INF-5610, Matematiske modeller i medisin

Forelesere:

- Glenn Terje Lines (glennli@ifi.uio.no)
- Joakim Sundnes (sundnes@ifi.uio.no)

Topics:

- Chemical reactions
- Ionic channels
- Calcium dynamics in cells
- Signal propegation between cells
- Blood flow

Mathematical models of chemical reactions

Exam

- There will be six topics given, two weeks prior to the exam
- A 20 minute lecture for each topic should be prepared
- At the exam, one of the topics will be drawn
- There will also be questions given on other subjects

The Law of Mass Action, 1.1

Chemical A and B react to produce chemical C :

$$
A+B \xrightarrow{k} C
$$

The rate constant k determines the rate of the reaction. It can be interpreted as the probability that a collision between the reactants produces the end results.
If we model the probability of a collision with the product $[A][B]$ we get the law of mass action:

$$
\frac{d[C]}{d t}=k[A][B]
$$

A two way reaction

The reverse reaction may also take place:

$$
A+B \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} C
$$

The production rate is then:

$$
\frac{d[C]}{d t}=k_{+}[A][B]-k_{-}[C]
$$

At equilibrium when $d[C] / d t=0$ we have:

$$
\begin{equation*}
k_{-}[C]=k_{+}[A][B] \tag{1}
\end{equation*}
$$

Gibbs free energy, 1.2

Molecules have different chemical potential energy, quantified by Gibbs free energy

$$
G=G^{0}+R T \ln (c)
$$

where c is the concentration of the molecule, T is the temperature, R the gas constant.
G^{0} is the energy at $c=1 \mathrm{M}$, called the standard free energy.

If $A+B \xrightarrow{k} C$ is the only reaction involving A and C then

$$
d[A] / d t=-d[C] / d t
$$

so that

$$
\begin{equation*}
[A]+[C]=A_{0} \tag{2}
\end{equation*}
$$

Substituting (2) into (1) yields:

$$
[C]=A_{0} \frac{[B]}{K \mathrm{eq}+[B]}
$$

where $K_{\text {eq }}=k_{-} / k_{+}$.
Notice that

$$
[B]=K \mathrm{eq} \Longrightarrow[C]=A_{0} / 2
$$

and

$$
[B] \rightarrow \infty \quad \Longrightarrow \quad[C] \rightarrow A_{0}
$$

Gibbs free energy

Can be used to compare two states:

$$
A \longrightarrow B
$$

Change in free energy after this reaction:

$$
\begin{aligned}
\Delta G & =G_{B}-G_{A} \\
& =\left(G_{B}^{0}+R T \ln (B)\right)-\left(G_{A}^{0}+R T \ln (A)\right) \\
& =\left(G_{B}^{0}-G_{A}^{0}\right)+(R T \ln (B)-R T \ln (A)) \\
& =\Delta G^{0}+R T \ln (B / A)
\end{aligned}
$$

If $\Delta G<0$, e.g. there is less free energy after the reaction, then B is the preferred stated.

Gibbs free energy at equilibrium

At equilibrium neither states are favoured and $\Delta G=0$:

$$
\Delta G=\Delta G^{0}+R T \ln (B / A)=0
$$

Given G^{0}, the concentrations at equilibrium must satisfy:

$$
\ln \left(B_{e q} / A_{e q}\right)=-\Delta G^{0} / R T
$$

or

$$
\frac{B_{e q}}{A_{e q}}=e^{-\Delta G^{0} / R T}
$$

Gibbs free energy with several reactants

The reaction

$$
\alpha A+\beta B \longrightarrow \gamma C+\delta D
$$

has the following change in free energy:

$$
\begin{aligned}
\Delta G= & \gamma G_{C}+\delta G_{D}-\alpha G_{A}-\beta G_{B} \\
= & \gamma G_{C}^{0}+\delta G_{D}^{0}-\alpha G_{A}^{0}-\beta G_{B}^{0} \\
& +\gamma R T \ln ([C])+\delta R T \ln ([D])-\alpha R T \ln ([A])-\beta R T \ln ([B]) \\
= & \Delta G^{0}+R T \ln \left(\frac{[C]^{\gamma}[D]^{\delta}}{[A]^{\alpha}[B]^{\beta}}\right)
\end{aligned}
$$

