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Abstract

A model of passive and active cardiac muscle mechanics is presented, suitable for use in continuum
mechanics models of the whole heart. The model is based on an extensive review of experimental data
from a variety of preparations (intact trabeculae, skinned fibres and myofibrils) and species (mainly rat
and ferret) at temperatures from 20 to 27°C. Experimental tests include isometric tension development,
isotonic loading, quick-release/restretch, length step and sinusoidal perturbations. We show that all of
these experiments can be interpreted with a four state variable model which includes (i) the passive
elasticity of myocardial tissue, (ii) the rapid binding of Ca®" to troponin C and its slower tension-
dependent release, (iii) the kinetics of tropomyosin movement and availability of crossbridge binding
sites and the length dependence of this process and (iv) the kinetics of crossbridge tension development
under perturbations of myofilament length. © 1998 Elsevier Science Ltd. All rights reserved.

1. Background

1.1. Introduction

Finite element models of the electrical and mechanical behaviour of the whole heart are now
well established (Hunter and Smaill, 1989; McCulloch, 1995; Hunter et al., 1996a,b). These
models take into account the complex three-dimensional ventricular geometry and the
anisotropic fibrous-sheet structure of myocardium and thus provide a means of integrating
cellular function into the behaviour of the intact heart (see also Vetter and McCulloch, 1997,
in this volume). The changes in ion concentrations and membrane ionic currents underlying the
cardiac cell action potential are described by the Luo-Rudy equations (Luo and Rudy, 1994,
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Zeng et al., 1995) for guinea-pig ventricular cells, or the DiFrancesco—Noble equations
(DiFrancesco and Noble, 1985) for Purkinje fibre and atrial cells. There is, however, no
corresponding set of published equations encapsulating the mechanical properties of actively
contracting cardiac muscle. In this paper we propose a new set of equations describing the full
range of mechanical properties of active cardiac muscle.

Since the equations developed here are intended for use in continuum mechanics models of
the intact heart, computational efficiency is a major consideration. The equations are not
intended to accurately model the biophysical events underlying muscle contraction, but the rate
constants can be interpreted in terms of certain biophysical processes. The model we propose
here builds on the ‘fading memory’ model of cross-bridge kinetics first proposed by Bergel and
Hunter (1979) and developed further in Hunter (1995).

The model of cardiac muscle mechanics is developed in the following stages: (i) the passive
properties of cardiac muscle (since these influence the measurements of active force at low and
high sarcomere lengths); (ii) the kinetics of Ca®" binding to troponin C (TnC); (iii)
tropomyosin (Tm) kinetics (leading to availability of crossbridge binding sites) and the length
dependence of certain parameters in that model and (iv) the crossbridge kinetics associated
with myofilament length perturbations.

1.2. Muscle preparations

Published data are available from several species (rat, rabbit, ferret, cat, cow and guinea pig)
and different types of preparation: myocardial sheets (typical dimension 500 pm), intact
trabeculae (100 pm), skinned myocytes (30 pm) and single myofilaments (I pm). The
mechanical properties of active cardiac muscle are mostly obtained from experiments on small
papillary muscles or trabeculae. The muscle cells in these preparations are aligned with the
longitudinal axis and, provided muscles with a sufficiently large aspect ratio are used,
sarcomere lengths are reasonably constant throughout the muscle cross-section in the central
portion of the preparation. Measurement artifacts associated with unavoidable damage to the
clamped ends of the preparation can be minimised by measuring the length changes of a
central undamaged region (usually with laser diffraction techniques). Intact cardiac muscle can
be tetanized by stimulating at a high frequency and using ryanodine or, less desirably, caffeine
(which also increases myofibrillar responsiveness to Ca®*) to hold the sarcoplasmic reticular
(SR) Ca®" release sites open (Marban et al., 1986; Yue et al., 1986). Controlling free
myoplasmic calcium concentration [Ca®*]; to give a graded response is achieved by controlling
the external concentration [Ca®*], or with Ca’* channel agonists such as Bay K-8644 (Hess et
al., 1984). If intense field stimulation is used it is also common to counter the consequent
release of neurotransmitters from the autonomic nerves in myocardium by administering beta-
adrenoreceptor blocking agents such as propranolol (Blinks, 1993).

Mechanical experiments are also performed on ‘skinned’ fibres and single myofibrils. In
skinned fibres the cell membrane is dissolved using glycerol or detergents such as Triton X-100
or Lubrol WZ or, for partial permeabilization only, saponin. After chemical skinning the
contractile apparatus is left functionally intact and the intracellular calcium concentration is
controlled through the use of Ca/EGTA buffers (Gao et al., 1994). The intracellular pH,
phosphate concentration and concentration of other ions can also be accurately controlled.
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There is evidence that the process of skinning slightly alters the Ca® " -sensitivity of crossbridge
binding as we will discuss further below. Single myofibrils are obtained by mincing glycerinated
tissue strips, treating with Triton X-100 and then homogenizing in a blender (Linke et al.,
1993).

Mitochondria in cardiac muscle cells occupy 40% of the cell volume and it is therefore
important to appropriately scale stress measurements from single myofibril preparations to
reflect the lower myofilament density in whole myocyte preparations. Some rescaling is also
necessary to allow for extracellular material in intact muscle preparations where about 10% of
the tissue cross-section is associated with non-contractile material such as capillaries,
extracellular collagen and fibroblasts (which outnumber myocytes by two to one).

1.3. Passive elasticity of myocardial tissue

Active tension in intact cardiac muscle is generated within a three-dimensional elastic (or,
more accurately, visco-elastic) matrix. For a small range of sarcomere length above slack
length (the length of the unloaded, unstimulated muscle) the contribution of the passive
elasticity may be neglected, but for sarcomere lengths below 1.85 um or above 2.2 um it makes
a significant contribution to the total tension. Numerous authors have suggested that
extracellular connective tissue, by limiting the lateral expansion of cells, provides an internal
load which opposes the actively generated tension in cardiac muscle (e.g. Winegrad, 1980;
Huntsman et al., 1983). Externally developed tension in maximally stimulated intact muscle
typically falls to zero at a sarcomere length of 1.6—-1.7 um, yet skinned fibres still develop 30%
of slack length tension at this length. The fact that there is a clearly defined ‘slack length’ in
intact muscle at 1.85-2.1 um (depending on species and age) is itself evidence for significant
restoring forces.

Recent studies of the microstructure of myocardial tissue (LeGrice et al., 1995) have shown
that the myocardium consists of layers of interconnected sheets of tissue separated by ‘cleavage
planes’. Each sheet is 3 to 4 cells thick (about 100 um) and loosely coupled together by the
perimysial collagen network. The muscle fibres, which lie in the plane of a sheet, are bound
together by the endomysial collagen network (predominantly types I and III collagen). Thus
adjacent fibres are coupled more strongly in the plane of the sheet than transverse to it. Three
micro-structural axes are therefore evident: one along the fibre direction, the fibre axis, one
orthogonal to the fibre axis but also in the plane of the sheet, the sheet axis, and a third,
orthogonal to these two, directed across the cleavage planes, the sheet normal. The uniaxial
stress—strain properties are quite different in the three orthogonal directions, reflecting in part
the organization of collagen relative to these three axes (see Fig. 1). In particular, the uniaxial
mechanical properties of cardiac muscle in the fibre direction are dominated by large coiled
perimysial fibres (MacKenna et al., 1994, 1996).

