Rate constants as probabilities

Consider again the following model:

a(v)
c—=0
B(v)
Probabilistic interpretation of « and 3:
a:P(C— 0indt) = adt

3:P(0 — Cindt) = fdt

Probability that the channel is open at time ¢ + dt:

P(O,t+dt) = P(C,t) - P(C — O in dt)
+ P(O,t)- P(not O — C'in dt)
= P(C,t) - (adt) + P(O,t) - (1 — Bdt)

The general case with n different states

We write S(t) = j if the system is in state j at time ¢, and define

k;; is the probability rate going from S =ito S = j:
kijdt = P(S(t +dt) = j|S(t) =)
Probability of staying S = i:

P(S(t+dt) =i|S(t) =i) =1 - kydt =1 — K,dt
J#i

where K; = Zi;ﬁj kij
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P(O,t +dt) = P(C,t) - (adt) + P(O,1) - (1 — Adt)
= (1— P(0,1)) - (adt) + P(O,1) - (1 — Bdt)

since P(C,t) + P(O,t) = 1.
Divides by dt and rearranges:

P(O,t +dt) — P(O,1)

o —a-(1-P(O,1) - - P(O,1)

Going to the limit:

dP(0,1)
dt

—a-(1—P(O,t))— - P(O,1)

Which we recognise this as the usual gating equation.
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Time evolution of ¢;(t)

¢ (t + dt) = ¢;(t) - P(staying in j for dt)
—+ Z ¢;(t)P(enter j from 4 in dt)

i#j
= ¢;(t) - (1= K;dt) + Y ¢i(t)kijdt
i#j
Divide by dt and rearrange:
(t+dt) — o;(t
Biltt dz o) _ §65() + ) dilt)kys
i#j
And in the limit:
de;(t) _

n
o > kiji(t), ki=—K;
i=1
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Waiting time

How long time (7;) does the system spend in a state S; before
leaving? We define P;(t) := P(T; < t).
Note K;dt = P(leaving S; during dt)
P;(t + dt) = P(transition has already occurred at t)

+ P(not occurred yet) - P(it takes place in this interval)
Pi(t) + (1= P(t)) - Kidt

Divides, and goes to the limit:

dPi(1)
dt

= K;(1 - F(t))

Which has the solution:

Pt) =1
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Single channel recordings

In
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Waiting time

P;(t) is the cumulative distribution. The probability density
function is easily found:

dP;(t)

= e

pi(t) =

The mean waiting time is the expected value of T;:
B(T)) = /oot (D)t = -
i) = o Di = K,

(If K; does not depend on t)
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Single channel analysis

Single channel recordings contain statistical information that can
be used to estimate transition rate:
#® Ratio of experiments where channel directly inactivates

#® Distribution of the number of times the channel re-opens
before finally inactivating

® Mean open time
® Mean close time
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1: If first (and final) transition is C — I

The channel is initially in the closed state.
As the transmembrane potential is elevated two things can
happen:
P(C—0)=A=a/(a+))
P(C—1I)=d/(a+d)=(@-ata)/(atd)=1-A

Estimation of 1 — A: The ratio of experiments where the channel
fail to open.
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4: Number of re-openings

Probability that the channels opens & times before inactivating:

P[N =k] = PN =k and finally O — I] + P[N = k and finally C — 1|
= A*B*1(1 - B) + A*B*(1 — A)

_ upy (1—BAB>

Where A = «o/(a+6)and B = 3/(8+7)
B can be estimated by fitting to the observed data.
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2 & 3: Time spentin C and O

In the experiments where channels do open, record the time
spentin C.

The distribution is described by: P(t) = 1 — exp(—«)

The average waiting time will be E(T') = 1/a.

Record the duration the channel is open. The distribution is
described by: P(t) =1 —exp(—08 — )
The average waiting time will be E(T) = 1/(8 + 7).
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Excitability
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Excitable Cells 5.1

Unlike other cells, excitable cells can be triggered to set off an
action potential.

During the action potential the transmembrane potential departs
from its resting potential, reaches a peak potential and returns to
the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal
to neighboring cells.

The trigger must be of a certain size, if below the threshold the
cell will not “fire”.
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Can collect the current terms due to linearity:

dv
Cy E = _geff(v - Ueq)
where
geff - gNa +gK +gL
and

_ Ina’Na Tk TN

et
Veq is a weighted average of the individual equilibrium potentials.
The weighing factors are time and voltage dependent.

’Ueq
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The Hodgkin-Huxley Model

Developed to study the action potential of the squid nerve cells.

Assumed three different current Iy, Ix and I}
Assumed also linear current-voltage relationship:

O = Loy = Ina (v = Ung) T 9k (v =) g (v =)
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A steady applied current Iapp moves the membrane potential to
different equilibrium.

dv
Cm% = —geff(”l) — Ueq) + Iapp =0

Implies

v = veq + Iapp

Cm Jeff

The applied current will be compensated by an ionic current
going the opposite way, thus the net current will be zero.

For a sufficiently large Iapp, v will pass the threshold potential
and an action potential is triggered. The conductivities will vary
greatly.
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Voltage Clamp measurements

The transmembrane potential is forced by an applied current to a
fixed value.

Slncg Tion = —Iapp for.a fixed v, we can measure iy, as a
function of time for a given level of v.

