## **Rate constants as probabilities**

Consider again the following model:

$$C \stackrel{\alpha(v)}{\underset{\beta(v)}{\longleftrightarrow}} O$$

Probabilistic interpretation of  $\alpha$  and  $\beta$ :

$$\alpha: P(C \to O \text{ in } dt) = \alpha dt$$
  
$$\beta: P(O \to C \text{ in } dt) = \beta dt$$
  
Probability that the channel is open at time  $t + dt$ :  
$$P(O, t + dt) = P(C, t) \cdot P(C \to O \text{ in } dt)$$

$$+ P(O,t) \cdot P(\text{not } O \to C \text{ in } dt)$$
$$= P(C,t) \cdot (\alpha dt) + P(O,t) \cdot (1 - \beta dt)$$

– p. 11

– p. 13

#### The general case with *n* different states

We write S(t) = j if the system is in state j at time t, and define

$$\phi_j(t) = P(S(t) = j).$$

 $k_{ii}$  is the probability rate going from S = i to S = j:

$$k_{ij}dt = P(S(t+dt) = j|S(t) = i)$$

Probability of staying S = i:

$$P(S(t+dt) = i|S(t) = i) = 1 - \sum_{j \neq i} k_{ij}dt = 1 - K_i dt$$

where  $K_i = \sum_{i \neq j} k_{ij}$ 

$$P(O, t + dt) = P(C, t) \cdot (\alpha dt) + P(O, t) \cdot (1 - \beta dt)$$
$$= (1 - P(O, t)) \cdot (\alpha dt) + P(O, t) \cdot (1 - \beta dt)$$

since P(C, t) + P(O, t) = 1. Divides by dt and rearranges:

$$\frac{P(O,t+dt) - P(O,t)}{dt} = \alpha \cdot (1 - P(O,t)) - \beta \cdot P(O,t)$$

Going to the limit:

$$\frac{dP(O,t)}{dt} = \alpha \cdot (1 - P(O,t)) - \beta \cdot P(O,t)$$

Which we recognise this as the usual gating equation.

# Time evolution of $\phi_j(t)$

$$\begin{split} \phi_j(t+dt) &= \phi_j(t) \cdot P(\text{staying in } j \text{ for } dt) \\ &+ \sum_{i \neq j} \phi_i(t) P(\text{enter } j \text{ from } i \text{ in } dt) \\ &= \phi_j(t) \cdot (1 - K_j dt) + \sum_{i \neq j} \phi_i(t) k_{ij} dt \end{split}$$

Divide by dt and rearrange:

$$\frac{\phi_j(t+dt) - \phi_j(t)}{dt} = -K_j\phi_j(t) + \sum_{i \neq j} \phi_i(t)k_{ij}$$

And in the limit:

$$\frac{d\phi_j(t)}{dt} = \sum_{i=1}^n k_{ij}\phi_j(t), \quad k_{ii} = -K_i$$

## Waiting time

How long time  $(T_i)$  does the system spend in a state  $S_i$  before leaving? We define  $P_i(t) := P(T_i < t)$ . Note  $K_i dt = P(\text{leaving } S_i \text{ during } dt)$ 

 $P_i(t + dt) = P(\text{transition has already occurred at } t)$ 

 $+ P(\text{not occurred yet}) \cdot P(\text{it takes place in this interval})$ 

 $= P_i(t) + (1 - P_i(t)) \cdot K_i dt$ 

Divides, and goes to the limit:

$$\frac{dP_i(t)}{dt} = K_i(1 - P_i(t))$$

Which has the solution:

$$P_i(t) = 1 - e^{-K_i t}$$

– p. 15

# Single channel recordings



# Waiting time

 $P_i(t)$  is the cumulative distribution. The probability density function is easily found:

$$p_i(t) = \frac{dP_i(t)}{dt} = K_i e^{-K_i t}$$

The mean waiting time is the expected value of  $T_i$ :

$$E(T_i) = \int_0^\infty t p_i(t) dt = \frac{1}{K_i}$$

(If  $K_i$  does not depend on t)

– p. 16

# Single channel analysis

Single channel recordings contain statistical information that can be used to estimate transition rate:

- Ratio of experiments where channel directly inactivates
- Distribution of the number of times the channel re-opens before finally inactivating
- Mean open time
- Mean close time



## **1:** If first (and final) transition is $C \rightarrow I$

The channel is initially in the closed state. As the transmembrane potential is elevated two things can happen:

 $P(C \to O) = A = \alpha / (\alpha + \delta)$ 

$$P(C \to I) = \delta/(\alpha + \delta) = (\delta - \alpha + \alpha)/(\alpha + \delta) = 1 - A$$

Estimation of 1 - A: The ratio of experiments where the channel fail to open.

