
The cable equation A.K.A. the
monodomain model
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Neurons
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Electric flow in neurons

The neuron consists of three parts:

Dendrite-tree, the “input stage” of the neuron, converges on
the soma.

Soma, the cell body, contain the “normal” cellular functions

Axon, the output of the neuron, may be branched.
Synapses at the ends are connected to neighboring
dendrites.

The axon has an excitable membrane, gives rise to active
conduction. Will first look at conduction in the dentrites, passive
conduction.
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The cable equation, 4.1

The cell typically has a potential gradient along its length. Radial
components will be ignored.

Notation:

Vi and Ve are intra- and extra cellular potential
Ii and Ie are intra- and extra cellular (axial) current
ri and re are intra- and extra cellular resistance per unit length

ri =
Rc

Ai

where Rc is the cytoplasmic resistivity and Ai is the cross
sectional area of the cable.
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Discrete cable
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Ohmic resistance assumed:

Vi(x + ∆x)− Vi(x) = −Ii(x)ri∆x

Ve(x + ∆x)− Ve(x) = −Ie(x)re∆x

In the limit:

Ii = −
1

ri

∂Vi

∂x
and Ie = −

1

re

∂Ve

∂x
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Conservation of current yields:

Ii(x)− Ii(x + ∆x) = −(Ie(x)− Ie(x + ∆x)) = It∆x (1)

where It is transmembrane current, per unit length. In the limit
(1) yields:

It = −
∂Ii

∂x
=

∂Ie

∂x

We would like to express It in terms of V .

1

re

∂2Ve

∂x2
= −

1

ri

∂2Vi

∂x2
= −

1

ri
(
∂2V

∂x2
+

∂2Ve

∂x2
)

(
1

re
+

1

ri
)
∂2Ve

∂x2
= −

1

ri

∂2V

∂x2
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cont.

(
1

re
+

1

ri
)
∂2Ve

∂x2
= −

1

ri

∂2V

∂x2

∂2Ve

∂x2
= −

1
ri

1
re

+ 1
ri

∂2V

∂x2
= −

re

re + ri

∂2V

∂x2

so

It =
∂Ie

∂x
= −

1

re

∂2Ve

∂x2
=

1

re + ri

∂2V

∂x2
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From the membrane model previously derived we have

It = p(Cm
∂V

∂t
+ Iion)

where p is the circumference of the cable. The total expression
will be in Ampere/meter.

The total 1D cable model is then:

p(Cm
∂V

∂t
+ Iion(V )) = (

1

re + ri

∂2V

∂x2
)
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Dimensionless form

We can scale the variables to reduce the number of parameters.
Defines a membrane resistance:

1

Rm
=

∆Iion
∆V

(V0)

where V0 is the resting potential. Multiplication with Rm

CmRm
∂V

∂t
+ RmIion =

Rm

p(ri + re)

∂2V

∂x2

Here we have assumed ri and re constant.

Defining f = −RmIion, τm = CmRm (time constant) and
λ2

m = Rm/(p(ri + re)) (space constant squared) we can write

τm
∂V

∂t
− f = λ2

m

∂2V

∂x2
(2)
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Introduces the dimensionless variables:

T = t/τm and X = x/λm

We can then write:
∂V

∂T
= f +

∂2V

∂X2
(3)

A solution V̂ (T,X) of (3) will imply that V (t, x) = V̂ (t/τm, x/λm)

will satisfy (2).
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The reaction term, 4.2

The form of f depends on the cell type we want to study.

For the axon Iion(m,n, h, V ) of the HH-model is a good
candidate.

For the dendrite, which is non-excitable, a linear resistance
model is good. Shift V so V = 0 is the resting potential:

∂V

∂T
=

∂2V

∂X2
− V

Need boundary and initial values. Initially at rest:

V (X, 0) = 0
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Boundary conditions

Types of boundary conditions:

Dirichlet: V (xb, T ) = Vb, voltage clamp.

Neumann: ∂V
∂X = −riλmI, current injection.

Justification:

∂Vi

∂x
= −riIi ⇒

∂V

∂x
−

∂Ve

∂x
= −riIi

re=0
=⇒

∂V

∂x
= −riIi
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Branching structures, 4.2.3
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Linear cable equation used in each branch:

∂V

∂T
=

∂2V

∂X2
− V

General solution in the steady state:

V = Ae−X + BeX

Two parameters per branch, six in total to determine.
Three taken from boundary conditions: current injection in X=0
and voltage clamp at X = L21 and X = L22.
Two more from continuity of voltage:

V1(L1) = V21(L1) = V22(L1)
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The sixth condition is obtained from continuity of current:

1

R1,in

dV1

dX
=

1

R21,in

dV21

dX
+

1

R22,in

dV22

dX

where the input resistance is

Rin = λmri =

√

Rm

pri

Rc

Ai

Assuming a circular crossection:

Rin =
2

π

√

RmRcd
−3/2

If Rm and Rc is not changing the condition becomes:

d
3/2
1

dV1

dX
= d

3/2
21

dV21

dX
+ d

3/2
22

dV22

dX
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Equivalent cylinders

With certain assumptions the dendrite tree can be modelled with
a single cable equation. L21 = L22, and they have the same
boundary conditions:
This gives V21 = V22 and thus:

d
3/2
1

dV1

dX
= (d

3/2
21 + d

3/2
22 )

dV21

dX

The critcal assumption is then:

d
3/2
1 = d

3/2
21 + d

3/2
22

If so, then we can use a single equation for the whole system.
Similar arguments can be made for more complex branching.
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Wave propagtion in Excitable Systems, 6
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The bistable equation

