Markov models for ionic channels

From "Computational biology in the study of cardiac ion channels and cell electrophysiology," Y. Rudy and J. R. Silva, Quarterly Reviews in Biophysics, 2006.

Questions:

- What are the limitations of HH-type models for ion channels? How can Markov models better represent ion channels?
- HH and Markov channel models are equivalent under what condition?
 Illustrate with an example.
- What is the current density function for a Markov-modeled channel X?
- Sketch the Markov models for the wild-type Na⁺ channel and the mutant Na⁺ channel responsible for LQT3 syndrome, outlining the main differences between them.

Limitations of Hodgkin-Huxley channel models

- Hodgkin-Huxley (HH) gating parameters do not represent specific kinetic states of ion channels and cannot describe various aspects of channel behavior
- For example, inactivation of the Na⁺ channel has a greater probability of occurring when the channel is open; i.e., inactivation depends on activation and the assumption of independent gating that gives the HH conductance m²h is not valid
- Models with explicit representation of single ion-channel states are needed

Markov models

- Model the states of single ion channels
- When channel gates are assumed to be independent, Markov and Hodgkin-Huxley models are equivalent

m: probability in O

1−*m*: probability in C

 However, experiments have shown that activation and inactivation processes are typically dependent

Hypothetical channel; inactivation can only occur from the open state, i.e. state to state transitions are dependent

 Each state must be described individually by a differential equation

$$\frac{dC}{dt} = \alpha \cdot C - \beta \cdot O,$$

$$\frac{dO}{dt} = \alpha \cdot C + \delta \cdot I - (\beta + \gamma) \cdot O,$$

$$\frac{dI}{dt} = \gamma \cdot O - \delta \cdot I,$$

alpha, beta, gamma and delta are transition rates

 Most channels have 4 subunits, so more than one transition is need to describe activation

$$C_1 \xrightarrow{4\alpha} C_2 \xrightarrow{3\alpha} C_3 \xrightarrow{2\alpha} C_4 \xrightarrow{\alpha} C$$

- C₁-C₄ are closed states; O is the open state
- C₁ is a closed state where all subunits are inactivated; C₂ is a closed state where one subunit is activated and 3 are inactivated; open (O) is where all 4 subunits are activated

- The 4 subunits are identical and activate independently
- They can be represented by identical gates (n) to give a Hodgkin-Huxley type model with open probability n⁴

- Channel activation itself may also contain dependent transitions
- For example, Shaker K⁺ channel activation

Dependent transitions
$$4 \times \left[R_1 \xrightarrow{\beta} R_2 \xrightarrow{\gamma} A \right]$$

- 4 subunits each going through two conformational transitions (R_1 and R_2) before reaching the activated state A
- Transitions are dependent; no analogous Hodgkin-Huxley type model

Markov current equation

- Markov models compute occupancy of the channel in its various kinetic states as a function of voltage and time
- The channel conducts ions when it occupies its open state

 Macroscopic current density through an ensemble of open channels is given by:

$$I_{\rm X} = \overline{g_{\rm sc, x}} \cdot n \cdot O \cdot (V_{\rm m} - E_{\rm X})$$

• $\overline{g_{\rm sc,x}}$ is the single channel conductance, n is the number of channels per unit membrane area, O is the probability that a channel is open and $(V_{\rm m}-E_{\rm X})$ is the driving force

Modeling ion-channel mutations

- Markov models are used to model ion channel mutations
- For example, Clancy and Rudy (1999)
 developed a Markov model for the Na⁺
 channel mutation responsible for long QT
 syndrome (LQT3)

Markov model for wild-type Na⁺ channel

- 3 closed states (C1, C2, C3)
- I open (conducting) state (O)
- Fast and slow inactivation states (IF, IS)

Markov model for Na⁺ channel mutation

 2 gating modes: background (or dispersed) mode and burst mode

- The background mode of mutant Na⁺ channel is similar to the wild-type model but has faster activation and recovery from inactivation
- The burst mode does not include an inactivation state, simulating the transient failure of mutant Na⁺ channels to inactivate