A fundamental feature of the stress—strain behaviour as the muscle is stretched along an axis
is the very steep rise in stress as the limiting elastic strain along each axis is approached (see
Fig. 1). For the fibre direction the limiting stretch ratio is about 1.2 (a sarcomere length of
about 2.4 um). Note that muscle length is measured by the muscle fibre extension ratio / and
the actively developed tension in the muscle fibre is denoted by 7. The extension ratio A is the
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Fig. 1. Uniaxial stress—strain relations along the fibre, sheet and sheet-normal directions. The solid lines show the
‘pole-zero’ stress—strain relations (see Appendix A) approaching the elastic strain limits @, a,, as, respectively.

current sarcomere length divided by the slack length. Here we assume 4 = 1 at a sarcomere
length of 2.0 um.

Intracellular structures provide another source of passive elasticity in muscle (Brady, 1991b).
Titin filaments are thought to be responsible for a significant fraction of passive tension for
sarcomere lengths below 2.1 um (Linke et al., 1994; Granzier and Irving, 1995; Granzier et al.,
1996, 1997; Helmes et al., 1996). At sarcomere lengths below resting length there is also likely
to be an internal elastic load arising from interference between the ends of the thick filament
and the Z-lines. The role of internal restoring forces, particularly those arising from titin at
sarcomere lengths below 2.1 um, is discussed by Stuyvers et al. (1997) in this volume.

The passive elastic behaviour of cardiac muscle in tension is modelled in Appendix A, using
passive stretch data for intact rat trabeculae from Kentish et al. (1986), and shown as the
solid line for A>1 in Fig. 2. The effect on fibre axis force of an elastic load arising from
lateral stretching of extracellular collagen is also considered in Appendix A using data from
biaxial loading experiments (Smaill and Hunter, 1991). Figure 2 shows the resulting tensile
compressive force in this fibre axis direction when sarcomere length is reduced below the
resting level (4 < 1).

The effect of adding the passive fibre axis stress to a linear (maximally activated) active
tension relation (discussed below) is shown in Fig. 3. At a sarcomere length of 1.7 pum the
actively developed tension exactly balances the internal load and external tension is therefore
Zero.

1.4. Intracellular calcium

The amount of Ca?" translocating from the junctional sarcoplasmic reticulum (SR) sites is
estimated to be 30-50 uM' (Robertson et al., 1981). Ca®>" binds to many sites within the cell,
including Ca—ATPase SR sites (and calsequestrin within the SR), calmodulin, mitochondria,
myosin, parvalbumin and troponin C (Johnson et al., 1980; Robertson et al., 1981) and the
negatively charged inner surface of the sarcolemma (Soeller and Cannell, 1997). The most
important binding sites are troponin C (70 uM), calmodulin (20 uM) and sarcoplasmic

"1 4M = 107° mol per 1 of wet tissue.
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Fig. 2. Passive stress—strain relation in uniaxial tension and compression (see Appendix A). The points (e) are for
intact rat trabeculae from Kentish et al. (1986). The dashed line on the right shows the pole position (i.e. stretch
limit) in tension at A;=4/1+24;=12 (a sarcomere length of about 2.4 um). The point marked at 1 = 0.85
corresponds to the minimum attainable sarcomere length of 1.7 ym. The solid line for A>1 (in tension) is from
Eq. (A.3) with k;=0.2 kPa, a, =0.22 and b, =1.0. The solid line for 2 < 1 (in compression) is from Eq. (A.4) with
k,=0.06 kPa, a;=0.41 and b,=2.5.

reticulum (30 uM). Troponin C has three binding sites but two of them (the high affinity
Ca?*-Mg?" sites) are saturated at resting levels of Ca?™ (0.01 M) and therefore do not
regulate myofilament force development. The third (Ca-specific) TnC binding site, present in
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Fig. 3. Tension-length relations for active muscle. The passive tension from Fig. 2 is shown as T(4). The total
tension (upper solid curve) is the sum of the passive tension and a linear active tension T,(4) (shown by the dotted
line). Sarcomere lengths are indicated at extension ratios of 1.0 (resting length), 1.2 (maximum extension) and 0.85
(minimum extension). The active tension at resting length, T, is about 100 kPa.
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cardiac myocytes at a concentration of 70 uM, is the regulatory site (Shiner and Solaro, 1984).
Binding to TnC is essentially instantaneous and limited only by the speed of diffusion from the
junctional SR Ca®” -release sites (a delay of about 0.5 ms). Consequently the Ca®" transient (a
measure of cytoplasmic Ca’%) typically rises to a peak of only 1 uM. However, since
substantial changes in the time course of decline of the Ca®* transient can occur without
affecting force, the fall in [Ca®"] is evidently not the rate limiting step in relaxation of force,
which is more likely to be determined by the dissociation of Ca’* from TnC (see later).
Mitochondrial Ca®* uptake may be important in sequestering Ca®>"* during the early part of
relaxation (Fry et al., 1989; Wier, 1990).

A single stimulation of an intact muscle held at constant length 4 = 1 (a muscle ‘twitch’)
produces a rapid rise in [Ca**);, peaking at 1 M in about 50 ms, as shown by the points in
Fig. 4 from Stuyvers et al. (1997) for rat trabeculae. An external Ca’* concentration of 2.5
mM (or a lower concentration but with paired pulse stimulation) is sufficient to saturate the
troponin Ca®* binding sites. For the present purpose we ignore the release and uptake of
Ca’" from and to the SR and any diffusional gradients of Ca?* within the myoplasm. A
convenient approximate representation of the intracellular Ca?* twitch transient is given by
(see solid line in Fig. 4):

Cai(1) = Cag + (Camay — Cag)——e! /7, (1)
TCa
Ca;(¢) here is the time-dependent intracellular concentration of Ca’?*, which has a resting level
Ca, and achieves its maximum value Cap,, at time ¢ = 7c,. The solid line in Fig. 4 is from
Eq. (1) with Ca,=0.01 uM, Caya=1 uM and 1¢, =60 ms.

Since the release of Ca®" from the junctional SR occurs typically at a concentration of 50
#M, the fact that the twitch reaches only about 1 uM reflects the very large buffering capacity
of calmodulin (50 pM) and TnC (70 4M) and, in particular, the very rapid binding of Ca** to
TnC, which we consider in Section 2.