At equilibrium with $\Delta G=0$:

$$
\Delta G^{0}=R T \ln \left(\frac{[A]_{e q}^{\alpha}[B]_{e q}^{\beta}}{[C]_{e q}^{\gamma}[D]_{e q}^{\delta}}\right)
$$

Gibbs free energy and rate constants

The reaction

$$
A \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} B
$$

is governed by

$$
\frac{d[A]}{d t}=k_{+}[B]-k_{-}[A]
$$

and at equilibrium $\frac{d[A]}{d t}=0$, so

$$
k_{+}[B]-k_{-}[A]=0, \text { or }, A / B=k_{-} / k_{+}=K_{e q}
$$

Comparing with the Gibbs free energy we find:

$$
K_{e q}=e^{\Delta G^{0} / R T}
$$

Note:

$$
\Delta G^{0}<0 \Longrightarrow K_{e q}<1 \Longrightarrow B_{e q}>A_{e q}
$$

Detailed balance, 1.3

Consider the cyclic reaction:

In equilibrium all states must have the same energy:

$$
G_{A}=G_{B}=G_{C}
$$

All transitions must be in equilibrium:

$$
k_{1}[B]=k_{-1}[A], \quad k_{2}[A]=k_{-2}[C], \quad k_{3}[C]=k_{-3}[B]
$$

Which yields:

$$
k_{1}[B] \cdot k_{2}[A] \cdot k_{3}[C]=k_{-1}[A] \cdot k_{-2}[C] \cdot k_{-3}[B]
$$

Detailed balance

cont.

$$
k_{1}[B] \cdot k_{2}[A] \cdot k_{3}[C]=k_{-1}[A] \cdot k_{-2}[C] \cdot k_{-3}[B]
$$

so

$$
k_{1} k_{2} k_{3}=k_{-1} k_{-2} k_{-3}
$$

This last condition is independent of the actual concentrations and must hold in general. Thus only 5 free parameters in the reaction.

Enzyme Kinetics, 1.4

Characteristics of enzymes:

- Made of proteins
- Acts as catalysts for biochemical reactions
- Speeds up reactions by a factor $>10^{7}$
- Highly specific
- Often part of a complex regulation system

Mathematical model of enzymatic reaction

Applying the law of mass action to each compound yields:

$$
\begin{aligned}
\frac{d[S]}{d t} & =k_{-1}[C]-k_{1}[S][E]+J_{S} \\
\frac{d[E]}{d t} & =\left(k_{-1}+k_{2}\right)[C]-k_{1}[S][E] \\
\frac{d[C]}{d t} & =k_{1}[S][E]-\left(k_{2}+k_{-1}\right)[C] \\
\frac{d[P]}{d t} & =k_{2}[C]-J_{P}
\end{aligned}
$$

Here we also supply the substrate at rate J_{S} and the product is removed at rate J_{P}.

Equilibrium, 1.4.1

Note that In equilibrium

$$
d[S] / d t=d[E] / d t=d[C] / d t=d[P] / d t=0
$$

it follows that that $J_{S}=J_{P}$.
Production rate:

$$
J=J_{P}=k_{2}[C]
$$

In equilibrium we have

$$
\frac{d[E]}{d t}=0
$$

that is

$$
\left(k_{-1}+k_{2}\right)[C]=k_{1}[S][E]
$$

Since the amount of enzyme is constant we have

$$
[E]=E_{0}-[C]
$$

This yields

$$
[C]=\frac{E_{0}[S]}{K_{m}+[S]}
$$

with $K_{m}=\frac{k_{-1}+k_{2}}{k_{1}}$ and E_{0} is the total enzyme concentration.
Production rate: $\frac{d[P]}{d t}=k_{2}[C]=V_{\max } \frac{[S]}{K_{m}+[S]}$, where $V_{\max }=k_{2} E_{0}$.