∂V

∂t
=

∂2V

∂x2
+ f(V ) (4)

Where f(V ) has three zeros, say at V = 0, α, 1. For example:

f(V ) = aV (V − 1)(α− V )

The solution will be a travelling wave.
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Traveling wave

Assume a solution on the form:

V (x, t) = U(x + ct) = U(ξ)

Inserting this into the bistable equation yields a 2. order ODE:

Uξξ − cUξ + f(U) = 0

Or equivalently a system of two 1. order ODEs:

Uξ = W

Wξ = cW − f(U)

We seek solutions where

(U,Uξ)
ξ→−∞−→ (0, 0), and (U,Uξ)

ξ→∞−→ (1, 0).
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Traveling wave

In general not possible to solve the system analytically.
We can say something about the sign of c, e.g. the direction of
propagation. Multiplying the scalar ODE with Uξ and integrating
from −∞ to ∞ yields:

c

∫

∞

−∞

W 2dξ =

∫ 1

0
f(u)du

So c has the same sign as
∫ 1
0 f(u)du.

Used these two facts:

(V 2
x )x = 2VxVxx ⇒

∫

VxVxx =
1

2
V 2

x

∫ x1

x0

f(V (x))Vxdx =

∫ V (x1)

V (x0)
f(V )dV
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Analytical solution in the cubic case

With
f(V ) = A2V (V − 1)(α− V )

the solution is given as

U(ξ) =
1

2

[

1 + tanh

(

A

2
√

2
ξ

)]

with

c =
A
√

2
(1− 2α)
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Propagation failure, 12.3.2

Signal propegates from the pacemaker through the
AV-node and into the bundle of HIS

This bundle divides in several branches

Bundle branch block occurs when the action potential fails
to propgate through the enitre branch.

We will derive conditions for block using the cable equation
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Modeling branching

If we assume negligbile resitance re = 0, the cable equation
reads:

CmRm
∂V

∂t
=

Rm

p

∂

∂x

(

A

Rc

∂V

∂x

)

+ f(V )

As usual p is the circumferance, and A is the cross sectional area
of the cell. Rm is the membrane resistance and Rc the
intracellular resistance.
f(V ) = 0 at three points: V = 0 < α < 1

We define x = 0 as the brancing point and use subscript 1 and 2
for the geomtritcal properities to left and right side of the branch,
respectively.
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Comparison property of the bistable equation

If we have two initial conditions where:

VA(0, x) ≤ VB(0, x)

Then for all t ≥ 0:
VA(t, x) ≤ VB(t, x)

If we can find a stationary solution of the cable equation, then,
due to the property above this represent an upper bound, e.g. a
block.

We look for a solution where
V (−∞) = 0, V (+∞) = 1

and
Vx(−∞) = Vx(+∞) = 0.
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Equation for stationary wave

x < 0 :
Rm

p1

∂

∂x

(

A1

Rc

∂V

∂x

)

+ f(V ) = 0

x > 0 :
Rm

p2

∂

∂x

(

A2

Rc

∂V

∂x

)

+ f(V ) = 0

Multiply by Vx and integrate:

x < 0 : c1

∫ 0

−∞

Vxx · Vx +

∫ 0

−∞

f(V ) · Vx = 0

x > 0 : c2

∫

∞

0
Vxx · Vx +

∫

∞

0
f(V ) · Vx = 0

where ci = (AiRm)/(piRc), i = 1, 2
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Integrate

Note that

(V 2
x )x = 2VxVxx ⇒

∫

VxVxx =
1

2
V 2

x

and from the chain rule of derivation:

∫ x1

x0

f(V (x))Vxdx =

∫ V (x1)

V (x0)
f(V )dV = F (V1)− F (V0)

where F (V ) =
∫ V
0 f(u)du

So:

x < 0 : c1
1

2
[V 2

x ]0
−∞

+ F (V (0))− F (V (−∞)) = 0 ⇒ c1V
2
x + F (V ) = 0

x > 0 : c2
1

2
[V 2

x ]∞0 +F (V (∞))−F (V (0)) = 0 ⇒ −c2V
2
x +F (1)−F (V ) = 0
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cont.

1

2

RmAi

Rcpi
V 2

x + F (V ) =

{

0, i = 1

F (1), i = 2

Formulated in terms of current: I = −(A/RC)Vx.

1

2

RmRc

Aipi
I2 + F (V ) =

{

0, i = 1

F (1), i = 2

Continuity of current yields:

F (V )

(

A1p1

A2p2
− 1

)

= −F (1)
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Possible to find such a V ?

If A1p1 = A2p2, then obviously not.
Must have:

A1p1

A2p2
= 1−

F (1)

F (V )
= γ

We assume F (1) > 0, e.g. left going wave.
Note that F (1) > F (V )

If F (V ) > 0, then no solution is possible because γ < 0.
Thus F (V ) < 0 and γ > 1.
Therefore block is only possible when A1p1 > A2p2.
The smallest value of γ∗ = 1− F (1)/F (α).
Thus block is not possible if A1p1

A2p2
< γ∗

Conclusion: there exists a standing wave solution if:

A1p1

A2p2
> 1−

F (1)

F (α)
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For the cubic case:

A1p1

A2p2
> 1 +

1− 2α

α3(2− α)
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