
From PDE to Software:
Numerical techniques for the

bidomain model

– p. 1



Outline

The model

Possible strategies.

Operator splitting.

Solving systems of ODEs.

Solving the PDEs.

– p. 2



The model

∂s
∂t = F (v, s) x ∈ H

χCm
∂v
∂t + χI

ion
(v, s) = ∇ · (Mi∇v) + ∇ · (Mi∇ue) x ∈ H

∇ · ((Mi + Me)∇ue) = −∇ · (Mi∇v) x ∈ H

Mi∇v · nT = 0 x ∈ ∂H

ue = uo x ∈ ∂H

Me∇ue · n
T = Mo∇uo · n

T x ∈ ∂H

∇ · (Mo∇uo) = 0 x ∈ T

(Mo∇uo) · n
T = 0 x ∈ ∂T

– p. 3



Challenges

Highly complex system of PDEs and ODEs.

Difficult to construct efficient solution algorithms.

Simulation software tends to be complex and difficult to
maintain.

– p. 4



Coping with the complexity

Several possible strategies exist for solving the bidomain
equations.

Using explicit schemes for the ODEs and the PDE involving
the time derivative.

Fully coupled approach, i.e. using a fully implicit time
discretization to integrate the complete system
simultaneously.

– p. 5



Explicit schemes

sn+1−sn

∆t = F (vn, sn) x ∈ H

χCm
vn+1−vn

∆t + χI
ion

(vn, sn) = ∇ · (Mi∇vn) + ∇ · (Mi∇un
e ) x ∈ H

∇ · ((Mi + Me)∇ue
n+1) = −∇ · (Mi∇vn) x ∈ H

Problem with the explicit approach: severe restrictions on the
time step, and the second PDE can not be solved explicitly.

– p. 6



“Solution”: reduction to a monodomain model:

sn+1−sn

∆t = F (vn, sn) x ∈ H

χCm
vn+1−vn

∆t + χI
ion

(vn, sn) = ∇ · (Mi∇vn) x ∈ H

Fully explicit solution scheme, but the approach still suffers from
severe time step restrictions.

– p. 7



Fully implicit solution

sn+1−sn

∆t = F (vn+1, sn+1) x ∈

χCm
vn+1−vn

∆t + χI
ion

(vn+1, sn+1) = ∇ · (Mi∇vn+1) + ∇ · (Mi∇ue
n+1) x ∈

∇ · ((Mi + Me)∇ue
n+1) = −∇ · (Mi∇vn+1) x ∈

A fully implicit discretization avoids the strict stability restrictions
on the time step, but requires solution of large systems of
non-linear equations for each time step.

– p. 8



Operator splitting

An attractive approach for handling the complex equations
is to use some form of operator splitting.

The complexity of the problem may be significantly reduced,
without sacrificing too much in accuracy.

Several approaches exist, but we will focus on a type of
methods often referred to as fractional step methods.

– p. 9



A simplified problem

To introduce the ideas of operator splitting, we consider an initial
value problem on the form

u′(t) = (L1 + L2)u,

u(0) = u0, (1)

where L1 and L2 are differential operators.

– p. 10



For a given ∆t, an approximate solution at t = ∆t may be found
by first solving

v′(t) = L1v, 0 < t ≤ ∆t

v(0) = u0,

and then

w′(t) = L2w, 0 < t < ∆t

w0 = v(∆t),

and finally set u(∆t) = w(∆t).

– p. 11



While it may seem that we have integrated the equation a
step of length 2∆t, we have only included parts of the
differential operator in each step.

It is natural that the procedure of solving the equation in two
steps introduces an error.

This “splitting error” may be computed by comparing the
Taylor expansion of the solution of the original equation and
the solution obtained with the two-step approach.

– p. 12



In the Taylor expansion we use that

ut = (L1 + L2)u .

If L1 and L2 do not depend explicitly on t we can differentiate
both sides of the equation to obtain

utt = (L1 + L2)ut = (L1 + L2)
2u

In general we have

∂n
t u = (L1 + L2)

nu

– p. 13



The solution of the original equation at time ∆t may now be
written

u(∆t) = u(0) + ∆t(L1 + L2)u(0) +
1

2
∆t2(L1 + L2)

2u(0) + . . .

= (I + ∆t(L1 + L2) +
1

2
∆t2(L1 + L2)

2 + . . .)u(0)

– p. 14



Similarly, the solution obtained with the splitting method may be
written as

ũ(∆t) = (I + ∆tL2 +
1

2
∆t2L2

2 + . . .)

