
Rate constants as probabilities

Consider again the following model:

C
α(v)
−→←−
β(v)

O

Probabilistic interpretation of α and β:

α : P (C → O in dt) = αdt

β : P (O → C in dt) = βdt

Probability that the channel is open at time t + dt:

P (O, t + dt) = P (C, t) · P (C → O in dt)

+ P (O, t) · P (not O → C in dt)

= P (C, t) · (αdt) + P (O, t) · (1− βdt)
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P (O, t + dt) = P (C, t) · (αdt) + P (O, t) · (1− βdt)

= (1− P (O, t)) · (αdt) + P (O, t) · (1− βdt)

since P (C, t) + P (O, t) = 1.
Divides by dt and rearranges:

P (O, t + dt)− P (O, t)

dt
= α · (1− P (O, t))− β · P (O, t)

Going to the limit:

dP (O, t)

dt
= α · (1− P (O, t))− β · P (O, t)

Which we recognise this as the usual gating equation.
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The general case with n different states

We write S(t) = j if the system is in state j at time t, and define

φj(t) = P (S(t) = j).

kij is the probability rate going from S = i to S = j:

kijdt = P (S(t + dt) = j|S(t) = i)

Probability of staying S = i:

P (S(t + dt) = i|S(t) = i) = 1−
∑

j 6=i

kijdt = 1−Kidt

where Ki =
∑

i 6=j kij
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Time evolution of φj(t)

φj(t + dt) = φj(t) · P (staying in j for dt)

+
∑

i 6=j

φi(t)P (enter j from i in dt)

= φj(t) · (1−Kjdt) +
∑

i 6=j

φi(t)kijdt

Divide by dt and rearrange:

φj(t + dt)− φj(t)

dt
= −Kjφj(t) +

∑

i 6=j

φi(t)kij

And in the limit:

dφj(t)

dt
=

n∑

i=1

kijφj(t), kii = −Ki
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Waiting time

How long time (Ti) does the system spend in a state Si before
leaving? We define Pi(t) := P (Ti < t).
Note Kidt = P (leaving Si during dt)

Pi(t + dt) = P (transition has already occurred at t)

+ P (not occurred yet) · P (it takes place in this interval)

= Pi(t) + (1− Pi(t)) ·Kidt

Divides, and goes to the limit:

dPi(t)

dt
= Ki(1− Pi(t))

Which has the solution:

Pi(t) = 1− e−Kit
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Waiting time

Pi(t) is the cumulative distribution. The probability density
function is easily found:

pi(t) =
dPi(t)

dt
= Kie

−Kit

The mean waiting time is the expected value of Ti:

E(Ti) =

∫ ∞

0
tpi(t)dt =

1

Ki

(If Ki does not depend on t)
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Single channel recordings
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Single channel analysis

Single channel recordings contain statistical information that can
be used to estimate transition rate:

Ratio of experiments where channel directly inactivates

Distribution of the number of times the channel re-opens
before finally inactivating

Mean open time

Mean close time
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1: If first (and final) transition is C → I

The channel is initially in the closed state.
As the transmembrane potential is elevated two things can
happen:

P (C → O) = A = α/(α + δ)

P (C → I) = δ/(α + δ) = (δ − α + α)/(α + δ) = 1−A

Estimation of 1−A: The ratio of experiments where the channel
fail to open.
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2 & 3: Time spent in C and O

In the experiments where channels do open, record the time
spent in C.
The distribution is described by: P (t) = 1− exp(−α)

The average waiting time will be E(T ) = 1/α.

Record the duration the channel is open. The distribution is
described by: P (t) = 1− exp(−β − γ)

The average waiting time will be E(T ) = 1/(β + γ).

– p. 20

4: Number of re-openings

Probability that the channels opens k times before inactivating:

P [N = k] = P [N = k and finally O → I] + P [N = k and finally C → I]

= AkBk−1(1−B) + AkBk(1−A)

= (AB)k
(

1−AB

B

)

Where A = α/(α + δ) and B = β/(β + γ)

B can be estimated by fitting to the observed data.
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Excitability
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Excitable Cells 5.1

Unlike other cells, excitable cells can be triggered to set off an
action potential.

During the action potential the transmembrane potential departs
from its resting potential, reaches a peak potential and returns to
the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal
to neighboring cells.

The trigger must be of a certain size, if below the threshold the
cell will not “fire”.

As long as the trigger is above the threshold, the shape of the
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The Hodgkin-Huxley Model

Developed to study the action potential of the squid nerve cells.

Assumed three different current INa, IK and IL
Assumed also linear current-voltage relationship:

−Cm
dv

dt
= I

ion
= g

Na
(v − v

Na
) + g

K
(v − v

K
) + g

L
(v − v

L
)
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Can collect the current terms due to linearity:

Cm
dv

dt
= −g

eff
(v − veq)

where
g
eff

= g
Na

+ g
K

+ g
L

and

veq =
g
Na

v
Na

+ g
K

v
K

+ g
L
v
L

g
eff

veq is a weighted average of the individual equilibrium potentials.