[CaZ+);

0 05 o >t
Fig. 4. Calcium transient. Points (e) are from Stuyvers et al. (1997) and solid line is from Eq. (1) with Cay=0.01
UM, Capux=1 uM and 7c, =60 ms. A single exponential model does not quite capture the measured calcium
decline.
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2. Model development

2.1. TnC-Ca’” binding kinetics

The binding and release of Ca’* from TnC can be studied directly with analogues of TnC
which fluoresce in proportion to bound Ca?* (Zot et al., 1986; Zot and Potter, 1987), or by the
double isotope technique for chemically skinned fibres (Pan and Solaro, 1987). Binding is very
fast and in fact appears to be limited by diffusion gradients from the junctional SR release site
to the TnC binding site. The release of Ca®* from the TnC binding site has long been known to
be dependent on the mechanical state of the muscle. For example, an isotonic twitch terminates
much more quickly than an isometric twitch and if a muscle is subjected to a quick release
during a twitch its ability to generate force decays rapidly (Edman, 1975). It is now generally
agreed that both of these phenomena are explained by Ca?* being released from the TnC
binding site when the myofilament force declines. An increase in TnC-Ca’" affinity associated
with the formation of rigor bonds between myosin and actin has been demonstrated for skeletal
TnC by Bremel and Weber (1972) and for cardiac TnC by Hofmann and Fuchs (1987a,b). The
release of Ca?" from TnC, seen by the rise in intracellular Ca?", following a reduction in
muscle length (isotonic twitches or quick release) was shown by Allen and Kentish (1988) to
correlate with a change in tension and not length. This has since been confirmed by other studies
(e.g. Janssen and Hunter, 1995). The calcium transient declines more rapidly at longer lengths
because the slower release of Ca®* from TnC allows the SR and sarcolemmal Ca** pumps and
Na*t/Ca®" exchanger to lower Ca’" more rapidly (Allen and Kurihara, 1982). Mechanical
perturbations have been used by Petersen et al. (1991) to assess the amount of bound calcium
during the relaxation phase of a twitch contraction in intact rabbit papillary muscles.

To model these phenomena we propose the following equation for TnC-Ca”* binding kinetics:

dCab
ds

T
= p()cai(cabmax - Cab) — P (1 - )Cab, (2)

1o

where Ca; is the concentration of free myoplasmic Ca®* and Cay, is the concentration of Ca*
bound to the Ca-specific binding site on TnC. The maximum value Capp., 1s attained at
equilibrium when 7 = yT,. Attachment is governed by a fixed rate constant p,, estimated to be
100 s~' per uM of available Ca®>* (Hilgemann and Noble, 1987). Detachment at zero tension 7T is
governed by the rate constant p; and as 7 increases towards a maximum value y7,, the release
rate slows down proportionately.

The equilibrium relationship from Eq. (2),

Cab N Cai
Capmax  Caj + (p,/po)1 — T/7Ty) '

is compared in Fig. 5(a) with experimental measurements of bound Ca by Hofmann and Fuchs
(1987a,b) using the recorded values of tension from papillary muscles of cow hearts. The ratio
of detachment and attachment rates, p,/po, is found as follows: Hofmann and Fuchs (1987a,b)
also recorded levels of bound Ca after treatment by vanadate, which prevents crossbridge
binding (by forming a myosin—~ADP-Vi complex). At maximum activation (Ca = 10 uM) the
tension relative to the maximum value obtained without vanadate treatment is 0.86. Putting

(3
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Fig. 5. (a) Relationship between calcium bound to TnC (Cap) and intracellular free calcium concentration Ca;.
Points () are from Fig. 5 of Hofmann and Fuchs (1987b) and the solid line is Eq. (3) using 7 = 7,, y = 2.6 and
01/po=1.63 uM. When vanadate is used to prevent crossbridge binding (7 = 0) the level of bound Ca is reduced (O
points). The broken line is Eq. (3) with the same parameters but 77 = 0. Downward pointing arrows indicate the Cs,
concentrations (see text). (b) Time course of bound calcium using the calcium transient given by Eq. (1). The
dependence on crossbridge binding is illustrated by showing the two extremes 7 = 0 and T = T, (isometric).

Ca;=10 uM, T/yT,=0 and Ca,/Capmax =0.86 in Eq. (3) gives p;/po=1.63 uM and hence the
maximum ‘off” rate coefficient p, =163 s™'. The broken line in Fig. 5(a) shows the TnC~Ca>"
binding relationship given by Eq. (3) when crossbridge binding is blocked (7/yT,=0) and then
the Ca level required to give 50% of maximal bound Ca (Csg) is p1/po=1.63 uM (as indicated
by the right downward pointing arrow in Fig. 5(a)). When crossbridge binding is allowed to
occur the observed Csq is about 1 uM or 0.61 p,/p, (as indicated by the left downward pointing
arrow in Fig. 5(a)). Since the Hofmann and Fuchs measurements were made under steady state
conditions, 7 =T, and 1 —T7/yT,=1—1/y = 0.61 gives y = 2.6. The isometric binding
relationship predicted by Eq. (3) with y = 2.6 is shown by the solid line in Fig. 5(a).

The time course of bound Ca in response to the intracellular calcium transient given by
Eq. (1) (Fig. 4), is shown in Fig. 5(b) for T = 0 and for the isometric case 7 = T.

It should be noted that there has been much discussion in the literature recently regarding
the influence on crossbridge interaction and Ca?* -TnC binding of increased lateral separation
of actin and myosin filaments at short lengths (Wang and Fuchs, 1994, 1995; Fuchs, 1995;
McDonald and Moss, 1995). Osmotic compression with 5% Dextran T-500 has been shown to
restore crossbridge interaction at short sarcomere lengths, as measured by the resulting
inhibition of ATPase activity (Fuchs and Wang, 1996, 1997). Current evidence suggests that
the lateral separation of myofilaments directly affects the tension-length relation (see later) and
thereby indirectly affects Ca’*~TnC binding via the influence of crossbridge binding on
calcium release from TnC. It therefore does not need to be included in Eq. (2).

2.2. Thin filament kinetics

Ca’" binding to TnC initiates a chain of events in the thin filament which results in
myosin head binding to actin and the development of force (Holmes, 1995). Tight binding of
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TnC-Ca?" to Tnl (the inhibitory subunit of troponin) weakens Tnl-actin interaction and
alters the TnT-Tm complex in such a way that tropomyosin (Tm) moves into the groove of
the thin filament, thereby removing a steric obstruction of the actin-crossbridge reaction
(Solaro, 1993). Note that shifts in the second actin X-ray diffraction layer line give direct
evidence of tropomyosin movement associated with Ca®" binding (Kress et al., 1986).

Skinned fibres are more useful than intact fibres for examining the role of thin filament
proteins in the regulation of tension development kinetics because the level of activation by
Ca’®" can be directly controlled. The following techniques are used:

(1) Rapid release of an isometrically contracting fibre followed by a period of unloaded
shortening to reduce the numbers of attached crossbridges and then rapid restretch to its initial
length. The remaining crossbridges are thereby detached and tension redevelops from zero at
the chosen sarcomere length. The rate constant k. of tension redevelopment with this
techniques varies about 4-fold over the physiological range of Ca’" for cardiac fibres (Wolff et
al., 1995). It should be noted here that tension redevelopment following a rapid change in
length (‘length step’ protocol) or length change followed by unloaded shortening and restretch
(‘ramp/restretch’ protocol) may be the result of several distinct physical processes: one is the
tension dependent binding of Ca’* to TnC (discussed in Section 2.1), another is the bound-
Ca’* dependent movement of Tm and the associated weak to strong transition of bound
crossbridges (discussed in this section) and a third is the kinetics of strongly bound
crossbridges (discussed in Section 2.3). If length steps are sufficiently small that crossbridges
stay attached only the last of these processes is involved. If, however, crossbridges become
detached (especially by the ramp/restretch protocol) the first two processes can also be
expected to play a part. Whether all of the processes involved in tension redevelopment are
Ca’" dependent is controversial and is complicated by the differences between skeletal and
cardiac muscle. In fast skeletal muscle there is a 10 to 15-fold increase in the rate constant ki,
over the normal operating range of Ca’" (Brenner, 1988; Metzger and Moss, 1990). In slow
skeletal muscle, such as rabbit psoas muscle, there is a smaller, 4-fold, increase. In cardiac
muscle the evidence is still controversial. The rate of force redevelopment following a rapid
length release of intact ferret trabeculae is independent of Ca’" (Hancock et al., 1993) but
force redevelopment following rapid release and restretch of skinned rat trabeculae does show
Ca’" dependence (Wolff et al., 1995). We suggest that the Wolff et al. (1995) results are
explained by thin filament kinetics whereas the Hancock et al. (1993) results are explained by
crossbridge kinetics and are therefore discussed later in Section 2.3.

