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Excitable Cells

Unlike other cells, excitable cells can be triggered to set off an
action potential.

During the action potential the transmembrane potential departs
from its resting potential, reaches a peak potential and returns to
the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal
to neighboring cells.

The trigger must be of a certain size, if below the threshold the
cell will not “fire”.

As long as the trigger is above the threshold, the shape of the
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The Hodgkin-Huxley Model

Developed to study the action potential of the squid nerve cells.

Assumed three different current INa, IK and IL
Assumed also linear current-voltage relationship:

−Cm
dv

dt
= I

ion
= g

Na
(v − v

Na
) + g

K
(v − v

K
) + g

L
(v − v

L
)

– p. 3



Can collect the current terms due to linearity:

Cm
dv

dt
= −g

eff
(v − veq)

where
g
eff

= g
Na

+ g
K

+ g
L

and

veq =
g
Na

v
Na

+ g
K

v
K

+ g
L
v
L

g
eff

veq is a weighted average of the individual equilibrium potentials.

The weighing factors are time and voltage dependent.
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A steady applied current Iapp moves the membrane potential to
different equilibrium.

Cm
dv

dt
= −geff(v − veq) + Iapp = 0

Implies

v = veq +
1

Cm geff
Iapp

The applied current will be compensated by an ionic current
going the opposite way, thus the net current will be zero.

For a sufficiently large Iapp, v will pass the threshold potential
and an action potential is triggered. The conductivities will vary
greatly.
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Voltage Clamp measurements

The transmembrane potential is forced by an applied current to a
fixed value.

Since Iion = −Iapp for a fixed v, we can measure Iion as a
function of time for a given level of v.

Since v is fixed the observed variations must be due to temporal
variation in the conductivities.
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Total membrane current for different steps
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From measurements to models

Initially, Hodgkin and Huxley assumed Iion = INa + IK. Two kind
of experiments conducted:

1: Normal concentrations

2: [Na]e replaced by cohline ⇒ affects INa but not IK.

Assumed further:

Initially IK = 0

I1
Na/I2

Na = C, constant

I1
K = I2

K

Once I1
ion and I2

ion is recorded we can determine C from the first
and the second assumptions.
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Expressions for the currents in terms of measurable quantities
can now be obtained:

I1
Na =

C

C − 1
(I1

ion − I2
ion)

IK =
1

1 − C
(I1

ion − CI2
ion)

Assuming linear current-voltage relationships we get expressions
for the conductivities:

gNa =
INa

V − VNa
, gK =

IK
V − VK

For each pair of voltage clamp experiment (with a given voltage
step), we now have a time course for gNa and gK.
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Potassium and Sodium conductance
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Model for the Potassium conductance

Assumed
dgK
dt = f(v, t).

Ended up with introducing a second variable:

gK = gKn4, with
dn

dt
= α(v)(1 − n) − β(v)n

and g is the maximum conductance. Forth power was chosen to
get the correct shape of the solution.
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The solution of

τn
dn

dt
= n∞ − n

with constant coefficients is

n(t) = n∞ + (n(0) − n∞)e−t/τn

If we assume that n∞(0) = 0 a step from from 0 to v yields:

n(t) = n∞(v) + (n∞(0) − n∞(v))e−t/τn(v)

= n∞(v)(1 − e−t/τn(v))

A step in the other direction gives:

n(t) = n∞(0) + (n∞(v) − n∞(0))e−t/τn(v)

= n∞(v)e−t/τn(v)
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Gating variable raised to different powers
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Sodium conductance model

H&H realized that two different sub units were at work. Ended up
with

dgNa
dt

= gNam3h

Values for mτ ,m∞, hτ and h∞ obtained by fitting the solution to
plots of gNa.
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The Hodgkin-Huxley model

Introduces a third current, not time dependent:

Cm
dv

dt
= −gKn4(v − vK) − gNam3h(v − vNa) − gL(v − vL)

with
dg

dt
= αg(v)(1 − g) − βg(v)g, g = m,h, n

Model based on voltage clamp measurement. How will it behave
under normal conditions?