Since v is fixed the observed variations must be due to temporal
variation in the conductivities.
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From measurements to models

Initially, Hodgkin and Huxley assumed Iy, = In5 + Ik Two kind
of experiments conducted:

® 1: Normal concentrations
# 2: [NaJ. replaced by cohline = affects I but not Iy.
Assumed further:
# |Initially Iy =0
1 2 —
¥ ) INa/INa = C, constant
1 _ 72
o IK = IK
Once Iilon and Iizon is recorded we can determine C from the first
and the second assumptions.
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Total membrane current for different steps, 5.1

HBA— A e
‘ ,¥ g Figure 4.2 ' ‘Experimental results describing the total mem-
B R R R brane current in response to a step depolarization. The
4 g numbers on the left give the final value of the membrane
P2 = S R T potential, in mV. The interval between dots on the horizon-
N\ g tal scate is 1 ms, while one division on the vertical scale
represents 0.5 mA/cm?, (Hodgkin and Huxley, 1952a, Fig. 2a.)
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Expressions for the currents in terms of measurable quantities

can now be obtained:

c 1

1 2
INa = C— 1(Iion ~ ion)
I = —— (1L —cp

K_1_0<ion_ ion)

Assuming linear current-voltage relationships we get expressions
for the conductivities:

gNa = Na_, g = 1K
V- Vaa VW

For each pair of voltage clamp experiment (with a given voltage
step), we now have a time course for gy, and g .
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Potassium and Sodium conductance
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The solution of

dn
Tna =N — N

with constant coefficients is
n(t) = noo + (n(0) — neg)e ™

If we assume that n.,(0) = 0 a step from from 0 to v yields:

Moo (V) + (Moo (0) — Neo (v))e™H/ W)
Noo(V) (1 — e~ t/™®))

n(t)

A step in the other direction gives:

n(t) = nso(0) + (oo (V) — Nog(0))e~ /™0

= MNeo (/U)e_t/T"(O)
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Model for the Potassium conductance

dg
Assumed — K = f(v,1).

Ended up with introducing a second variable:

gk = gxn?, with Cfl—? =a(v)(1—n)—Bv)n

and g is the maximum conductance. Forth power was chosen to
get the correct shape of the solution.

Gating variable raised to different powers

nl n2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 2 4 6 8 10 0 2 4 6 8 10
I'\3 n4
1 1
0.8 0.8
0.6 0.6
04 04
0.2 0.2
0 0
0 2 4 6 8 10 0 2 4 6 8 10
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Sodium conductance model

H&H realized that two different sub units were at work. Ended up
with
dgna _ — 3
dr ~ INamh
Values for m., ms, hr and h., obtained by fitting the solution to
plots of gng-
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Analysis of the Hodgkin-Huxley
model
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The Hodgkin-Huxley model

Introduces a third current, not time dependent:

dv _ _ - _
Cm oy = —gkn* (v —vK) — gnam h(v — vNg) — gL (v —vL)
with
dg
E:ag(v)(l_g)_ﬁg(v)ga g:mahyn

Model based on voltage clamp measurement. How will it behave
under normal conditions?

The model will predict the action potential.
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Qualitative analysis, 5.1.3

Would like to reduce the number of state variables to simplify
analysis.

One way is to treat the slowest variables as constants. Of the
three gating variables m has the fastest dynamics. (Controls the
activation of the Na-current).

Reduced model:

dv - _ _
O = —gKn0 (v — vK) — Gnam ho(v — vNg) — gL (v — v))
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Equilibria in the reduced HH-model Phase plot for the fast sub-system

The nullclines 2 = 0 and 42 = 0 form curves in the (v, m)-plane.

1.0 — - — solution trajectories

Their intersections are the equilibria. e P v :
0.6 - dm/dt=0
13 :
Initially three steady states v,, vs and v.. v, and v, are stable and o s
vs UNstable. L R
0.0 i
T T T T T |
(] 20 40 60 80 100
AS no and h[) ChangeS, the % == 0 Ilne Wl” Shlft 'Ue Wl" decrease, Figure 4.10 The Hodgkin-Huxley fast phase-plane, showing the nullclines dv/dt = 0 and
COInCIde W|th Us and d|sappear g?‘r/hcg;dglgv’;g;nlzav: 0.596, ny = 0.3176), two sample trajectories and the stable manifold
14
1.2
v, will become the only stable equilibrium. : = Figwa 411 Th odgin-Hunes o
phase-plane as a unction of the slpw
= gy e
02 et Gl B g
0.0 parameter values are (1) hy = 0.596:
Ny = 0.3176; (2) hy = 0.4, ny'= 0.5; (3)
ho = 0.2, ny = 0.7; and {4) hy = 0.1,
-p. 39 o =0.8. —p. 40
Alternative reduction: Phase plot for the fast-slow reduced system
® m is very fast, almost in equilibrium: m = mu(v)
® h+nalmostconstant: h =08 —-n
We then have
h
dv — 4 — 3 ’ \ — ¥
Cma = —gkn" (v —vK) — INaMao (V) (0.8 — n)(v —uvNg) — gL (v —2)
Equilibria found by looking at the crossing of the nullclines 2 = 0
dt 0.0 T T T T T 1
and C(li—? =0 inthe (1), n)-plane. 0 40 80 120 Figure 4.13 Fast-sfow phase-plane of the
WY Hodgkin-Huxley model.
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