Markov models for ionic channels



Limitations of Hodgkin-Huxley channel models

Hodgkin-Huxley (HH) gating parameters do not represent
specific kinetic states of ion channels and cannot describe

various aspects of channel behavior.

For example, inactivation of the Na™ channel has a greater
probabillity of occurring when the channel is open; i.e.,
Inactivation depends on activation and the assumption of
independent gating that gives the HH conductance m?3h is not

valid.

Models with explicit representation of single ion-channel states
are needed.
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Markov models
Model the states of single ion channels

Example:

- 1-h
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Hypothetical 4-state model (closed, open, two inactivated); «, £,
v, and ¢§ are transition rates
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Model equations:

dC
dt
dO
dt
dl-
dt
Io
dt

B-0+6-Ic—(a+7)-C,
a-C+o-Io—(6+7)-0,
B-Io+v-C—(a+9)-Ic,

a-Ic+v-0—(8+9)- lo,
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When channel gates are assumed to be independent, Markov
and Hodgkin-Huxley models are equivalent; activation gate m
and inactivation gate h.
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However, experiments have shown that activation and
Inactivation processes are typically dependent.

Dependent transitions =g

\(Z

C==
ﬁO

In this hypothetical channel, inactivation can only occur from the
open state, I.e. state to state transitions are dependent
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Each state must be described individually by a differential
equation

dC
dO
dl
= ~v-0 =9

Here, «, 3, v, and § are transition rates.

Hodgkin-Huxley formalism, in terms of gating parameters, can
not be applied here; independent gating is not valid.
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Most channels have 4 subunits, so more than one transition Is
needed to describe activation.

4 o 3. 20 o
1\_,3 Cz \—2[3 3 '“_3[3 4 \_4;3

(1-n* n-(1-ny n>(1=nf n-(1-n) n

C1-Cy are closed states; O is the open state.

(1 1S a closed state where all subunits are inactivated; Cs IS a
closed state where one subunit Is activated and 3 are
Inactivated; open (O) is where all 4 subunits are activated.
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The 4 subunits are identical and activate independently.

They can be represented by identical gates (n) to give a
Hodgkin-Huxley type model with open probability n*

4o 3x 201 o
1 :ﬁ C2 :2ﬁ CB :Sﬁ 4 ;4ﬁ

(1-n)* n-(1-n) n*-(1-n® n-(1-n) n
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Channel activation itself may also contain dependent transitions.

For example, Shaker K+ channel activation:

Dependent transitions

Vo
4 X [R1TRETA]

4 subunits each going through two conformational transitions (R;
and R») before reaching the activated state A

Transitions are dependent; no analogous Hodgkin-Huxley type
model
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Markov current equation

Markov models compute the occupancy of the channel in its
various Kkinetic states as a function of voltage and time.

The channel conducts ions when it occupies its open state.

Macroscopic current density through an ensemble of open
channels is given by:

Ix =Gsez-n-0- (Vi — Ey). (1)

Here, gs. IS the single channel conductance, n Is the number of
channels per unit membrane area, O is the probability that a
channel is open, and (V,,, — Ex) IS the driving force.
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Modeling ion-channel mutations

Markov models are used to model ion channel mutations.

For example, Clancy and Rudy (1999) developed a Markov
model for the Na™ channel mutation responsible for long QT

syndrome (LQT3).
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Markov model for wild-type Na™ channel

/;l[:IS

C=———m(C=——==Cl=—=0

® 3 closed states (C1,C2,C3)
® 1 open (conducting) state (O)
#® Fast and slow inactivation states (IF,IS)
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Markov model for Na™ channel mutation
UIF ==2UIS
/ Al'

UC3=——= UC2 === UCI =U0

L1 1

[C3=——]C2 =——1Cl =10

2 gating modes: background mode (blue) and burst mode (red)
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The background mode of the mutant Na™ channel is similar to
the wild-type model but has faster activation and recovery from
Inactivation.

The burst mode does not include an inactivation state, simulating
the transient failure of mutant Na™ channels to inactivate.
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Calcium dynamics



Calcium dynamics

°

Calcium is an important ion in the biochemistry of cells

°

Is used a signal carrier, i.e. causes contraction of muscle
cells

°

|s toxic at high levels

°

The concentration is regulated through buffers and intra
cellular compartments
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Typical periodic orbitin Ca 2+

Cells exhibit oscillations in intracellular [Ca?*] in response to, for
example, hormones and neurotransmitters.
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Calcium release

Calcium released from internal stores is mediated by 2 types of
channels (receptors)

#® Inositol (1,4,5)-triphosphate (IP3) receptors
#® Ryanodine receptors
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IP3 receptors

e o @

Situated on the endoplasmic reticulum (ER) membrane
Sensitive to the second messenger I1P3