Note that the magnitude of length step in these experiments must be kept small to avoid the
influence of shortening deactivation (the displacement of bound calcium from troponin C, see
Section 3.4). Vandenboom et al. (1997) report a 17% reduction in force redevelopment rate,
which they attribute to shortening deactivation, as the step size applied to single frog skeletal
muscle fibres was doubled from 2.5 to 5% of muscle length.

(2) Photorelease of caged ATP in rigor fibres in the presence of Ca’" initiates crossbridge
detachment, followed by reattachment and tension redevelopment with rate constant k. in
skeletal muscle (Walker et al., 1992) and cardiac muscle (Barsotti and Ferenczi, 1988; Martin
and Barsotti, 1994a,b). In these experiments k, is less dependent on Ca’" possibly because
rigor bridges maintain the thin filament regulatory system in a more fully activated state at all
Ca’* levels (Walker and Moss, 1990).
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(3) Pulse photolysis of a photosensitive Ca chelator (‘caged Ca’) to rapidly elevate Ca’"* in
the vicinity of the myofilaments leads to tension development kinetics very similar to (1) in
skeletal muscle (Ashley et al., 1991) and cardiac muscle (Araujo and Walker, 1994, 1996).

2.2.1. Tropomyosin kinetics

To model tropomyosin kinetics we introduce a non-dimensional parameter z (0 <z < 1),
representing the proportion of actin sites available for crossbridge binding. Tropomyosin
movement resulting from TnC—Ca?* binding controls the availability of these sites and, since
tension increases exponentially with a first order rate constant that depends on the level of
calcium activation, we propose first order kinetics for z of the form

dz Cab ?
E:“OKG) (1 —Z)—Z:I, (4)

where o is the rate constant of ‘Tm movement’ and Csq and # are the Hill parameters fitted to
the equilibrium relationship between z and Cay, at a given sarcomere length, i.e. under steady
state conditions Eq. (4) gives

2es = (Cayp)”
557 (Can) + (Cx0)"”

where Cs is the value of Cay required to achieve 50% availability (zgs=0.5) and » governs the
steepness of the curve. Under the assumption that steady state force is proportional to the
number of available actin crossbridge binding sites, zsg is the ratio of the isometric tension 7,
to its maximum value T,nax Obtained at saturating levels of Cay. Thus, zss= 7o/ Tomax-

The exponential change in z following a step change to a new level is obtained from Eq. (4)
by substituting

(%)

Z =2Zs5 + Ae kit

to give

kt,=a0[1+(%) ] (6)

Figure 6(a) shows the S-shaped equilibrium relationship given by Eq. (5), with zgg=0.5 at
Cap, = Cs5o=1 uM. The rate constant k. is plotted as a function of Ca,, from Eq. (6) in Fig. 6(b).

Figure 7(a) shows the experimentally measured time course of normalised tension change in
response to step changes in Ca®* at various Ca?” levels (Araujo and Walker, 1994). The
corresponding rate constant k. for an exponential fit to these data is shown as a function of
zgs (= To/Tomax) in Fig. 7(b). The points are from skinned rat ventricular myocytes and
skinned rabbit psaos fibres and the solid line is the predicted dependence of k. on the
normalised isometric tension 7,/Tomax as obtained from Egs. (5) and (6):

ktr =

()

1——255.

Note that k,=xo=2 s~ at zgg=0.
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Fig. 6. (a) Equilibrium relationship between actin site availability (zss) and bound Ca (Cay) given by Eq. (5). (b)
Rate constant for tension redevelopment k. given as a function of Ca, by Eq. (6). The Hill parameters for these
plots are Csq=1 uM and n = 4.5 and the rate constant of tropomyosin movement is ag=2 s~ (shown as the
limiting value of k,; as Ca, — 0 in (b)).

Similar results are obtained from experiments by Wolff et al. (1995) who examined the
kinetics of isometric tension development during steady activation in detergent-permeabilised
rat ventricular trabeculae. A brief, rapid release and restretch (back to the pre-stretch length)
resulted in an exponential recovery of tension whose time constant exhibits a similar 5-fold
increase with isometric tension.

2.2.2. Steady state length dependence

We next consider the direct effect of myofilament length on tension development under
steady state conditions. Length-dependent shifts in Ca’" sensitivity in the physiological range
of sarcomere lengths were first reported by Endo (1972) for skinned frog skeletal fibres and by
Hibbert and Jewell (1982) for chemically skinned rat ventricular muscle. As mentioned in
Section 2.1, the first direct evidence that ‘length-dependent’ effects on Ca®* binding to cardiac
TnC are mediated via crossbridge attachments was provided by Hofmann and Fuchs (1987a.b),

'y
20
100% |-
ktr
8 (s
g
3 ® Ca=IiM 10F
Té‘ m Ca=159M
S ® Ca=3.16uM .
o
1 I ¢ o2 1
0 0.5 is 0 0.5 1

255
(@ (b)

Fig. 7. (a) Time course of normalised cardiac muscle tension development for three Ca’" levels as indicated. (b)
Rate constant ky; as a function of zgg for skinned rat ventricular myocytes (o), skinned rabbit psaos fibres (O) and
Eq. (7) with ap=2 s~! (solid line). Experimental data is from Araujo and Walker (1994) with 1 mM free Mg?*.
(Reducing Mg?* from 1 to 0.1 mM doubles ki, at all levels of Ca®".)
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who showed that when crossbridge attachment is prevented the length dependence of Ca**
binding disappears. However, this is an indirect length dependence since strong crossbridge
binding is the key influence.

The direct length dependence of steady state muscle tension at various constant levels of
intracellular calcium was first measured by Fabiato and Fabiato (1976, 1978) in skinned
cardiac fibres and by ter Keurs et al. (1980b) in intact rat trabeculae. Fig. 8 shows actively
developed tension/length data for skinned rat right ventricular muscle from Kentish et al.
(1986). At maximum activation the isometric tension—length relation 7,(1) is linear with a
slope dT,/dA = 145 kPa, or

To = Tre(1 + Bo(A — 1)), &)

where T,.r=125 kPa is the reference tension at A = |1 and f,=1/Ts dT,/d2 = 1.45. If the
increase in tension with length came about solely as a result of changing myofilament overlap,
this parameter would be f,=1. Thus, fi,>1 reflects myofilament ‘cooperativity’ (Bremel and
Weber, 1972; Butters et al., 1993).