Mathematical model of cooperativ reaction

Applying the law of mass action to each compound yields:

$$
\begin{aligned}
\frac{d s}{d t} & =-k_{1} s e+k_{-1} c_{1}-k_{3} s c_{1}+k_{-3} c_{2} \\
\frac{d c_{1}}{d t} & =k_{1} s e-\left(k_{-1}+k_{2}\right) c_{1}-k_{3} s c_{1}+\left(k_{4}+k_{-3}\right) c_{2} \\
\frac{d c_{2}}{d t} & =k_{3} s c_{1}-\left(k_{4}+k_{-3}\right) c_{2}
\end{aligned}
$$

S: Substrate
E: Enzyme
C1: Complex with one S
C1: Complex with two S
P: Product
: Product

$$
\begin{aligned}
& S+E \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} C_{1} \xrightarrow{k_{2}} E+P \\
& S+C_{1} \underset{k_{-3}}{\stackrel{k_{3}}{\rightleftarrows}} C_{2} \xrightarrow{k_{4}} C_{1}+P
\end{aligned}
$$

with

Cooperativity, 1.4.4

Equilibrium

Set $\frac{d c_{1}}{d t}=\frac{d c_{2}}{d t}=0$, and use $e_{0}=e+c_{1}+c_{2}$,

$$
\begin{aligned}
c_{1} & =\frac{K_{2} e_{0} s}{K_{1} K_{2}+K_{2} s+s^{2}} \\
c_{2} & =\frac{e_{0} s^{2}}{K_{1} K_{2}+K_{2} s+s^{2}}
\end{aligned}
$$

where $K_{1}=\frac{k_{-1}+k_{2}}{k_{1}}, K_{2}=\frac{k_{4}+k_{-3}}{k_{3}}$
Reaction speed:

$$
V=k_{2} c_{1}+k_{4} c_{2}=\frac{\left(k_{2} K_{2}+k_{4} s\right) e_{0} s}{K_{1} K_{2}+K_{2} s+s^{2}}
$$

Which gives this reaction speed:

$$
\begin{aligned}
V & =\frac{\left(k_{2} K_{2}+k_{4} s\right) e_{0} s}{K_{1} K_{2}+K_{2} s+s^{2}} \\
& =\frac{\left(2 k_{2} K+2 k_{2} s\right) e_{0} s}{K^{2}+2 K s+s^{2}} \\
& =\frac{2 k_{2}(K+s) e_{0} s}{(K+s)^{2}}=\frac{2 k_{2} e_{0} s}{(K+s)}
\end{aligned}
$$

Note that this is the same as the reaction speed for twice the amount of an enzyme with a single binding site.

Case 1: No cooperation

The binding sites operate independently, with the same rates k_{+} and $k_{-} . k_{1}, k_{-3}$ and k_{4} are associated with events that can happen in two ways, thus:

$$
\begin{gathered}
k_{1}=2 k_{3}=2 k_{+} \\
k_{-3}=2 k_{-1}=2 k_{-} \\
k_{4}=2 k_{2}
\end{gathered}
$$

So:

$$
\begin{aligned}
& K_{1}=\frac{k_{-1}+k_{2}}{k_{1}}=\frac{k_{-}+k_{2}}{2 k_{+}}=K / 2 \\
& K_{2}=\frac{k_{-3}+k_{4}}{k_{3}}=\frac{2 k_{-}+2 k_{2}}{k_{+}}=2 K
\end{aligned}
$$

where

$$
K=\frac{k_{-}+k_{2}}{k_{\perp}}
$$

Case 2: Strong cooperation

The first binding is unlikely, but the next is highly likely, i.e. k_{1} is small, and k_{3} is large. We go to the limit:

$$
k_{1} \rightarrow 0, k_{3} \rightarrow \infty, k_{1} k_{3}=\mathrm{const}
$$

so

$$
K_{2} \rightarrow 0, K_{1} \rightarrow \infty, K_{1} K_{2}=\mathrm{const}
$$

In this case the reaction speed becomes:

$$
V=\frac{k_{4} e_{0} s^{2}}{K_{m}^{2}+s^{2}}=V_{\max } \frac{s^{2}}{K_{m}^{2}+s^{2}}
$$

with $K_{m}^{2}=K_{1} K_{2}$, and $V_{\max }=k_{4} e_{0}$

The Hill equation

In general with n binding sites, the reaction rate in the limit will be:

$$
V=V_{\max } \frac{s^{n}}{K_{m}^{n}+s^{n}}
$$

This model is often used when the intermediate steps are unknown, but cooperativity suspected. The parameters $V_{\text {max }}, K_{m}$ and n are usually determined experimentally.