## 2 & 3: Time spent in C and O

In the experiments where channels do open, record the time spent in *C*.

The distribution is described by:  $P(t) = 1 - \exp(-\alpha)$ The average waiting time will be  $E(T) = 1/\alpha$ .

Record the duration the channel is open. The distribution is described by:  $P(t) = 1 - \exp(-\beta - \gamma)$ The average waiting time will be  $E(T) = 1/(\beta + \gamma)$ .

– p. 19

#### 4: Number of re-openings

Probability that the channels opens k times before inactivating:

$$P[N = k] = P[N = k \text{ and finally } O \to I] + P[N = k \text{ and finally } C \to I]$$
$$= A^k B^{k-1}(1-B) + A^k B^k(1-A)$$
$$= (AB)^k \left(\frac{1-AB}{B}\right)$$

Where  $A = \alpha/(\alpha + \delta)$  and  $B = \beta/(\beta + \gamma)$ B can be estimated by fitting to the observed data. Excitability

## **Excitable Cells 5.1**

Unlike other cells, excitable cells can be triggered to set off an action potential.

During the action potential the transmembrane potential departs from its resting potential, reaches a peak potential and returns to the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal to neighboring cells.

The trigger must be of a certain size, if below the threshold the cell will not "fire".

– p. 23

Can collect the current terms due to linearity:

$$C_m \frac{dv}{dt} = -g_{\text{eff}} (v - v_{\text{eq}})$$

where

 $g_{\text{eff}} = g_{\text{Na}} + g_{\text{K}} + g_{\text{L}}$ 

and

$$v_{\text{eq}} = \frac{g_{\text{Na}} v_{\text{Na}} + g_{\text{K}} v_{\text{K}} + g_{\text{L}} v_{\text{L}}}{g_{\text{eff}}}$$

 $v_{eq}$  is a weighted average of the individual equilibrium potentials. The weighing factors are time and voltage dependent.

# **The Hodgkin-Huxley Model**

Developed to study the action potential of the squid nerve cells.

Assumed three different current  $I_{Na}$ ,  $I_{K}$  and  $I_{L}$ Assumed also linear current-voltage relationship:

$$-C_m \frac{dv}{dt} = I_{\text{ion}} = g_{\text{Na}}(v - v_{\text{Na}}) + g_{\text{K}}(v - v_{\text{K}}) + g_{\text{L}}(v - v_{\text{L}})$$

A steady applied current  $I_{app}$  moves the membrane potential to different equilibrium.

$$C_m \frac{dv}{dt} = -g_{\text{eff}}(v - v_{\text{eq}}) + I_{\text{app}} = 0$$

Implies

$$v = v_{\text{eq}} + \frac{1}{C_m g_{\text{eff}}} I_{\text{app}}$$

The applied current will be compensated by an ionic current going the opposite way, thus the net current will be zero.

For a sufficiently large  $I_{app}$ , v will pass the threshold potential and an action potential is triggered. The conductivities will vary greatly.

# **Voltage Clamp measurements**

The transmembrane potential is forced by an applied current to a fixed value.

Since  $I_{ion} = -I_{app}$  for a fixed v, we can measure  $I_{ion}$  as a function of time for a given level of v.

Since v is fixed the observed variations must be due to temporal variation in the conductivities.

# Total membrane current for different steps, 5.1.



ATT. Makana and Ten Reanagement of Conductoria

– p. 27

# From measurements to models

Initially, Hodgkin and Huxley assumed  $I_{ion} = I_{Na} + I_{K}$ . Two kind of experiments conducted:

- 1: Normal concentrations
- **9** 2:  $[Na]_e$  replaced by cohline  $\Rightarrow$  affects  $I_{Na}$  but not  $I_K$ .

Assumed further:

- Initially  $I_{\mathbf{K}} = 0$
- $I_{Na}^1/I_{Na}^2$  = C, constant

• 
$$I^1_{\mathbf{K}} = I^2_{\mathbf{K}}$$

Once  $I_{ion}^1$  and  $I_{ion}^2$  is recorded we can determine *C* from the first and the second assumptions.

Expressions for the currents in terms of measurable quantities can now be obtained:

$$I_{Na}^{1} = \frac{C}{C-1} (I_{ion}^{1} - I_{ion}^{2})$$
$$I_{K} = \frac{1}{1-C} (I_{ion}^{1} - CI_{ion}^{2})$$

Assuming linear current-voltage relationships we get expressions for the conductivities:

$$g_{\mathsf{Na}} = \frac{I_{\mathsf{Na}}}{V - V_{\mathsf{Na}}}, \quad g_{\mathsf{K}} = \frac{I_{\mathsf{K}}}{V - V_{\mathsf{K}}}$$

For each pair of voltage clamp experiment (with a given voltage step), we now have a time course for  $g_{Na}$  and  $g_{K}$ .