For less than full activation the dependence on Ca under isometric conditions is given by

To=Trer(1+ B, (A—-1)) -z, ©

where z = zgg is given by Eq. (5) under steady state conditions but otherwise is obtained from
the solution of Eq. (4). The experimental measurements from Kentish et al. (1986) shown in
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Fig. 8. Isometric tension—length relations for various levels of [Ca®* ;. Points are from skinned rat right ventricular

muscle (Fig. 6(B) of Kentish et al., 1986) and solid lines are from Egs. (9)—(12) with T.e=125 kPa, n.=4.25,
PCsorer=5.33, flo=1.45, f,=1.95, p,=0.31.



P.J. Hunter et al. | Progress in Biophysics & Molecular Biology 69 (1998) 289-331 301

Fig. 8 clearly indicate that the linear relationship evident at maximum activation is not
preserved at lower levels of bound calcium. The parameters # and Cso in Eq. (5) must therefore
be length dependent. We have found that giving n and pCsy linear length dependence is
sufficient to model the full range of 7,(4, Ca). i.e. let

(Ca)'

T '+ oy 1
with

n=nel + (4 —1)) (11)
and

PCso = PCospref(l + B2(4 = 1)) (12)

where Cso=10P% (uM). Choosing Tre=125 kPa, Bo=145 n=425 p =195,
PCsorer=5.33 and f,=0.31 in Egs. (9)«(11) to fit the Kentish et al. (1986) data yields the solid
lines in Fig. 8.

Note that Eq. (10) absorbs both the Ca, saturation curve, Eq. (5), and the Ca;—Ca;, binding
relation, Eq. (3). This is illustrated in Fig. 9, where the Ca-TnC binding curve with 7 = 0
(Eq. (3)), shown in Fig. 9(a), together with Capmax=2.26 uM and the function zgg(Cay) from
Eq. (5) with n = 5.75, shown in Fig. 9(b), gives the dependence of zss on Ca; for 4 = 1 shown
by the solid line in Fig. 9(c). This is well approximated by the broken line in Fig. 9(c) (from
Eq. (10)) representing the combined saturation behaviour of TnC and Tm, using n = 4.25, i.e.
the Hill coefficient in the tropomyosin zss(Cay) relation needs to be about 1.5 units higher than
the combined zgg(Ca;) relation and Capnax is chosen to match zgg at the Csy point for the two
Hill relations.

Note that in the model developed here the length dependent Ca®* sensitivity of tension is
expressed via Egs. (10)—(12), where Ca in Eq. (10) is bound calcium Ca,. This is independent
of TnC-Ca?" binding and is justified by experiments with transgenic mice in which cardiac
TnC is replaced by fast skeletal TnC (McDonald et al., 1995). For both normal and transgenic

Cay Zss Zss

Cay, ? *
max eqtn 3 with T=0 IT eqtn 5 eqtn 10
1 ‘ -

f50
0 Ly C 0 L Ca;
0.1 1 opM P ol 1 10pM i

(®) (©)

Fig. 9. Hill binding relations for (a) normalised bound calcium Ca, as a function of intracellular calcium Ca; (50%
saturation at Ca;=p,/po=1.63 uM; see Eq. (3) with 7 = 0); (b) steady state actin site availability zss as a function
of Ca,, (see Eq. (5)) and (c) zsg as a function of Ca;; see Eq. (10). See text for details.



302 P.J. Hunter et al. | Progress in Biophysics & Molecular Biology 69 (1998) 289-331

Table 1

Refs. Temp (°C) SL (um) Mg (uM) Hill coeff. Cso (M)
Intact rat r.v. 1 20-22 22-23 4.87 4+ 0.35 0.62 £ 0.03
Intact ferret r.v. 2 6.08 +0.68 0.50 + 0.04
Intact rat r.v. 3 20-22 2.1-2.3 523+ 1.18 0.65+0.19
Skinned rat r.v. 1 20-22 0.72 2.72 2.2
Skinned rat r.v. 1 20-22 0.50 3.75+0.37 0.93+0.1
Skinned rat r.v. 4 22-24 2.15 1.00 4.54+0.74 3.77+0.32

1: Gao et al. (1994) (n = 10), 2: Yue et al. (1986) (n = 7), 3: Backx et al. (1995) (» = 9), 4: Kentish et al. (1986)
(n = 5).

mice the pCsy of the T,/pCa relationship was shifted 0.12 pCa units in the direction of lower
Ca’* as sarcomere length was increased from 1.83 to 2.23 um indicating no difference in
length sensitivity between the two TnC phenotypes. Gulati et al. (1991), on the other hand, do
find a reduction in TnC length sensitivity when fast skeletal TnC is substituted for cardiac
TnC. A range of values for n and Csp is given in Table 1 together with the experimental
conditions under which they were obtained.

The steepness of the 7,—Ca relation (i.e. the value for n) is greater for intact fibres than
skinned fibres (Gao et al., 1994). Some of the difference is attributable to Mg?* since higher
[Mg?*]; reduces Ca sensitivity (shallower, right-shifted 7,—Ca curve) and the earlier skinned
muscle studies used [Mg?*};>1 uM whereas intact muscle has [Mg®*i~0.72 uM (Gao et al.,
1994; Murphy et al., 1989). However, as shown in Table 1, even reducing [Mg**}; to 0.5 uM in
the skinned fibres does not regain the Ca-sensitivity of intact muscles and some other
sensitising factors (such as taurine, carnosine-like compounds and possibly MLC kinase, see
later) are lost in the skinned preparation (Gao et al., 1994). Note that Backx et al. (1995)
found the average measured stress in intact muscles (113 + 33 kPa) to be statistically identical
to that in the same five muscles after skinning (112 + 33 kPa).

Note that the Cs, for the skinned rat trabeculae of Kentish et al. (1986) is-anomalously high.
For subsequent model development and testing we choose pCsprer=6.2 (giving Csprer=0.63
uM). We also choose n.¢=6.9 which is 1.5 units higher than the average (= 5.4) measured for
the combined relation for the intact preparations in Table 1 (see earlier discussion).

An alternative way of presenting 7,(4, Ca) is given in Fig. 10, where T, is plotted against Ca
for various values of 1. As myofilament length increases the Hill relation shifts leftwards and
steepens. This behaviour has been reported by many groups (Kentish et al., 1986; Yue et al.,
1986; Gulati et al., 1991; Linke et al., 1994).

2.3. Crossbridge kinetics

The model developed so far incorporates Ca®>*~TnC binding kinetics (Eq. (2)), tropomyosin
kinetics (Eq. (4)) and the steady state length dependence of isometric tension T, (Egs. (9)-(12)).
In this next stage of model development we analyse crossbridge kinetics by initially assuming a
constant level of bound calcium and steady state tropomyosin kinetics, because thin filament
kinetics are rather slower than the crossbridge events we will be discussing. The complete
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Fig. 10. Steady state isometric tension T,(Ca;) given by Egs. (9)«(12) for six different muscle lengths A = 0.8 to 1.3.
As length increases the maximum tension, the [Ca®™]; for 50% maximum tension and the slope (shown for two
curves by the thick tangent lines) all increase. The maximum tension for the A = 1 (ie. slack length) curve is T,ep
and the 50% point for this curve is denoted by Csgyer.

model incorporating both thin filament kinetics and crossbridge kinetics will be examined in
Section 3.