(I + ∆tL1 +
1

2
∆t2L2

1 + . . .)u(0)

= (I + ∆t(L1 + L2) +
1

2
∆t2(L2

1 + 2L1L2 + L2
2) + . . .)u(0)

– p. 15



Subtracting ũ from u, we get

ũ(∆t) − u(∆t) =
1

2
∆t2(L1L2 − L2L1)u(0) + O(∆t3)

We see that the splitting introduces an error proportional to ∆t2

for each time step, and after n steps this is expected to
accumulate to an O(∆t) error.

– p. 16



The described technique gives a first order approximation
to u at any given time step tn = n∆t.

The technique is called Godunov splitting.

– p. 17



A slight modification of the Godunov algorithm is to solve the
equation with the three-step algorithm

v′(t) = L1v, 0 < t ≤ ∆t/2

v(0) = u0,

w′(t) = L2w, 0 < t ≤ ∆t

w(0) = v(∆t/2),

v′(t) = L1v,∆t/2 < t ≤ ∆t

v(0) = w(∆t),

and finally set u(∆t) = v(∆t).

– p. 18



By comparing the Taylor series of the solutions, it is now
possible to show that the O(∆t2) terms now cancel, giving
an error of O(∆t3) for each step.

After n ≈ 1/∆t steps, the accumulated error is O(∆t2).

This procedure is called Strang splitting.

– p. 19



Op. splitting for the bidomain model

We consider the PDE containing the time derivative:

χCm
∂v
∂t + χI

ion
(v, s) = ∇ · (Mi∇v) + ∇ · (Mi∇ue) x ∈ H

In simplified form, this equation may be written as

∂v

∂t
= (L1 + L2)v

L1 is a linear PDE-operator, while L2 corresponds to the
ionic current term I

ion
(s, v), and is a non-linear

ODE-operator.

– p. 20



Inserting these expressions into the Strang splitting scheme, we get a
three-step algorithm:

Step 1. Solve

∂v

∂t
= −

1

Cm

I
ion

(v, s), tn < tn ≤ tn + ∆t/2.

Step 2. Use the obtained approximation to v(tn + ∆t/2) as initial
condition, and solve

χCm

∂v

∂t
= ∇ · (Mi∇v) + ∇ · (Mi∇ue), tn < t ≤ tn + ∆t .

Step 3. Finally, use the new value of v as initial condition, and solve

∂v

∂t
= −

1

Cm

I
ion

(v, s), tn + ∆t/2 < t ≤ t + ∆t .

– p. 21



We see that the equation is solved by alternately solving an
ODE and a PDE.

The ODE may be integrated together with the cell model
ODEs, and the PDE (which is now linear) may be solved
simultaneously with the other PDEs of the model.

Free choice of solvers for the two sub-problems
(sub-problem solving accuracy must be at least 2 to get
overall second order accuracy).

– p. 22



To simplify the operator splitting formulation for the complete
model, we introduce the notation

vn
∗ for the value of v after Step 1, i.e. after the ODE solver

has been applied.

vn+1
∗ for the value after the second step, i.e. after the PDE

system is solved but before the second application of the
ODE solver

sn+1/2 = s(tn + ∆t/2)

– p. 23



The complete model

We assume vn and sn are known:

1. Compute sn+1/2 and vn
∗

by solving the system

∂v
∂t

= − 1

Cm

I
ion

(v, s), v(tn) = vn

∂s
∂t

= F (v, s), s(tn) = sn
, tn < t < tn+1/2.

2. Compute vn+1
∗

(and new values of ue and uo) by solving the coupled PDE system

χCm
∂v
∂t

= ∇ · (Mi∇v) + ∇ · (Mi∇ue) x ∈ H

∇ · ((Mi + Me)∇ue) = −∇ · (Mi∇v) x ∈ H

∇ · (Mo∇uo) = 0 x ∈ T

for tn < t ≤ tn+1, with vn
∗

as initial condition.

3. Compute sn+1 and vn+1 by solving the system

∂v
∂t

= − 1

Cm

I
ion

(v, s), v(tn+1/2) = vn+1
∗

∂s
∂t

= F (v, s), s(tn+1/2) = sn+1/2
, tn+1/2 < t ≤ tn+1.

– p. 24



In the continuous case all variables, including the cell model
state vector s, are defined throughout the heart muscle.

The solution of the equations is based on discretizing the
computational domain in a finite number of points (a
grid/mesh), and use a numerical method to determine all
variables in each point.

Applying this type of discretization to the ODEs in step 1
and 3 of the solution algorithm gives one ODE system for
each point in the grid.