# **Potassium and Sodium conductance**



- p. 31

– p. 33

The solution of

$$\tau_n \frac{dn}{dt} = n_\infty - n$$

with constant coefficients is

$$n(t) = n_{\infty} + (n(0) - n_{\infty})e^{-t/\tau_n}$$

If we assume that  $n_{\infty}(0) = 0$  a step from from 0 to v yields:

$$n(t) = n_{\infty}(v) + (n_{\infty}(0) - n_{\infty}(v))e^{-t/\tau_{n}(v)}$$
  
=  $n_{\infty}(v)(1 - e^{-t/\tau_{n}(v)})$ 

A step in the other direction gives:

$$n(t) = n_{\infty}(0) + (n_{\infty}(v) - n_{\infty}(0))e^{-t/\tau_n(0)}$$
  
=  $n_{\infty}(v)e^{-t/\tau_n(0)}$ 

# Model for the Potassium conductance

Assumed  $\frac{dg_{\mathbf{K}}}{dt} = f(v, t)$ .

Ended up with introducing a second variable:

$$g_{\mathsf{K}} = \overline{g}_{\mathsf{K}} n^4$$
, with  $\frac{dn}{dt} = \alpha(v)(1-n) - \beta(v)n$ 

and  $\overline{g}$  is the maximum conductance. Forth power was chosen to get the correct shape of the solution.

– p. 32

# Gating variable raised to different powers



# **Sodium conductance model**

H&H realized that two different sub units were at work. Ended up with

$$\frac{dg_{\mathsf{Na}}}{dt} = \overline{g}_{\mathsf{Na}}m^3h$$

Values for  $m_{\tau}, m_{\infty}, h_{\tau}$  and  $h_{\infty}$  obtained by fitting the solution to plots of  $g_{Na}$ .

## The Hodgkin-Huxley model

Introduces a third current, not time dependent:

$$C_m \frac{dv}{dt} = -\overline{g}_{\mathsf{K}} n^4 (v - v_{\mathsf{K}}) - \overline{g}_{\mathsf{Na}} m^3 h(v - v_{\mathsf{Na}}) - \overline{g}_{\mathsf{L}} (v - v_{\mathsf{L}})$$

with

$$\frac{dg}{dt} = \alpha_g(v)(1-g) - \beta_g(v)g, \quad g = m, h, n$$

Model based on voltage clamp measurement. How will it behave under normal conditions?

The model will predict the action potential.

– p. 35

# Analysis of the Hodgkin-Huxley model

#### Qualitative analysis, 5.1.3

Would like to reduce the number of state variables to simplify analysis.

One way is to treat the slowest variables as constants. Of the three gating variables m has the fastest dynamics. (Controls the activation of the Na-current).

Reduced model:

$$C_m \frac{dv}{dt} = -\overline{g}_{\mathsf{K}} n_{\mathsf{0}}^4 (v - v_{\mathsf{K}}) - \overline{g}_{\mathsf{Na}} m^3 h_{\mathsf{0}} (v - v_{\mathsf{Na}}) - \overline{g}_{\mathsf{L}} (v - v_{\mathsf{L}})$$

## Equilibria in the reduced HH-model

The nullclines  $\frac{dv}{dt} = 0$  and  $\frac{dm}{dt} = 0$  form curves in the (v, m)-plane. Their intersections are the equilibria.

Initially three steady states  $v_r$ ,  $v_s$  and  $v_e$ .  $v_r$  and  $v_e$  are stable and  $v_s$  unstable.

As  $n_0$  and  $h_0$  changes, the  $\frac{dv}{dt} = 0$  line will shift.  $v_e$  will decrease, coincide with  $v_s$  and disappear.

 $v_r$  will become the only stable equilibrium.



Alternative reduction:

- *m* is very fast, almost in equilibrium:  $m = m_{\infty}(v)$
- h + n almost constant: h = 0.8 n

We then have

$$C_m \frac{dv}{dt} = -\overline{g}_{\mathsf{K}} n^4 (v - v_{\mathsf{K}}) - \overline{g}_{\mathsf{Na}} m_{\infty}^3(v) \underbrace{(0.8 - n)}^{h} (v - v_{\mathsf{Na}}) - \overline{g}_{\mathsf{L}}(v - v_{\mathsf{L}})$$

Equilibria found by looking at the crossing of the nullclines  $\frac{dv}{dt} = 0$  and  $\frac{dn}{dt} = 0$  in the (v, n)-plane.

# Phase plot for the fast sub-system



#### Phase plot for the fast-slow reduced system

