
Markov models for ionic channels
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Limitations of Hodgkin-Huxley channel models

Hodgkin-Huxley (HH) gating parameters do not represent
specific kinetic states of ion channels and cannot describe
various aspects of channel behavior.

For example, inactivation of the Na+ channel has a greater
probability of occurring when the channel is open; i.e.,
inactivation depends on activation and the assumption of
independent gating that gives the HH conductance m3h is not
valid.

Models with explicit representation of single ion-channel states
are needed.

– p. 2



Markov models

Model the states of single ion channels

Example:

Hypothetical 4-state model (closed, open, two inactivated); α, β,
γ, and δ are transition rates
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Model equations:

dC

dt
= β ·O + δ · IC − (α + γ) · C,

dO

dt
= α · C + δ · IO − (β + γ) ·O,

dIC

dt
= β · IO + γ · C − (α + δ) · IC ,

IO

dt
= α · IC + γ ·O − (β + δ) · IO,
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When channel gates are assumed to be independent, Markov
and Hodgkin-Huxley models are equivalent; activation gate m

and inactivation gate h.
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However, experiments have shown that activation and
inactivation processes are typically dependent.

In this hypothetical channel, inactivation can only occur from the
open state, i.e. state to state transitions are dependent
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Each state must be described individually by a differential
equation

dC

dt
= α · C − β ·O,

dO

dt
= α · C + δ · I − (β + γ) ·O,

dI

dt
= γ ·O − δ · I.

Here, α, β, γ, and δ are transition rates.

Hodgkin-Huxley formalism, in terms of gating parameters, can
not be applied here; independent gating is not valid.
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Most channels have 4 subunits, so more than one transition is
needed to describe activation.

C1-C4 are closed states; O is the open state.

C1 is a closed state where all subunits are inactivated; C2 is a
closed state where one subunit is activated and 3 are
inactivated; open (O) is where all 4 subunits are activated.
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The 4 subunits are identical and activate independently.

They can be represented by identical gates (n) to give a
Hodgkin-Huxley type model with open probability n4
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Channel activation itself may also contain dependent transitions.

For example, Shaker K+ channel activation:

4 subunits each going through two conformational transitions (R1

and R2) before reaching the activated state A

Transitions are dependent; no analogous Hodgkin-Huxley type
model
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Markov current equation

Markov models compute the occupancy of the channel in its
various kinetic states as a function of voltage and time.

The channel conducts ions when it occupies its open state.

Macroscopic current density through an ensemble of open
channels is given by:

IX = gsc,x · n ·O · (Vm − EX). (1)

Here, gsc,x is the single channel conductance, n is the number of
channels per unit membrane area, O is the probability that a
channel is open, and (Vm −EX) is the driving force.
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Modeling ion-channel mutations

Markov models are used to model ion channel mutations.

For example, Clancy and Rudy (1999) developed a Markov
model for the Na+ channel mutation responsible for long QT
syndrome (LQT3).
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Markov model for wild-type Na
+ channel

3 closed states (C1,C2,C3)

1 open (conducting) state (O)

Fast and slow inactivation states (IF,IS)
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Markov model for Na
+ channel mutation

2 gating modes: background mode (blue) and burst mode (red)
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The background mode of the mutant Na+ channel is similar to
the wild-type model but has faster activation and recovery from
inactivation.

The burst mode does not include an inactivation state, simulating
the transient failure of mutant Na+ channels to inactivate.
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Calcium dynamics
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Calcium dynamics

Calcium is an important ion in the biochemistry of cells

Is used a signal carrier, i.e. causes contraction of muscle
cells

Is toxic at high levels

The concentration is regulated through buffers and intra
cellular compartments
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Typical periodic orbit in Ca 2+

Cells exhibit oscillations in intracellular [Ca2+] in response to, for
example, hormones and neurotransmitters.
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Calcium release

Calcium released from internal stores is mediated by 2 types of
channels (receptors)

Inositol (1,4,5)-triphosphate (IP3) receptors

Ryanodine receptors
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IP3 receptors

Situated on the endoplasmic reticulum (ER) membrane

Sensitive to the second messenger IP3

Binding of an extracellular agonist (hormone,
neurotransmitter) to a receptor on the surface membrane
causes cleavage of phosphotidylinositol (4,5)-bisphosphate
(PIP2) into diacylglycerol (DAG) and IP3

IP3 diffuses through the cell, binds to IP3 receptors and
Ca2+ is released from the ER
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The two-pool model

One of the earliest models for IP3-dependent Ca2+ release

Assumes the existence of 2 distint Ca2+ stores: one
sensitive to IP3 and one sensitive to Ca2+