The most notable feature of the dynamic properties of cardiac (and skeletal) muscle is the
fact that very small dynamic length changes are associated with large changes in tension. For
example, shortening the muscle by less than 1% of its length in 1 ms produces a 100% drop in
tension. Three types of experiment are often used to characterise crossbridge kinetics under a
constant level of activation:

e Length step experiments.
e Constant velocity experiments.
e Frequency response experiments.

We use the first and second of these to develop the model and we later compare the model
predictions against experimental results for frequency response tests. The tension changes
following a rapid length step are shown in Fig. 11(a). Notice (a) the drop in tension
concomitant with the length change A/ (the lowest tension reached is labelled 77), (b) the rapid
recovery of tension, often with a slight oscillation before (c) a slower recovery to equilibrium.
When the experiment is performed from a different initial value of Tj (e.g. from a different
point on the isometric tension—length curve) the entire response is found to scale with 7,. The
magnitude of 7;/T, shows a nonlinear dependence on A4, as shown in Fig. 11(b).

2.3.1. Fading memory model

To model these observations of cardiac muscle mechanics we have previously proposed a
model (Bergel and Hunter, 1979; Hunter, 1995), called the fading memory model, in which a
nonlinear function of tension Q(T, To) is written as a linear superposition of dynamic length
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Fig. 11. (a) Tension recovery (lower figure) following a length step of A2 in time At (upper figure). Notice the
different phases of the tension recovery. (b) Tension T, reached at the end of the length step, divided by isometric
tension T, plotted against the magnitude of the length step Ai. One curve is for a length step of 1 ms duration and
the other for an idealised instantaneous step.

changes:
O(T, To) = J $(t — Di(r) dr, (13)

where A=dA/ds, ¢(7) is a material response function, and T,(4, [Ca®"};) is the isometric
tension-length—Ca’ " relation for cardiac muscle given by Egs. (9)-(12). The justification for
this separation of the linear dynamic length changes from the static nonlinear function of
tension is the experimental observation that dynamic length changes are small in comparison
to the corresponding changes in tension. Under steady state conditions the righthandside
of Eq. (13) is zero and the, as yet unspecified, function Q(T, T,) must be defined such that
Q(T,, T,) = 0. A system defined by Eq. (13) is known in the system identification literature as
a “Wiener cascade model’, a linear dynamic system followed by a static nonlinearity.

Two further experimental observations are now used. The first is that all tension
measurements on cardiac muscle scale with the isometric tension (this was the Justification for
using 7/T, in Fig. 11(b)) and therefore Q(7, T,) = Q(T/T,). The second is that the current
tension is influenced more by recent length changes than earlier length changes, the ‘fading
memory’ assumption. This latter assumption allows the material response function to be
written as a sum of exponentials:

N
o) = DA™, (14)
i=1

where a; and 4;, i =1, ..., N, are the exponential rate constants and associated weighting
coefficients, respectively.
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In fact the tension recovery curves in Fig. 11(a) show evidence of three distinct physical
processes: the initial fast recovery with a slight oscillation is indicative of a second order
process (e.g. myosin head rotation in the model by Huxley and Simmons, 1971) and the
subsequent slow recovery phase is evidence of a first order process (the crossbridge
detachment-attachment cycle in the Huxley, 1957, model with the rate limiting step probably
being detachment). We therefore limit the number of rate constants N in Eq. (14) to 3 and
Eq. (13) becomes

¢4 j(7) dr. (15)

t
—00

3
oT/T) = YA
i=1

where we let a; be the rate constant associated with the first order slow tension recovery, and
o, and a3 be the rate constants for the second order fast recovery process in Fig. 11(a).

2.3.2. Constant velocity experiments

A parameterised form of the nonlinear function Q(7/T,) can be determined from constant
velocity experiments. In these experiments the muscle is served to shorten at a constant rate, or
shortens at a constant rate (following an initial transient) in response to a reduction in tension
to a constant value less than 7,. The plot of tension versus velocity is called a force-velocity
curve. These curves are typically hyperbolic and are accurately described for tetanised
(maximally activated) muscle by the equation first proposed by Hill (1938):

-V A T/Ty—1
aVo aVe T/To+a’

(16)

where V, is the maximum velocity (achieved when 7" = 0) and a is a parameter which controls
the curvature of the force—velocity relation (the parameter ‘a’ here is chosen to be non-
dimensional, the ‘¢’ in Hill’s original equation is equivalent here to aT,). As with force
recovery following a length step, the force—velocity curves scale with isometric tension 7.

The unloaded shortening velocity ¥, has had a special significance for muscle physiologists
because it appeared to be independent of length and level of activation, at least for lengths
greater than resting length (A>1). For 4 < 1 the passive muscle structures are in compression
and the ‘unloaded’ shortening is then shortening against an internal load (see Section 3.1).

Ignoring the two rate constants a, and a; associated with the initial transient following the
tension step (since this has decayed by the time the force-velocity measurements are made) and
putting A= — V (the constant velocity of shortening), Eq. (15) reduces to Q(T/T,) = — A,/x, V.
An exact match to Hill’s classic force-velocity relation (Hill, 1938) is then obtained by
choosing Q(T/T,)= (T/T, — V)/(T/T,+a) and V,=0o,/aA;, giving

. o T/Ty — 1

A= V_AlT/To-i—a‘ (17)
Experimental results from cardiac muscle (de Tombe and ter Keurs, 1990, 1991b, 1992) give a
relative velocity (V/V,) of about 25% at a relative tension (7/7T,) of 50%. Putting 7/7,=3 in

1
2
Eq. (17) gives V/V,=4a/( +a) and hence V/V,=0.25 gives a = 0.5.
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The maximum (unloaded) shortening velocity found by de Tombe and ter Keurs (1990) for
rat trabeculae at 24°C is 11.3 pm-s™' per 1.9 um sarcomere, or V,=6 s~' and hence a/
A =aV,=3 s7!. They also comment that the temperature dependence of ¥, has a Q.o of 4.6
(i.e. raising the temperature by 10°C increases V, by a factor of 4.6) which is consistent with
the reported temperature dependence of rat actin-activated myosin ATPase (Barany, 1967).

The fading memory model of crossbridge mechanics is now given by

— 3 t Q
T/To -1 _ 3 A,-J e~4(=9J(7) dr. (18)
—00

It is convenient to express Eq. (18) in the form

1+aQ 3 J‘l e
=T, - ——=_ wh =) A (=7 J(7) dx. 19
=T, —o° where O Z l_ooe () dt (19)

i.e. the observed tension T is the isometric tension 7, scaled by a nonlinear function of the
hereditary integral of length changes.

2.3.3. Length step experiments

The response to an instantaneous length step is found by putting A(¢) = AA-H(¢) (the
Heaviside step function) or A=AA-8(¢) (the Dirac delta function), in which case Eq. (18)
becomes

T/T, -1 —
= 2
T/To+a AA- ZAe (20)
The tension reached immediately after the step is found by putting 7= T7; and ¢t = 0 in
Eq. (20) to give

Ti/To—1
7T, 7 a =AJ- ZA Q1

The length step experiments required to evaluate the rate constants from Eq. (20) have
been performed for intact tetanised ferret cardiac muscle at 27°C by Hancock et al. (1993).
Figure 12 shows the tension response following a 2% length step accomplished in 2 ms (which
is just sufficient to drop the immediate post-step tension to zero). The solid line in Fig. 12 is
from the single rate constant version of Eq. (20) with @ = 0.5, a; =75 s™! and 4, =50 (all other
crossbridge constants set to zero) and a slope of (1/7T,)(d7T,/dA) = 17 in the isometric tension—
length relation obtained from the 4.5 mM data in Fig. 2 of Hancock et al. (1993).

