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Exam

There will be six topics given, two weeks prior to the exam

A 20 minute lecture for each topic should be prepared

At the exam, one of the topics will be drawn

There will also be questions given on other subjects
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Mathematical models of chemical
reactions
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The Law of Mass Action, 1.1

Chemical A and B react to produce chemical C:

A + B
k
−→ C

The rate constant k determines the rate of the reaction. It can be
interpreted as the probability that a collision between the
reactants produces the end results.
If we model the probability of a collision with the product [A] [B]
we get the law of mass action:

d[C]

dt
= k[A][B]
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A two way reaction

The reverse reaction may also take place:

A + B
k+

−→
←−
k
−

C

The production rate is then:

d[C]

dt
= k+[A][B]− k

−
[C]

At equilibrium when d[C]/dt = 0 we have:

k
−
[C] = k+[A][B] (1)
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If A + B
k
−→ C is the only reaction involving A and C then

d[A]/dt = −d[C]/dt

so that
[A] + [C] = A0 (2)

Substituting (2) into (1) yields:

[C] = A0
[B]

Keq + [B]

where Keq = k
−
/k+.

Notice that
[B] = Keq =⇒ [C] = A0/2

and
[B] →∞ =⇒ [C] → A0
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Gibbs free energy, 1.2

Molecules have different chemical potential energy, quantified by
Gibbs free energy

G = G0 + RT ln(c)

where c is the concentration of the molecule, T is the
temperature, R the gas constant.
G0 is the energy at c = 1M, called the standard free energy.
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Gibbs free energy

Can be used to compare two states:

A −→ B

Change in free energy after this reaction:

∆G = GB −GA

= (G0
B + RT ln(B))− (G0

A + RT ln(A))

= (G0
B −G0

A) + (RT ln(B)−RT ln(A))

= ∆G0 + RT ln(B/A)

If ∆G < 0, e.g. there is less free energy after the reaction, then B
is the preferred stated.
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Gibbs free energy at equilibrium

At equilibrium neither states are favoured and ∆G = 0:

∆G = ∆G0 + RT ln(B/A) = 0

Given G0, the concentrations at equilibrium must satisfy:

ln(Beq/Aeq) = −∆G0/RT

or
Beq

Aeq
= e−∆G0/RT
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Gibbs free energy and rate constants

The reaction

A
k+

−→
←−
k
−

B

is governed by
d[A]

dt
= k+[B]− k

−
[A]

and at equilibrium d[A]
dt = 0, so

k+[B]− k
−
[A] = 0, or , A/B = k

−
/k+ = Keq

Comparing with the Gibbs free energy we find:

Keq = e∆G0/RT

Note:
∆G0 < 0 =⇒ Keq < 1 =⇒ Beq > Aeq
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Gibbs free energy with several reactants

The reaction
αA + βB −→ γC + δD

has the following change in free energy:

∆G = γGC + δGD − αGA − βGB

= γG0
C + δG0

D − αG0
A − βG0

B

+ γRT ln([C]) + δRT ln([D])− αRT ln([A])− βRT ln([B])

= ∆G0 + RT ln(
[C]γ [D]δ

[A]α[B]β
)

At equilibrium with ∆G = 0:

∆G0 = RT ln(
[A]αeq[B]βeq

[C]γeq[D]δeq
)

– p. 11

Detailed balance, 1.3

Consider the cyclic reaction:

In equilibrium all states must have the same energy:

GA = GB = GC

All transitions must be in equilibrium:

k1[B] = k
−1[A], k2[A] = k

−2[C], k3[C] = k
−3[B]

Which yields:

k1[B] · k2[A] · k3[C] = k
−1[A] · k

−2[C] · k
−3[B]
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Detailed balance

cont.
k1[B] · k2[A] · k3[C] = k

−1[A] · k
−2[C] · k

−3[B]

so
k1k2k3 = k

−1k−2k−3

This last condition is independent of the actual concentrations
and must hold in general. Thus only 5 free parameters in the
reaction.
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Enzyme Kinetics, 1.4

Characteristics of enzymes:

Made of proteins

Acts as catalysts for biochemical reactions

Speeds up reactions by a factor > 107

Highly specific

Often part of a complex regulation system
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Reaction model of enzymatic reaction

S + E
k1

−→
←−
k
−1

C
k2
−→ P + E

with

S: Substrate

E: Enzyme

C: Complex

P: Product
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Mathematical model of enzymatic reaction

Applying the law of mass action to each compound yields:

d[S]

dt
= k

−1[C]− k1[S][E] + JS

d[E]

dt
= (k

−1 + k2)[C]− k1[S][E]

d[C]

dt
= k1[S][E]− (k2 + k

−1)[C]

d[P ]

dt
= k2[C]− JP

Here we also supply the substrate at rate JS and the product is
removed at rate JP .
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Equilibrium, 1.4.1

Note that In equilibrium

d[S]/dt = d[E]/dt = d[C]/dt = d[P ]/dt = 0

it follows that that JS = JP .
Production rate:

J = JP = k2[C]
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In equilibrium we have
d[E]

dt
= 0

that is
(k
−1 + k2)[C] = k1[S][E]

Since the amount of enzyme is constant we have

[E] = E0 − [C]

This yields

[C] =
E0[S]

Km + [S]

with Km = k
−1+k2

k1
and E0 is the total enzyme concentration.