The weighing factors are time and voltage dependent.
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A steady applied current Iapp moves the membrane potential to
different equilibrium.

Cm
dv

dt
= −geff(v − veq) + Iapp = 0

Implies

v = veq +
1

Cm geff
Iapp

The applied current will be compensated by an ionic current
going the opposite way, thus the net current will be zero.

For a sufficiently large Iapp, v will pass the threshold potential
and an action potential is triggered. The conductivities will vary
greatly.
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Voltage Clamp measurements

The transmembrane potential is forced by an applied current to a
fixed value.

Since Iion = −Iapp for a fixed v, we can measure Iion as a
function of time for a given level of v.

Since v is fixed the observed variations must be due to temporal
variation in the conductivities.
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Total membrane current for different steps, 5.1.2
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From measurements to models

Initially, Hodgkin and Huxley assumed Iion = INa + IK. Two kind
of experiments conducted:

1: Normal concentrations

2: [Na]e replaced by cohline ⇒ affects INa but not IK.

Assumed further:

Initially IK = 0

I1
Na/I2

Na = C, constant

I1
K = I2

K

Once I1
ion and I2

ion is recorded we can determine C from the first
and the second assumptions.
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Expressions for the currents in terms of measurable quantities
can now be obtained:

I1
Na =

C

C − 1
(I1

ion − I2
ion)

IK =
1

1− C
(I1

ion − CI2
ion)

Assuming linear current-voltage relationships we get expressions
for the conductivities:

gNa =
INa

V − VNa
, gK =

IK
V − VK

For each pair of voltage clamp experiment (with a given voltage
step), we now have a time course for gNa and gK.
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Potassium and Sodium conductance
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Model for the Potassium conductance

Assumed
dgK
dt = f(v, t).

Ended up with introducing a second variable:

gK = gKn4, with
dn

dt
= α(v)(1− n)− β(v)n

and g is the maximum conductance. Forth power was chosen to
get the correct shape of the solution.

– p. 32

The solution of

τn
dn

dt
= n∞ − n

with constant coefficients is

n(t) = n∞ + (n(0)− n∞)e−t/τn

If we assume that n∞(0) = 0 a step from from 0 to v yields:

n(t) = n∞(v) + (n∞(0)− n∞(v))e−t/τn(v)

= n∞(v)(1− e−t/τn(v))

A step in the other direction gives:

n(t) = n∞(0) + (n∞(v)− n∞(0))e−t/τn(0)

= n∞(v)e−t/τn(0)
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Gating variable raised to different powers

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
n1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
n2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
n3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
n4

– p. 34



Sodium conductance model

H&H realized that two different sub units were at work. Ended up
with

dgNa
dt

= gNam3h

Values for mτ ,m∞, hτ and h∞ obtained by fitting the solution to
plots of gNa.
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The Hodgkin-Huxley model

Introduces a third current, not time dependent:

Cm
dv

dt
= −gKn4(v − vK)− gNam3h(v − vNa)− gL(v − vL)

with
dg

dt
= αg(v)(1− g)− βg(v)g, g = m,h, n

Model based on voltage clamp measurement. How will it behave
under normal conditions?

The model will predict the action potential.
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Analysis of the Hodgkin-Huxley
model
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Qualitative analysis, 5.1.3

Would like to reduce the number of state variables to simplify
analysis.

One way is to treat the slowest variables as constants. Of the
three gating variables m has the fastest dynamics. (Controls the
activation of the Na-current).

Reduced model:

Cm
dv

dt
= −gKn4

0(v − vK)− gNam3h0(v − vNa)− gL(v − vL)
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Equilibria in the reduced HH-model

The nullclines dv
dt = 0 and dm

dt = 0 form curves in the (v,m)-plane.
Their intersections are the equilibria.

Initially three steady states vr, vs and ve. vr and ve are stable and
vs unstable.

As n0 and h0 changes, the dv
dt = 0 line will shift. ve will decrease,

coincide with vs and disappear.

vr will become the only stable equilibrium.

– p. 39

Phase plot for the fast sub-system
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Alternative reduction:

m is very fast, almost in equilibrium: m = m∞(v)

h + n almost constant: h = 0.8− n

We then have

Cm
dv

dt
= −gKn4(v−vK)−gNam3

∞(v)

h
︷ ︸︸ ︷

(0.8− n)(v−vNa)−gL(v−vL)

Equilibria found by looking at the crossing of the nullclines dv
dt = 0

and dn
dt = 0 in the (v, n)-plane.
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Phase plot for the fast-slow reduced system
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