– p. 25



The computational work for each time step consists of two
separate tasks:

1. Solving a large number of non-linear ODE-systems (Step 1
and 3).

2. Discretizing and solving a coupled PDE system (Step 2).

Both tasks contribute significantly to the total computational time,
so it is important to choose efficient solvers for both
sub-problems.

– p. 26



Solving the ODEs

The task in Step 1 and Step 3 is basically to solve a large
number of initial value problems on the form

dy

dt
= f(t,y)

y(t0) = y0.

The form and complexity of the ODE system depends on the
chosen cell model.

– p. 27



Simpler cell models: Hodgkin-Huxley (4 ODEs),
Beeler-Reuter (8 ODEs), Fitzhugh-Nagumo (2 ODEs).

More realistic models: Luo-Rudy (13 ODEs), Winslow (31
ODEs) ++

The more realistic cardiac cell models typically have much faster
dynamics than the simpler models, adding further to the difficulty
of solving these equations.

– p. 28



The Fitzhugh-Nagumo model

0 100 200 300 400
−0.5

0

0.5

1
Original FitzHugh−Nagumo model

– p. 29



The Winslow model

0 100 200 300 400
−100

−50

0

50

– p. 30



Solvers for ODE systems

A huge variety of methods have been developed for solving
systems of ODEs.

Simple, well known methods are the forward and backward
Euler methods.

A (large) family of widely used methods are the so-called
Runge-Kutta methods.

– p. 31



Runge-Kutta methods

Definition:
Let bi, aij , ci (i, j = 1, . . . , s) be real numbers.
The method

ki = f



t0 + ci∆t,yn + ∆t

s
∑

j=1

aijkj





yn+1 = yn + ∆t

s
∑

i=1

biki

is called an s-stage Runge-Kutta method.

– p. 32



Explicit methods

If aij = 0 for i ≥ j we have an explicit (ERK) method, that can be
expressed by

k1 = f(t0, y0)

k2 = f(t0 + c2∆t, y0 + ∆ta21k1)

k3 = f(t0 + c3∆t, y0 + ∆t(a31k1 + a32k2))

. . .

ks = f(t0 + cs∆t, y0 + ∆t(as1k1 + · · · + as,s−1ks−1))

y1 = y0 + ∆t(b1k1 + · · · + bsks)

– p. 33



Explicit RK methods are the classical, most well-known RK
methods.

Efficient methods with good accuracy.

Stability problems when applied to the stiff cell model
equations.

– p. 34



Integrating the ODE-system in the Winslow cell model from t = 0

to t = 400. A good explicit RK-solver requires about 60000
timesteps.

0 50 100 150 200 250 300 350 400
−100

−50

0

50

– p. 35



A semi-implicit method

A class of implicit methods is commonly referred to as
semi-implicit methods. An example such a method is the
following 4-step scheme:

k1 = f(tn,yn)

k2 = f (tn + ∆tc2,yn + ∆t (a21k1 + γk2))

k3 = f
(

tn + ∆tc3,yn + ∆t
(

b̂1k1 + b̂2k2 + γk3

))

k4 = f (tn + ∆tc4,yn + ∆t (b1k1 + b2k2 + b3k3 + γk4))

yn+1 = y0 +

4
∑

i=1

biki

en+1 =
4

∑

i=1

(bi − b̂i)ki.

– p. 36



Main differences between explicit methods and the semi-implicit
method.

A system of non-linear equations must be solved to
determine each kj . For an ODE system of n equations,
each kj is computed by solving a system of n algebraic
equations.

The stability is dramatically improved.

– p. 37



Application to the cell model ODEs

Numerical experiments have confirmed that implicit
methods are much more well-suited for solving the
cell-model ODE systems than explicit methods.

The efficiency difference between different implicit methods
(semi- and full) is much smaller, and depends on the
accuracy requirements.

Because of the coupling to the PDEs, the accuracy
demands for our application are generally low.

– p. 38



The semi-implicit method

As an example, consider the 4-step semi-implicit method
introduced above. Application of this method to the cell model
ODEs involves the following tasks:

1. Compute the first stage derivative (explicitly) from

k1 = f(tn, yn)

2. For j = 2, 3, 4 use kj−1 as start vector and compute kj by
solving a non-linear equation with Newtons method.

3. Compute yn+1 from

yn+1 =

4
∑

i=1

biki

– p. 39



The amount of work for each time step is considerably
larger than for explicit methods, because we need to solve
non-linear algebraic equations.

For stiff problems like the cell model ODEs, the extra work
per time step is easily outweighed by the enhanced stability
properties, allowing the equations to be integrated with
much larger time steps.

The required number of time steps to integrate the Winslow
ODE system with an implicit method is approximately 150.
(Compared to about 60000 for the explicit method).