The Cell Membrane, 2.1

Two types of transmembrane flow

Passive: Diffusion along the concentration gradient

- Through the membrane $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}, \mathrm{CO}_{2}\right)$
- Through specialized channels $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}\right)$
- Carrier mediated transport

Active: Energy driven flow against the gradients

- ATP driven pumps $\left(\mathrm{Na}^{+}-\mathrm{K}^{+}, \mathrm{Ca}^{2+}\right)$
- Exchangers driven by concentration gradients $\left(\mathrm{Na}^{+}-\mathrm{Ca}^{2+}\right)$

Transmembrane flow

Diffusion, 2.2

The conservation law for a compound with concentration c : rate change of $c=$ local production + accumulation due to transport.
Model:

$$
\frac{d}{d t} \int_{\Omega} c d V=\int_{\Omega} p d V-\int_{\partial \Omega} \mathbf{J} \cdot \mathbf{n} d A
$$

Here p represents the production and \mathbf{J} is the flux of c. The divergence theorem:

$$
\int_{\partial \Omega} \mathbf{J} \cdot \mathbf{n} d A=\int_{\Omega} \nabla \cdot \mathbf{J} d V
$$

The law is valid for every volume, thus:

$$
\frac{\partial c}{\partial t}=p-\nabla \cdot \mathbf{J}
$$

Models for p and \mathbf{J} are needed to compute c.

Active Transport

Fick's Law, 2.2.1

$$
\mathbf{J}=-D \nabla c
$$

The diffusion coefficient D depends upon the solute and the temperature of the embedding fluid:

$$
D=\frac{k T}{f}
$$

T is the temperature measured on Kelvin, f is a frictional constant and k is the Boltzmann's constant.
The conservation law with this assumption is a reaction-diffusion equation:

$$
\frac{\partial c}{\partial t}=\nabla \cdot(D \nabla c)+p
$$

Diffusion coefficients, 2.2.2

The diffusion coefficient of a solute in a solvent is given by

$$
D=\frac{k T}{f}
$$

where k is Boltzmann's constant and T the temperature. f is the frictional constant of the solute and for a sphere with radius a given as

$$
f=6 \pi \mu a
$$

where μ is called the coefficient of viscosity of the solute.

Carrier-Mediated Transport, 2.4

Some substances can not pass the membrane on their own, but are helped by a carrier protein.

Types of transport:

- Uniport: Transport of single substance
- Symport: Transport of several substances in same direction
- Antiport: Transport of several substances in opposite directions
With symport and antiport the carrier molecule as several binding sites.

1D Diffusion through a pore in the membrane,:

$$
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial^{2} x}
$$

Fixed intra and extra cellular concentration:

$$
c(0, t)=[C]_{i} \quad c(L, t)=[C]_{e}
$$

At steady state:

$$
\frac{\partial c}{\partial t}=0 \Longrightarrow D \frac{\partial^{2} c}{\partial^{2} x}=0 \quad \Longrightarrow \frac{\partial c}{\partial x}=a \quad \Longrightarrow \quad c(x)=a x+b
$$

Taking the boundary condition into consideration yields:

$$
c(x)=[C]_{i}+\left([C]_{e}-[C]_{i}\right) \frac{x}{L}
$$

and a constant flux: $J=-D \frac{\partial c}{\partial x}=\frac{D}{L}\left([C]_{i}-[C]_{e}\right)$

Uniport

Substrate S combines with a carrier protein C to form a complex P. The protein has two conformal states.

Model:

$$
\begin{gathered}
S_{i}+C_{i} \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} P_{i} \underset{k}{\stackrel{k}{\rightleftarrows}} P_{e} \underset{k_{+}}{\stackrel{k_{-}}{\rightleftarrows}} S_{e}+C_{e} \\
C_{i} \stackrel{k}{\rightleftarrows} C_{e}
\end{gathered}
$$