IP3 binds to IP3-sensitive stores releasing Ca2+, which
triggers further Ca2+ release from Ca2+-sensitive stores
(possibly via ryanodine receptors)
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The two-pool model schematic
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The two-pool model equations

dc

dτ
= r − kc− f̃(c, cs)

dcs

dτ
= f̃(c, cs)

f̃(c, cs) = Juptake − Jrelease − kfcs

Juptake =
V1c

n

Kn
1

+ cn

Jrelease =

(
V2c

m
s

Km
2

+ cm
s

) (
cp

Kp
3

+ cp

)
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Detailed IP 3 receptor model

The role of Ca2+ is more complicated than is assumed in
the two-pool model

Ca2+ both activates and inactivates the IP3 receptor

So instead, the IP3 receptor is modeled as consisting of 3
equivalent and independent subunits, all of which must be
in a conducting state for the receptor to allow Ca2+ flux

Each subunit has an IP3 binding site, an activating Ca2

binding site, and an inactivating Ca2+ binding site; each of
these can be either occupied or unoccupied, thus each
subunit can be in one of eight states
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Detailed IP 3 receptor model diagram
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Detailed IP 3 receptor model equations

dx000

dt
= −x000(k5c + k1p + k4c) + k

−5x010 + k
−1x100 + k

−4x001

dx100

dt
= −x100(k5c + k

−1 + k2c) + k
−5x110 + k1px000 + k

−2x101

dx010

dt
= −x010(k−5 + k1p + k4c) + k5cx000 + k

−1x110 + k
−4x011

dx001

dt
= −x001(k−4 + k5c + k3p) + k

−5x011 + k4cx000 + k
−3x101

dx011

dt
= −x011(k−4 + k3p + k

−5) + k
−3x111 + k4cx010 + k5cx001

dx101

dt
= −x101(k−2 + k

−3 + k5c) + k3px001 + k2cx100 + k
−5x111

dx110

dt
= −x110(k−1 + k2c + k

−5) + k
−2x111 + k5cx100 + k1px010
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Detailed IP 3 receptor model equations (cont.)

dc

dt
=

receptorflux
︷ ︸︸ ︷

(r1x
3
110 + r2)(cs − c)−

pumping
︷ ︸︸ ︷

r3c
2

c2 + k2
p
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Ryanodine Receptors

Sits at the surface of intra cellular calcium stores

Endoplasmic Reticulum (ER)

Sarcoplasmic Reticulum (SR)

Sensitive to calcium. Both activation and inactivation.

Upon stimulation calcium is released from the stores.

To different pathways

Triggering from action potential through extra cellular
calcium inflow.

Calcium oscillations observed in some neurons at fixed
membrane potentials.
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Compartments and fluxes in the model
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Model equations

d[c]

dt
= JL1 − JP1 + JL2 − JP2

d[cs]

dt
= −JL2 + JP2

JL1 = k1(ce − c), Ca2+ entry

JP1 = k2c, Ca2+ extrusion

JL2 = k3(cs − c), Ca2+ release

JP2 = k4c, Ca2+ uptake
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The calcium sensitivity

Release modelled with Hill type dynamics:

JL2 = k3(cs − c) = (κ1 +
κ2c

n

Kn
d + cn

)(cs − c)
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Experiments and simulations
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Good agreement between experiments and simulations

Inactivation through calcium not included, but does not
seem to be an important aspect
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A more refined model

Inclusion of both activation and inactivation sites at the RyR

Four states of the RyR

S00 No Ca ions attached, closed

S10 Ca attached to activating site, open

S01 Ca attached to inactivating site, closed

S11 Ca attached both sites, closed

Define the fractions xi:

x1 = S00/ST

x2 = S10/ST

x3 = S11/ST

x4 = S01/ST = 1− x1 − x2 − x3
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The state transitions

The state transitions

S00

ck1

→
←
k
−1

S10

k
−2 ↑↓ ck2 k

−2 ↑↓ ck2

S01

ck1

→
←
k
−1

S11

Better models for the pumps

JP = Vmax
c2

K2 + c2
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Model equations
dx1

dt
= k

−1x2 + k
−2x4 − (k1 + k2)x1c

dx2

dt
= −k

−1x2 + k
−2x3 + (k1x1 − k2x2)c

dx3

dt
= (k2x2 + k1x4)c− (k

−2 + k
−1)x3

dc

dt
= vc(JL2 − JP2) + JL1 − JP1

dcs

dt
= −JL2 + JP2

JL1 = g2(ce − c)

JL2 = (kfx2 + g1)(cs − c)

JP1 =
q1c

2

q2
2

+ c2

JP2 =
p1c

2

p2
2
+ c2
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