV
J ( C+RTC ¢)

Consider 1D flow through a channel and assume V¢ Is constant
In space and that ¢ and ¢ are in steady-state.

dp _ 8¢ _ (L) = ¢(0) _be—bi _ _ r

dr Az L—-0 L

The equation is reduced to an ODE:

dc 2z F dc

_ /L) = =
dx RTC( v/L) d:c—l_kc

J/D = —

_ zFv
where k = =TT
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The equation

iS SOIVed by
J 1
—kx —kx
= C; — — — 1
e "c=c + Dk(e )

We determine J by using ¢(L) = c.:

F —zv F
zFv ¢; — c.e RT
=D

1 — e kL RTL 1 _ =&

o _kL
7 — piSi c(L)e

J has dimension moles per area per time, an expression for
current is given by

2 2 —Z’UF
D z“F* ¢; — cpe RT

= v
L RT 1 — e_évTF

I =2z2FJ

This Is the Goldman-Hodgkin-Katz current equation.
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Channel gating

The conductance of a channel varies with time and with
transmembrane potential. Model for current per membrane area:

[(Va t) — g(V7 t)gb(V) (2)

Current through a single open channel is ¢(V') and the amount of
open channels per membrane area is g(V, t).
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Two different measuring techniques help to distinguish the
factors in (2).

#® |Instantaneous: The transmembrane potential is quickly
forced from one state to another and the current is

measured right after the switch.

#® Steady-State: The current measurements are performed
the current has reached a steady state.

If the conductances changes slowly the instantaneous
measurements reflects changes in ¢(V') only. The steady-state
measurement will also include effects of channel kinetics.
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Two State K-channel

Assumes that the channel can exist in two states, closed(C) and
open(0O):

Applying law of mass action:  8(v)

d[0]

= = a(v)[C] - B(v)(0]

Dividing by the total amount of channels ([C]+[O]) yields

Y = a()(1-g) - Alv)g

where g is the portion of open channel ( [O]/([C]+[O])).
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Multiple sub-units

For some channels it is more appropriate to model the gate as
series of several sub-gates. Example with two gates:

«

S i S

altp P aus

Sos i S
B

Using law of mass action we get a system of four equation. Wil
try to reduce this number to one!
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Combine the states Sp; and Spg Into S = Sp1 + Sio :

% = aSp + BS11 — (a+ B)Su
+ % = aSo + BS11 — (a+ 5)S10
S = 2aSy + 28511 — (a+ B)S

Define Sy = Sgg and S, = S11, we can then write:
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Only two independent variables since Sy + S1 + S = ST,
constant. Define z; = S;/Sp. Claim:

r9 = n?, With z—z =a(l —n) — Bn
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Sodium

Behavior of the Sodium conductance can not be described by a
chain of identical gates.

Two subunits of type m and one of type h.

2 Q
S y Si s S
wiwe Do oyums P e
S e S i Su;
B 2p

Here S;; denotes i open m gates and j open h gates. Arguments
similar to the one used above leads to these equations for m and
h:

dm dh

T — a1 — _ T — (1= h) —
- a(l —m) — pm, g ¥(1 —h) —dh .



Excitable Cells

Unlike other cells, excitable cells can be triggered to set off an
action potential.

During the action potential the transmembrane potential departs
from its resting potential, reaches a peak potential and returns to
the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal
to neighboring cells.

The trigger must be of a certain size, if below the threshold the
cell will not “fire”.
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he Hodgkin-Huxley Model

Developed to study the action potential of the squid nerve cells.

Assumed three different current I, Ix and I
Assumed also linear current-voltage relationship:

dv

_Cma = Lo = INa (v — Una) T 90— o) g (v =)
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Can collect the current terms due to linearity:

dv

C’ma — _geff(v — Ueq)
where

geff - gNa T gK T gL
and

_ 9NaNa T 9%k TILY

’Ueq — 7
eff

Veq IS a weighted average of the individual equilibrium potentials.

The weighing factors are time and voltage dependent.
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A steady applied current Iapp moves the membrane potential to
different equilibrium.

dv
Cm—7 = ~9eff(v — veq) + fapp =0
Implies
1
v =veq + Tapp
Cm Jeff

The applied current will be compensated by an ionic current
going the opposite way, thus the net current will be zero.

For a sufficiently large Iapp, v will pass the threshold potential
and an action potential is triggered. The conductivities will vary
greatly.
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Voltage Clamp measurements

The transmembrane potential is forced by an applied current to a
fixed value.

Since Ijgn, = —Iapp for a fixed v, we can measure Ij,, as a
function of time for a given level of v.

Since v Is fixed the observed variations must be due to temporal
variation in the conductivities.
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otal membrane current for different steps

Figure 4.2 Experimental results describing the total mem-
brane current in response to a step depolarization. The
numbers on the left give the final value of the membrane
potential, in mV, The interval between dots on the horizon-
tal scale is 1 ms, while one division on the vertical scale
represents 0.5 mA/cm?, {Hodgkin and Huxley, 1952a, Fig. 2a.)
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From measurements to models

Initially, Hodgkin and Huxley assumed Ijy, = Ing + k. Two Kind
of experiments conducted:

#® 1: Normal concentrations

® 2: [Naj. replaced by cohline = affects Iy, but not Iy.
Assumed further:

® |Initially Ix =0

® Iy, /1Ix, = K, constant

® I =1Ig

Once Iilon and Ii20n is recorded we can determine K from the first

and the second assumptions.
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Expressions for the currents in terms of measurable quantities
can now be obtained:

1 1 2
INa K — 1(I|on_[|on)

1 1 2
Iy = 1 — K(Imn o KIIOH)

Assuming linear current-voltage relationships we get expressions
for the conductivities:

- INa o = Ik
Na = v _ . 7K~ v-ik

For each pair of voltage clamp experiment (with a given voltage
step), we now have a time course for gng and gg.
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Potassium and Sodium conductance

lio.o .
i]1.0
5 10.1
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Model for the Potassium conductance

Assumed K = f(v,1).