Model for Carrier Mediated Transport, Uniport

Applying the law of mass action:

$$
\begin{aligned}
\frac{d\left[S_{i}\right]}{d t} & =k_{-}\left[P_{i}\right]-k_{+}\left[S_{i}\right]\left[C_{i}\right]-J \\
\frac{d\left[S_{e}\right]}{d t} & =k_{-}\left[P_{e}\right]-k_{+}\left[S_{e}\right]\left[C_{e}\right]+J \\
\frac{d\left[P_{i}\right]}{d t} & =k\left[P_{e}\right]-k\left[P_{i}\right]+k_{+}\left[S_{i}\right]\left[C_{i}\right]-k_{-}\left[P_{i}\right] \\
\frac{d\left[P_{e}\right]}{d t} & =k\left[P_{i}\right]-k\left[P_{e}\right]+k_{+}\left[S_{e}\right]\left[C_{e}\right]-k_{-}\left[P_{e}\right] \\
\frac{d\left[C_{i}\right]}{d t} & =k\left[C_{e}\right]-k\left[C_{i}\right]+k_{-}\left[P_{i}\right]-k_{+}\left[S_{i}\right]\left[C_{i}\right] \\
\frac{d\left[C_{e}\right]}{d t} & =k\left[C_{i}\right]-k\left[C_{e}\right]+k_{-}\left[P_{e}\right]-k_{+}\left[S_{e}\right]\left[C_{e}\right]
\end{aligned}
$$

Here J is the influx of the glucose molecules (S).

Size of flux in equilibrium

$$
J=\frac{1}{2} k K C_{0} \frac{\left[S_{e}\right]-\left[S_{i}\right]}{\left(\left[S_{i}\right]+K+K_{d}\right)\left(\left[S_{e}\right]+K+K_{d}\right)-K_{d}^{2}}
$$

Factors affecting the flux:

- The amount of Carrier molecules C_{0}
- The rate constants
- Substrate gradient

Size of flux in equilibrium

The flow in equilibrium can be setting the derivatives to zero and solve for J.

This yields a system of six eq. and seven unknowns.

The amount of protein is conserved so we have:

$$
\left[C_{i}\right]+\left[C_{e}\right]+\left[P_{i}\right]+\left[P_{e}\right]=C_{0}
$$

Solving for J in equilibrium then gives:

$$
J=\frac{1}{2} k K C_{0} \frac{\left[S_{e}\right]-\left[S_{i}\right]}{\left(\left[S_{i}\right]+K+K_{d}\right)\left(\left[S_{e}\right]+K+K_{d}\right)-K_{d}^{2}}
$$

with $K=k_{-} / k_{+}$and $K_{d}=k / k_{+}$.

Model for symport

Two different substances S and T are transported in the same direction. The carrier C has m binding sites for S and n for T :

$$
\begin{gathered}
m S_{i}+n T_{i}+C_{i} \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} P_{i} \underset{k_{-p}}{\stackrel{k_{p}}{\rightleftarrows}} P_{e} \underset{k_{+}}{\stackrel{k_{-}}{\rightleftarrows}} m S_{e}+n T_{e}+C_{e} \\
C_{i} \stackrel{k}{\rightleftarrows} C_{e}
\end{gathered}
$$

Need to model mathematically the process

$$
m S+n T+C \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} P
$$

Consider the simpler reaction

$$
A+B+C \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} A B C
$$

If we assume that the reaction takes place in two steps

$$
\begin{gathered}
A+B \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} A B \\
A B+C \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} A B C
\end{gathered}
$$

cont.

$$
\begin{gathered}
A+B \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} A B \\
A B+C \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} A B C
\end{gathered}
$$

If the intermediate step is fast, we can assume it to be in equilibrium:

$$
\frac{d[A B]}{d t}=k_{1}[A][B]-k_{-1}[A B]=0 \Rightarrow[A B]=k_{1} / k_{-1}[A][B]
$$

For the total reaction:

$$
\frac{d[A B C]}{d t}=k_{+}[A B][C]-k_{-}[A B C]=k_{+} \frac{k_{1}}{k_{-1}}[A][B][C]-k_{-}[A B C]
$$

Flux for symport

With repeated use of similar arguments

$$
\frac{d[P]}{d t}=k_{+}[S]^{m}[T]^{n}[C]-k_{-}[P]
$$

The symport model will be identical to the uniport model by substituting $[S]$ with $[S]^{m}[T]^{n}$.
Flux:

$$
J=\frac{1}{2} K_{d} K k_{+} C_{0} \frac{\left[S_{e}\right]^{m}\left[T_{e}\right]^{n}-\left[S_{i}\right]^{m}\left[T_{i}\right]^{n}}{\left(\left[S_{i}\right]^{m}\left[T_{i}\right]^{n}+K+K_{d}\right)\left(\left[S_{e}\right]^{m}\left[T_{e}\right]^{n}+K+K_{d}\right)-K_{d}^{2}}
$$