The model will predict the action potential.
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Analysis of the Hodgkin-Huxley
model
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Qualitative analysis

Would like to reduce the number of state variables to simplify
analysis.

One way is to treat the slowest variables as constants. Of the
three gating variables m has the fastest dynamics. (Controls the
activation of the Na-current).

Reduced model:

Cm
dv

dt
= −gKn4

0(v − vK) − gNam3h0(v − vNa) − gL(v − vL)
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Equilibria in the reduced HH-model

The nullclines dv
dt = 0 and dm

dt = 0 form curves in the (v,m)-plane.
Their intersections are the equilibria.

Initially three steady states vr, vs and ve. vr and ve are stable and
vs unstable.

As n0 and h0 changes, the dv
dt = 0 line will shift. ve will decrease,

coincide with vs and disappear.

vr will become the only stable equilibrium.
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Phase plot for the fast sub-system
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Alternative reduction:

m is very fast, almost in equilibrium: m = m∞(v)

h + n almost constant: h = 0.8 − n

We then have

Cm
dv

dt
= −gKn4(v−vK)−gNam3

∞
(v)

h
︷ ︸︸ ︷

(0.8 − n)(v−vNa)−gL(v−vL)

Equilibria found by looking at the crossing of the nullclines dv
dt = 0

and dn
dt = 0 in the (v, n)-plane.
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Phase plot for the fast-slow reduced system
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Properties of the phase plot
dv
dt = 0 cubic form, with two stable and one unstable branch

dn
dt = 0 sigmoid form

One crossing with default parameters

Trajectories horizontal due faster dynamic of v

Starting points to the left of the unstable branch converges
to equilibrium without crossing the unstable branch

Starting points to the right of the unstable branch crosses
this branch, reaches the rightmost branch, follows this
branch and the trajectory continues to rise until dn

dt = 0 is
crossed. The trajectory finally reaches the leftmost branch
and follows it to the equilibrium points.
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Simulations with different initial conditions
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Modified model

The point (0,0) is no longer a stable equilibrium.
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Other models of the action potential
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The FitzHugh-Nagumo model

Purpose:
Keep the qualitative behavior of the Hodgkin-Huxley system, but
in a simplified form. Derivation based on a an electrical circuit
model.

On dimensionless form:

ǫdv
dt = f(v) − w − w0

dw
dt = v − γw − v0

The variable w is called the recovery variable.
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Typically f is chosen to be “cubic”, i.e. with three zeros,
f(0) = f(α) = f(1) and 0 < α < 1. Some choices:

f(v) = Av(v − α)(1 − v)

f(v) =

{

−v, v < α

1 − v, v > α

f(v) =







−v, v < α/2

v − α, α/2 < v < (1 + α)/2

1 − v, v > (1 + α)/2
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Cardiac cells

Excitable like neurons, display great variability

SA node cells: Pace maker cells, controls the heart rate,
self depolarizing

AV node cells: Transmit signal from atria to ventricles with a
delay

Purkinje cells: Very high conductivity, propagate signal from
AV out to the ventricles.

Myocardial cells: Muscle cells (can contract)

These cells have different action potentials.

The HH-model was based on neurons. Other models necessary
for cardiac cells.
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The Beeler-Reuter model

A model for ventricular cells, includes three currents, six gates
and one ionic concentration.

−Cm
dV

dt
= INa(V,m, h, j) + IK(V, x) + IS(V, f, g, [Ca]i)

Here m,h, j, x, f, g are gating variables and [Ca]i is the intra
cellular Calcium concentration
The action potential is much longer then for HH. Early
repolarization (notch).
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Action potential produced by the Beeler-Reuter model
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Currents of the Beeler-Reuter model

Sodium current:

Third gating variable included to model the slow recovery (long
refractory period). The model also include an ungated “leakage”
current:

INa = (4m3hj + 0.003)(V − 50)

Potassium:

One singled gated (with x) and one ungated component:

IK = f(v) + xg(v)
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Calcium:

To gates, d activates, f inactivates:

IS = 0.09fg(V − VCa)

In addition the [Ca]i is updated:

dc

dt
= 0.07(1 − c) − IS

where c = 107[Ca]i
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