– p. 40



0 50 100 150 200 250 300 350 400
−100

−50

0

50

– p. 41



Discretization of the PDE system

χCm
∂v
∂t = ∇ · (Mi∇v) + ∇ · (Mi∇ue) x ∈ H

∇ · ((Mi + Me)∇ue) = −∇ · (Mi∇v) x ∈ H

∇ · (Mo∇uo) = 0 x ∈ T

– p. 42



Outline of PDE discretization

To obtain the overall second order accuracy of the Strang
splitting, the PDE system must be solved with second order
accuracy. This is achieved with the Crank-Nicolson scheme.

To simplify the spatial discretization of the problem, the
second and third equation of the system are combined to
one equation.

A standard finite element method is used for the spatial
discretization of the resulting equations.

– p. 43



Time discretization

A widely used scheme for time discretization of PDEs is the
Crank-Nicolson scheme

∂v

∂t
= G(v),

an approximate solution is found by

vn+1 − vn

∆t
= 1/2G(vn+1) + 1/2G(vn) .

– p. 44



Crank-Nicolson for coupled problems

For a more complex problem on the form

∂u

∂t
= G(v) + H(u),

we may apply a combination of Crank-Nicolson and themidpoint
rule

un+1 − un

∆t
= 1/2G(vn+1) + 1/2G(vn) + H(un+1/2) .

This also gives a second order accurate scheme.

– p. 45



Application to the bidomain PDEs

∇ · Mi∇(1/2vn+1
∗ + 1/2vn

∗ )

+∇ · Mi∇un+1/2
e =

vn+1
∗ − vn

∗

∆t
x ∈ H, (2)

∇ · Mi∇(1/2vn+1
∗ + 1/2vn

∗ )

+∇ · (Mi + Me)∇un+1/2
e = 0 x ∈ H, (3)

∇ · MT∇u
n+1/2
T = 0 x ∈ T, (4)

– p. 46



Notes on space discretization

To simplify the space discretization of the problem, the
continuity conditions on the heart surface are used to
reduce the three equations to two PDEs.

The result is one equation which is defined only in the heart
muscle, and one which is defined throughout the heart and
the surrounding body.

A standard finite element technique is used to discretize the
resulting equations.

– p. 47



Notes on implementation

The main goal of the operator splitting technique was to
handle the complexity of the problem.

Although the solution algorithm looks complex, the splitting
of the problem makes it much easier to implement the
algorithm.

The modular nature of the discretized problem fits
particularly well with object oriented programming.

– p. 48



The simulator software:

Numerical intensive part implemented in compiled
languages (C++/C/Fortran).

Python layer on top calling the different components

– p. 49



Design advantages

Ease of debugging and maintenance.

Easy to switch solvers (and models) for smaller parts of the
problem.

– p. 50



Summary

Developing an efficient and reliable simulator based on the
bidomain model is a challenging task, because of the
complexity of the equations.

The most commonly used techniques are different forms of
explicit schemes. These have poor numerical properties for
the problem, but are easy to construct and implement.

Various operator splitting techniques are good alternatives
for constructing numerically efficient schemes for the
complex problem.

– p. 51



Strang splitting gives second order accuracy, as long as the
sub-problems are solved to at least this accuracy.

The splitting algorithm reduces the non-linear PDE problem
to linear PDEs and non-linear ODEs.

PDEs:

A Crank-Nicolson scheme is used for time
discretization.

Standard finite element techniques can be used for the
spatial discretization.

– p. 52



ODEs:

Stiff, non-linear, fairly complex systems.

Because of stiffness, explicit methods perform poorly.

Implicit RK methods perform well for the present
application.

Implicit methods are more complicated to implement
than explicit methods, and require more work per time
step. This is outweighed by the improved stability
(larger time steps).

– p. 53



The modular nature of the splitting algorithms suits
particularly well for object oriented programming, and
makes it easier to develop and maintain the simulation
software.

– p. 54


	Outline
	The model
	Challenges
	Coping with the complexity
	Explicit schemes
	Fully implicit solution
	Operator splitting
	A simplified problem
	Op. splitting for the bidomain model
	The complete model
	Solving the ODEs
	The Fitzhugh-Nagumo model
	The Winslow model
	Solvers for ODE systems
	Runge-Kutta methods
	Explicit methods
	A semi-implicit method
	Application to the cell model ODEs
	The semi-implicit method
	Discretization of the PDE system
	Outline of PDE discretization
	Time discretization
	Crank-Nicolson for coupled problems
	Application to the bidomain PDEs
	Notes on space discretization
	Notes on implementation
	Design advantages
	Summary