Note that the speed of unloaded shortening V, predicted by the model with these parameters
is Vo=oy/ad, =3 s, which is somewhat lower than the 6 s~ (see earlier) found by de Tombe
and ter Keurs (1990) for rat trabeculae at 24°C. The rate constant a; =75 s~! evaluated here
for ferret cardiac muscle at 27°C becomes o; =33 s~ at 22°C if we assume a Q10 of 4.6 for
myosin—ATPase (Barany, 1967).
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Fig. 12. Tension response to rapid length step. Points (e) are for ferret cardiac muscle at 27°C (Hancock et al.,
1993). Solid line is from Eq. (20) with one rate constant and parameters a = 0.5, ;=75 s~ and 4,=250. The
broken line is from Eq. (20) with all three rate constants (2, =u3=2850 s™'; 4,=A43=175). The horizontal dotted
line at 7/7T,=0.18 marks the immediate post-step tension for the single rate constant relation, which is useful for
determining the parameter 4, (see text).

The single time constant model clearly fails to capture the very early tension recovery. The
broken line in Fig. 12 shows the result of adding in the other two faster rate constants (see
below). We next consider the evaluation of these two rate constants (x, and «3) and their
associated scaling constants (A4, and A3).

The instantaneous length change A, required to drop the tension to zero immediately after
the step is found from Eq. (21) by putting T; = 0:

3
~Adg = 1/ay_ 4;. (22)
i=1

In practice the inertia of the muscle and testing equipment mean that an ‘instantaneous’ length
step on cardiac muscle actually requires 1 ms or more to complete. We therefore examine the
consequences of a finite duration length step and show that Eq. (22) is obtained as the
theoretical limit for zero step duration. Note that putting a = 0.5 and —A1,=0.005 in Eq. (22)
(a 0.5% length change to abolish tension) gives X;_,4;=400 which provides one constraint on
the values of 4, and 4.

2.4. Finite duration length steps

It is difficult to perform length steps fast enough on cardiac muscle to reveal the two fast
rate constants. Hancock et al. (1993) achieve 1 ms steps with ferret cardiac muscle compared
with steps of 0.2 ms duration by Ford et al. (1977) on single fibre frog skeletal muscle. In this
section we show that the data obtained by Hancock et al. (1993) from multiple steps can in
fact recover the fast rate constant parameters (ay, A,, a3, A3) without the need for the much
faster steps possible with single skeletal fibres.
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The response to a rapid but finite duration length change is found by putting

0 t<0
i= %j: O<it<At
0 t> At

in Eq. (17) (see Fig. 11(a), top) and integrating to give

T/To -1 _Ad 2 A —0t ¢ AL
—=— ) —e M -1). 2
T/T, +a Al ;cx,-e =D @)
The tension 7, immediately after the step is found from Eq. (23) by putting 7 = Ar and
T= TI: .

T\ /To—1 AL $~4; A
Sto © LN () — e, 24
T\ /Tota At ;a,-( <) (24)

Equation (24) gives the plot of T7/T, against A4 shown in Fig. 11(b). For a step of duration
At the magnitude of step change required to drop the tension T to zero, from Eq. (24), is

At 3 A;
__A [ — -t 1 _ —o; AL
A= e 25)
Figure 13 shows the relationship between —AA and Ar for the previously fitted parameters.
Also shown are experimental data for cardiac muscle at 27°C (Hancock et al., 1993) and single
fibre frog skeletal muscle at 0°C (Ford et al., 1977). Note the consistency with the model for
both ferret cardiac muscle at 27°C and frog skeletal muscle at 0°C. Taking the limit of Eq. (25)

AL
3%
r m Ferretcardiac 27°C (Hancock et al.1993)
& Frog skeletal 0°C (Ford et al.1997)
2% r—- |
1% L]
L — At
0 1 2 ms

Fig. 13. Magnitude of rapid length step required to drop tension to zero versus duration of step. Points (M) are
from Hancock et al. (1993) for ferret cardiac muscle at 27°C and (@) Ford et al. (1977) for frog skeletal muscle at
0°C. Solid line is Eq. (20) with parameters @ = 0.5, &, =33 57", ap =03 =2850 s™! and 4, =50, A>,=A3=175,
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as At — 0 recovers the instantaneous relationship, Eq. (22), derived earlier. The slope of the
curve, found by differentiating Eq. (25) with respect to At, is nearly constant for ¢ < 2 ms and
is given at ¢ = 0 by

d 3 3 2
So = d_A_(_At)|A1=0 = Z Aiai/za(z Ai) (26)
t i=l i=1
or using aZi-14;=(—-Aig)”" from Eq. (22),
3
> A= %29 (=Akg) 2 (27)
=1

Using a = 0.5, obtained previously, —A4,=0.005 and s0=6.25 s~! from Fig. 13, Eq. (27)
gives ¥ 4,4;=10° s7'. The single rate constant fit to the Hancock et al. (1993) data gave
a;=75s"" and A, =>50. Since there are insufficient data to distinguish the two rate constants a,
and a3, we set ay=o3 and A,= A3 Then ¥} Ax;=10% s7! from Eq. (27) together with
T3 14,=400 from Eq. (22) gives A,=A3=175 and a=03=2850 s~!. Note that this compares
with values of &, =1000 s~} and o3 =5000 s~' obtained by Bergel and Hunter (1979) for single
fibre frog skeletal muscle from data by Ford et al. (1977). It is not clear at this stage whether
these two rate constants (determined here from data obtained at 27°C) need to be reduced for
22°C, it would appear from the data shown in Fig. 13 that they are remarkably insensitive to
temperature or species.

Following a finite duration length step, the immediate post-step tension T predicted by the
model, when only one rate constant is included, is found from Eq. (24). Putting —A4 = 0.02,
At = 0.002's, A;=50, 0; =75 s and 4,=A45=0, Eq. (24) gives T,/T,=0.28, where T, here is
0.65 of the initial isometric tension (used as the normalisation factor for tension in Fig. 12).
Therefore T,/T,=0.28 x 0.65 = 0.182 is the fraction relative to the initial isometric tension.
This is shown by the dotted line on the left in Fig. 12.

This completes the development of the model. An important feature of the model of
crossbridge kinetics proposed here is that all constants (a, a;, A;) are independent of both
length (1) and calcium (Ca; or Cay); the influence of 1 and Cay, occurs solely within the model
of thin filament kinetics. This is justified for cardiac muscle by the experimental observations
of Hancock et al. (1993, 1996) which show the rate constant of tension recovery from a small
length step to be independent of both A and Ca;.

2.5. Model summary

The complete ‘HMT’ model is summarised here together with the set of fitted parameters for
(primarily rat ventricular) cardiac muscle at 22°C.

Passive elasticity:

Tension: Eq. (A.3), where k£, =0.2 kPa; ¢, =0.22; b;=1.0.

Compression: Eq. (A.4), where k,=0.06 kPa; a,=0.41; b,=2.5.