Production rate: d[P ]
dt = k2[C] = Vmax

[S]
Km+[S] , where Vmax = k2E0.
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Cooperativity, 1.4.4

S + E
k1

−→
←−
k
−1

C1
k2
−→ E + P

S + C1

k3

−→
←−
k
−3

C2
k4
−→ C1 + P

with

S: Substrate

E: Enzyme

C1: Complex with one S

C1: Complex with two S

P: Product
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Mathematical model of cooperativ reaction

Applying the law of mass action to each compound yields:

ds

dt
= −k1se + k

−1c1 − k3sc1 + k
−3c2

dc1

dt
= k1se− (k

−1 + k2)c1 − k3sc1 + (k4 + k
−3)c2

dc2

dt
= k3sc1 − (k4 + k

−3)c2
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Equilibrium

Set dc1
dt = dc2

dt = 0, and use e0 = e + c1 + c2,

c1 =
K2e0s

K1K2 + K2s + s2

c2 =
e0s

2

K1K2 + K2s + s2

where K1 = k
−1+k2

k1
, K2 = k4+k

−3

k3

Reaction speed:

V = k2c1 + k4c2 =
(k2K2 + k4s)e0s

K1K2 + K2s + s2
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Case 1: No cooperation

The binding sites operate independently, with the same rates k+

and k
−

. k1, k
−3 and k4 are associated with events that can

happen in two ways, thus:

k1 = 2k3 = 2k+

k
−3 = 2k

−1 = 2k
−

k4 = 2k2

So:

K1 =
k
−1 + k2

k1
=

k
−

+ k2

2k+
= K/2

K2 =
k
−3 + k4

k3
=

2k
−

+ 2k2

k+
= 2K

where

K =
k
−

+ k2

k+
– p. 22

Which gives this reaction speed:

V =
(k2K2 + k4s)e0s

K1K2 + K2s + s2

=
(2k2K + 2k2s)e0s

K2 + 2Ks + s2

=
2k2(K + s)e0s

(K + s)2
=

2k2e0s

(K + s)

Note that this is the same as the reaction speed for twice the
amount of an enzyme with a single binding site.

– p. 23

Case 2: Strong cooperation

The first binding is unlikely, but the next is highly likely, i.e. k1 is
small, and k3 is large. We go to the limit:

k1 → 0, k3 →∞, k1k3 = const

so
K2 → 0,K1 →∞,K1K2 = const

In this case the reaction speed becomes:

V =
k4e0s

2

K2
m + s2

= Vmax
s2

K2
m + s2

with K2
m = K1K2, and Vmax = k4e0
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The Hill equation

In general with n binding sites, the reaction rate in the limit will
be:

V = Vmax
sn

Kn
m + sn

This model is often used when the intermediate steps are
unknown, but cooperativity suspected. The parameters
Vmax,Km and n are usually determined experimentally.
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The Cell Membrane

Consist of a bilipid layer

Embedded proteins for transport control

Selectively permeable

Maintains concentration gradients

Has a transmembrane potential
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The Cell Membrane, 2.1
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Two types of transmembrane flow

Passive: Diffusion along the concentration gradient

Through the membrane (H2O, O2, CO2)

Through specialized channels (Na+, K+, Cl−)

Carrier mediated transport

Active: Energy driven flow against the gradients

ATP driven pumps (Na+
− K+, Ca2+)

Exchangers driven by concentration gradients (Na+
−Ca2+)
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Transmembrane flow
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Active Transport
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Diffusion, 2.2

The conservation law for a compound with concentration c:
rate change of c = local production + accumulation due to
transport.
Model:

d

dt

∫
Ω

c dV =

∫
Ω

p dV −

∫
∂Ω

J · n dA

Here p represents the production and J is the flux of c.
The divergence theorem:

∫
∂Ω

J · n dA =

∫
Ω
∇ · J dV

The law is valid for every volume, thus:

∂c

∂t
= p−∇ · J

Models for p and J are needed to compute c. – p. 31

Fick’s Law, 2.2.1

J = −D∇c

The diffusion coefficient D depends upon the solute and the
temperature of the embedding fluid:

D =
kT

f

T is the temperature measured on Kelvin, f is a frictional
constant and k is the Boltzmann’s constant.
The conservation law with this assumption is a reaction-diffusion
equation:

∂c

∂t
= ∇ · (D∇c) + p

– p. 32



Diffusion coefficients, 2.2.2

The diffusion coefficient of a solute in a solvent is given by

D =
kT

f

where k is Boltzmann’s constant and T the temperature. f is the
frictional constant of the solute and for a sphere with radius a

given as
f = 6πµa

where µ is called the coefficient of viscosity of the solute.
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1D Diffusion through a pore in the membrane, 2.2.3

∂c

∂t
= D

∂2c

∂2x

Fixed intra and extra cellular concentration:

c(0, t) = [C]i c(L, t) = [C]e

At steady state:

∂c

∂t
= 0 =⇒ D

∂2c

∂2x
= 0 =⇒

∂c

∂x
= a =⇒ c(x) = ax + b

Taking the boundary condition into consideration yields:

c(x) = [C]i + ([C]e − [C]i)
x

L

and a constant flux: J = −D ∂c
∂x = D

L ([C]i − [C]e)
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Carrier-Mediated Transport, 2.4

Some substances can not pass the membrane on their own, but
are helped by a carrier protein.

Types of transport:

Uniport: Transport of single substance

Symport: Transport of several substances
in same direction

Antiport: Transport of several substances
in opposite directions

With symport and antiport the carrier molecule as several
binding sites.
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Uniport

Substrate S combines with a carrier protein C to form a complex
P. The protein has two conformal states.
Model:

Si + Ci

k+

−→
←−
k
−

Pi

k
−→
←−

k
Pe

k
−

−→
←−
k+

Se + Ce

Ci

k
−→
←−

k
Ce
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Model for Carrier Mediated Transport, Uniport

Applying the law of mass action:

d[Si]

dt
= k

−
[Pi]− k+[Si][Ci]− J

d[Se]

dt
= k

−
[Pe]− k+[Se][Ce] + J

d[Pi]

dt
= k[Pe]− k[Pi] + k+[Si][Ci]− k

−
[Pi]

d[Pe]

dt
= k[Pi]− k[Pe] + k+[Se][Ce]− k

−
[Pe]

d[Ci]

dt
= k[Ce]− k[Ci] + k

−
[Pi]− k+[Si][Ci]

d[Ce]

dt
= k[Ci]− k[Ce] + k

−
[Pe]− k+[Se][Ce]

Here J is the influx of the glucose molecules (S).
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Size of flux in equilibrium

The flow in equilibrium can be setting the derivatives to zero and
solve for J .

This yields a system of six eq. and seven unknowns.

The amount of protein is conserved so we have:

[Ci] + [Ce] + [Pi] + [Pe] = C0

Solving for J in equilibrium then gives:

J =
1

2
kKC0

[Se]− [Si]

([Si] + K + Kd)([Se] + K + Kd)−K2
d

with K = k
−
/k+ and Kd = k/k+.
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Size of flux in equilibrium

J =
1

2
kKC0

[Se]− [Si]

([Si] + K + Kd)([Se] + K + Kd)−K2
d

Factors affecting the flux:

The amount of Carrier molecules C0

The rate constants

Substrate gradient
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Model for symport

Two different substances S and T are transported in the same
direction. The carrier C has m binding sites for S and n for T :

mSi + nTi + Ci

k+

−→
←−
k
−

Pi

kp

−→
←−
k
−p

Pe

k
−

−→
←−
k+

mSe + nTe + Ce

Ci

k
−→
←−

k
Ce
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Need to model mathematically the process

mS + nT + C
k+

−→
←−
k
−

P

Consider the simpler reaction

A + B + C
k+

−→
←−
k
−

ABC

If we assume that the reaction takes place in two steps

A + B
k1

−→
←−
k
−1

AB

AB + C
k+

−→
←−
k
−

ABC
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cont.

A + B
k1

−→
←−
k
−1

AB

AB + C
k+

−→
←−
k
−

ABC

If the intermediate step is fast, we can assume it to be in
equilibrium:

d[AB]

dt
= k1[A][B]− k

−1[AB] = 0 ⇒ [AB] = k1/k−1[A][B]

For the total reaction:

d[ABC]

dt
= k+[AB][C] − k

−
[ABC] = k+

k1

k
−1

[A][B][C] − k
−
[ABC]
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Flux for symport

With repeated use of similar arguments

d[P ]

dt
= k+[S]m[T ]n[C]− k

−
[P ]

The symport model will be identical to the uniport model by
substituting [S] with [S]m[T ]n.
Flux:

J =
1

2
KdKk+C0

[Se]
m[Te]

n
− [Si]

m[Ti]
n

([Si]m[Ti]n + K + Kd)([Se]m[Te]n + K + Kd)−K2
d
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