Binding of an extracellular agonist (hormone,
neurotransmitter) to a receptor on the surface membrane
causes cleavage of phosphotidylinositol (4,5)-bisphosphate
(PIP-) into diacylglycerol (DAG) and IP5

IP5 diffuses through the cell, binds to IP3 receptors and
Ca’t is released from the ER
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The two-pool model

o o

One of the earliest models for IPs-dependent Ca** release

Assumes the existence of 2 distint Ca2* stores: one
sensitive to IP; and one sensitive to Ca?*

IP5 binds to IP5-sensitive stores releasing Ca?*, which
triggers further Ca?* release from Ca**-sensitive stores
(possibly via ryanodine receptors)
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The two-pool model schematic

cell membrane
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Figure 5.3 Schematic diagram of the two-pool model of Ca?* oscillations.
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The two-pool model equations

dc

dr
dcs
dr
f(e,cs)

J uptake

J release

~

T—kC—f(C,CS>

~

f(e,cs)

Juptake — Jrelease — kfcs
Vlcn
KT +c"

Vocl cP
K +cm ) \ K + P
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Detailed IP 3 receptor model

9

o o

The role of Ca?* is more complicated than is assumed in
the two-pool model

Ca“* both activates and inactivates the IP3 receptor

So instead, the IP3 receptor is modeled as consisting of 3
equivalent and independent subunits, all of which must be
in a conducting state for the receptor to allow Ca?* flux

Each subunit has an IP3 binding site, an activating Ca?
binding site, and an inactivating Ca?* binding site; each of
these can be either occupied or unoccupied, thus each
subunit can be in one of eight states
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Detailed IP 3 receptor model diagram
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Figure 56 The binding diagram for the IP; receptor model. Here, ¢ denotes [Ca®"], and p
denotes [IP3].
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Detailed IP 3 receptor model equations

dZOtOO = —zoo0(ksc + k1p + kac) + k—s52010 + k—12100 + k—a2001
dzzol = —woo1(k—4 + ksc + k3p) + k_5z011 + kacxooo + k—37101
dxd?fll = —zo11(k—a + k3p + k_5) + k_3x111 + kaczoro + Kksczoo
dxdltm = —zo01(k—2 + k-3 + ksc) + kspzoo1 + kzczi00 + k—52111
dx110

- —x110(k—1 + koc + k_5) + k_ox111 + kscxi00 + k1pToio
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Detailed IP 3 receptor model equations (cont.)

pumping
receptor flux PN
dc 7~ N rec?

= (rafy9 +72)(cs — ) —

dt C2+kg
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Ryanodine Receptors

® Sits at the surface of intra cellular calcium stores
o Endoplasmic Reticulum (ER)
» Sarcoplasmic Reticulum (SR)

#® Sensitive to calcium. Both activation and inactivation.
#® Upon stimulation calcium is released from the stores.

® To different pathways

» Triggering from action potential through extra cellular
calcium inflow.

o Calcium oscillations observed in some neurons at fixed
membrane potentials.
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Compartments and fluxes in the model
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Model equations

d[c]

dt

JL1 —Jp1 T J2 — JIp2

—JL2 t Jp2

ki(ce —c), Ca*" entry
koc, Ca’" extrusion
ks(cs —c¢), Ca’' release

kac, Ca*t uptake
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The calcium sensitivity

Release modelled with Hill type dynamics:

KocC"

KZZ’%—C"

JLo = k3(cs —c) = (k1 + )(cs — ¢
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Experiments and simulations
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® Good agreement between experiments and simulations

® Inactivation through calcium not included, but does not
seem to be an important aspect
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A more refined model

#® Inclusion of both activation and inactivation sites at the RyR
® Four states of the RyR

P Soo No Ca ions attached, closed

. Sm Ca attached to activating site, open
. 801 Ca attached to inactivating site, closed

s SH Ca attached both sites, closed
® Define the fractions z;:

o I = SOO/ST
» TI9o = SlO/ST
® I3 = Sn/ST

K £E4ZS()1/ST:1—$1—$2—ZU3
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The state transitions

® The state transitions
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® Better models for the pumps

Jp = Vmax

C2

K2 4+ 2
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Model equations

d£U1
dt
diBQ
dt
dx 3
dt

dc

dt
dcs
dt

k_1x9 + k_ozqg — (k1 + k2)x1C
—k_120 + k_ox3 + (k1x1 — koxo)cC
(koxa + k1z4)c — (k—2 + k_1)x3

ve(J2 = Jp2) +J11 — Jp1

—JI2 + Jp2

g2(ce — ¢)

(kfz2 + g1)(cs — ¢)

Q102

g3 + ¢
pic”
p3 + ¢
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