Ended up with introducing a second variable:

dn

gk = gkn", with — = av)(n—1) = Bv)n

and g Is the maximum conductance. Forth power was chosen to
get the correct shape of the solution.
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The solution of

Tnaznoo—n

with constant coefficients is

n(t) = noo + (n(0) — nuo)e ™

If we assume that n.,(0) = 0 a step from from 0 to v yields:

n(t) — MNco (U) + (noo (O) — Noo (’U))e_t/""n(v)
= N (v)(1 — et/ ()

A step in the other direction gives:

n(t) = 7Moo(0) + (Moo (v) — neo(0))e™H™(®)

= MNoo (fu)e_t/Tn('U)
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Gating variable raised to different powers

nt n?
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Sodium conductance model

H&H realized that two different types of channels were at work.
Ended up with

Values for m,, m«, b+ and ho, obtained by fitting the solution to
plots of gn5-
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he Hodgkin-Huxley Model

Introduces a third current, not time dependent:

Cm— = —§K7’L4(’U — UK) — gNamgh(U — ’UNa) — gL(U — ’UL)

with

dg

% :ag(v)(l_g)_ﬁg(v)ga g:m7h7n
Model based on voltage clamp measurement. How will it behave
under normal conditions?

The model will predict the action potential.
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Qualitative analysis

Would like to reduce the number of state variables to simplify
analysis.

One way is to treat the slowest variables as constants. Of the
three gating variables m has the fastest dynamics. (Controls the
activation of the Na-current).

Reduced model:

dv B _ _
Cm—r = —gkno(v — vK) — Ina™ ho(v — vna) — G (v —vp)
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Equilibria in the reduced HH-model

The nullclines € = 0 and 4% = 0 form curves in the (v, m)-plane.
Thelir intersections are the equilibria.

Initially three steady states v,., v; and v.. v, and v, are stable and
v, unstable.

As ng and hg changes, the % = 0 line will shift. v, will decrease,
coincide with v, and disappear.

v Will become the only stable equilibrium.
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Phase plot for the fast sub-system
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Figure 4.10 The Hodgki-nn-Huxley fast p'has'e-plane, showing the nullclines dvidt = 0 and
dmfdt = 0 (with hy = 0.596, ny = 0.3176), two sample trajectories and the stable manifold
of the saddle point v,. ' AR
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Figure 4.11 The Hodgkin-Huxley fast
phase-plane as a function of the slow
variables, “showing the m  nulicline
(dashed) and the movement of the v
nullcline {solid) and the disappearance
of the steady states. For these curves,
parameter values are (1) hy = 0.596,

ng = 0.3176; (2) hy = 0.4, ny = 0.5: (3}
e = 0.2,"”0 =U‘7, and (4) hy =01,
ng =08 - ; F1850 R
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Alternative reduction:
® m is very fast, almost in equilibrium: m = mq,(v)
® h+nalmostconstant: h =08 —n

We then have

h
d’U . 4 . 3 ”~ 7 ™~ .
Cm—y = =9kn (V= vK) —gINaMeo(v) (0.8 = n)(v —uNg) =L (v~ )

Equilibria found by looking at the crossing of the nullclines fi—g =0
and 22 = 0 in the (v, n)-plane.
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Phase plot for the fast-slow reduced system

0.0 -

0 40 80 120 Figure 4.13 Fast-siow phase-plane of the
v Hodgkin-Huxley model.
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Properties of the phase plot

9o

e o o o

°

% = (0 cubic form, with two stable and one unstable branch

4n — () sigmoid form

One crossing with default parameters
Trajectories horizontal due faster dynamic of v

Starting points to the left of the unstable branch converges
to equilibrium without crossing the unstable branch

Starting points to the right of the unstable branch crosses
this branch, reaches the rightmost branch, follows this
branch and the trajectory continues to rise until ‘5—7; =01Is
crossed. The trajectory finally reaches the leftmost branch
and follows it to the equilibrium points.

-p. 41



Simulations with different initial conditions
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Modified model

The point (0,0) is no longer a stable equilibrium.
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he FitzHugh-Nagumo model

Purpose:

Keep the gqualitative behavior of the Hodgkin-Huxley system, but
In a simplified form. Derivation based on a an electrical circuit
model.

On dimensionless form:

GZ—;’ = f(v) —w —w
W = y—qw -y

The variable w Is called the recovery variable.
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Typically f is chosen to be “cubic”, i.e. with three zeros,

f(0) = f(a) = f(1) and 0 < a < 1. Some choices:

f(v) = Av(v — a)(1 — v)

f(v):{_v’ v <

1—v, v>«
[ —w, v < af2

v—a, a/2<v<(l+a)/2

L 1 —w, v>(14+a)/2
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