Calcium transient:

Eq. (1), where t¢,=0.06 s; Ca,=0.01 uM; Ca =1 uM.
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TnC-Ca binding:

Eq. (2), where po=100 s~ uM™"; p, =163 s7'; y = 2.6; Capmax =2.26 uM.

Thin filament Kinetics:

Egs. (4), (9), (11) and (12), where T,s=100 kPa; n.=6.9; pCsorer=6.2 and op=2 s

Bo=1.45; 1 =1.95; p,=0.31.

Crossbridge kinetics:

Eq. (19), where a = 0.5; 4,=50; ;=33 s™' and 4, =A3=175; a;=03=2850 s~

If the free calcium concentration Ca; and the muscle fibre extension ratio A are regarded as
inputs to the system, these equations constitute a set of four fundamental equations in the four
state variables Cay, z, T, and T which may be expressed as

Cap = f1(Ca;, Cap, T, T,) (equation 2)
z = f3(z, 4, Cap) (equation 4)
T, = f3(4, z) (equations 9-12)

T = fy(T,, 4, t) (equation 19)

The first two of these are first order ordinary differential equations, the third is an algebraic
relation and the last is an hereditary integral.

3. Model predictions

The equations summarised in Section 2.4 have been developed to model a wide range of
cardiac muscle mechanical behaviour primarily involving steady state or length step responses.
We now examine and test the model in a wider variety of experiments.

3.1. More general tension—velocity relations

A unique relationship between shortening velocity and tension in a tension-step experiment
can only exist when the isometric tension does not vary with length and then only when the
initial velocity transients have decayed. To find the relationship between velocity, tension and
length in a tension-step experiment conducted on the ascending limb of the isometric tension—
length curve, consider the single rate constant version of Eq. (18) (applicable once the transient
velocity fluctuations have decayed):

T/T, — 1

14
L0 — 4| e Ij(r) dr 28
a1 o @
Differentiating Eq. (28) with respect to time, with 7 constant, gives

T _i+a dT, 5 T/T,-1
T2(T/T, +a)* d2 'T/T, +a

+ A4
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or

. T/T, — 1 1+a T dTo}
A: e ——— A 3" HFa . 29
oy T/To+a/{ 1+(T/To+a)2 T(Z, di ( )

When d7,/dA = 0, Eq. (29) reduces to Eq. (17), which is plotted in Fig. 14(a).
The maximum shortening velocity V, is achieved at zero load (7' = 0) and, from Eq. (29),

Vo=~Jiro=1- (30)
is seen to be independent of activation level, muscle length (for A>1 only, see below) and the
slope of the isometric tension—length curve. With the parameters obtained earlier for ferret
cardiac muscle at 27°C, a = 0.5, a;=75 s~ and A,;=50, the maximum shortening velocity
from Eq. (30) is V=3 s,

At 50% load (T/T,=0.5) and d7,/dA = 0 Eq. (29) gives —1=0.75 s7! (. T=%T0 gives
V=£Vo). Under maximum activation the slope of the isometric tension curve at 4 =1 is
(1/T,)(dT,/dA) = B,=1.45 but this only reduces the shortening velocity by 4% because the
coefficient A4, is relatively large.

At 50% of maximum activation (e.g. [Ca?*];=5 uM in Fig. 8) the slope (1/T.)(dT/dA)
is considerably larger and the shortening velocity at 50% load is reduced by about 15%.

@ ; b) Vo)
» A

——— [Ca2+]0=2‘ SmM
-—

-~ N
- [Ca2*],=0.5mM

0.25V,
1I2 !
T
TR
100kPa
T,0)
J| -
1.2 A

Fig. 14. (a) Shortening velocity at resting length as a function of relative tension. V, is the velocity when shortening
against zero external load. (b) ¥, as a function of A. The decline of V, for 4 < 1 is a result of the increasing
internal compressive load as shown in (c). See text for details.
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Note also that the reduction of maximum velocity peaks when the slope of the isometric
tension—length relation is maximum at A =1 would then be predicted to diminish. For
A>1 these predictions are consistent with the experimental observations by de Tombe and ter
Keurs (1990) shown in Fig. 14(b). At very low [Ca®’*]; and 4 < 1 an additional viscous load
arising from the titin filaments may further reduce the shortening velocity (see Stuyvers et al.,
1997).

The prediction that maximum (unloaded) shortening velocity is independent of activation
level and muscle length only holds for A>1 when there is negligible internal load arising from
the extracellular matrix or titin filaments. Figure 14 illustrates the effect on shortening velocity
of a compressive load when 4 < 1. As the compressive load increases (see Fig. 14c) the muscle
moves down its velocity—tension relation (Fig. 14a) and thereby produces the roll-off in
velocity with length seen in Fig. 14(b). When the muscle shortens to the point (4 = 0.85) where
the passive compressive stress T, equals the actively developed stress T, V, is zero, in
agreement with the experimental observations of de Tombe and ter Keurs (1990).

3.2. High frequency dynamics

The dynamic stiffness of muscle can be measured by imposing a small sinusoidal length
perturbation while it is otherwise isometric or shortening at constant velocity (i.e. against a
constant load). Dividing the recorded sinusoidal tension changes by the applied length changes
gives a dynamic stiffness. The stiffness predicted by the model at 4 =1 (see Appendix B,
Eq. (B.23)) is the following complex function of perturbation frequency w and myoplasmic
calcium concentration Ca;:

Neet To Ao Rref®o /Y
E=T —_— 4+ Tui 1 .
oPo +a0/(1 —z) + iw + OI: +a0/(1 —zZ)+iow pyCai+py(1 = 1/y)+iw
3 .
iw
1 A
x ( +a); et (31)
where i=+/~1, Ty=2zTrs,
C Cabmaxcai (Cab)nrer
ap = 4 z= Are Mref
Cai + (0,/po)1 — 1/7) (Cap)™ + (Csorer)
and
Ca
A= f Iz 4 In 10 pCsorer (32)
S50ref

Note the use of ‘A’ rather than ‘i’ as the rate constant index in Eq. (31) to avoid confusion
with the complex number i. Also note that T,, z and Ca, here are the mean values about
which the sinusoidal perturbations occur.

The three components on the righthandside of Eq. (31) are, respectively,

E| = zTf, (33)
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is the static stiffness arising from the non-zero slope f, of the isometric tension—length relation.
As might be expected this is directly proportional to the thin filament activation z (i.e. the
proportion of actin sites available for crossbridge binding).

neer Aoty

E; = zT s - m

(34)
is the stiffness associated with length dependence in the thin filament kinetic equations (e.g.
if B, and B, are zero this stiffness is zero, since 4 = 0 from Eq. (32)). Note that this has
a more complex dependence on z and acts as a low pass filter with a break frequency at
w = ap/(1 — 2).

3 :

Pref0) /Y iw
E; =zTr- |1 — . : 1 y ' 35
3= 2T s [ +ao/(1—z)+zco pOCai+p](1_1/),)+lw]( +a); e (35)

is the stiffness associated with crossbridge kinetics combined with the influence of TnC-Ca’*
binding and thin filament kinetics. Note that this term has no effect at @ = 0 but becomes
dominant at high frequencies. The crossbridge stiffness acts as a high-pass filter with break
frequencies at w = ), o and a3. At lower frequencies the crossbridge stiffness is modulated by
the low-pass filtering characteristics of TnC—Ca®* binding and thin filament kinetics.

The dynamic stiffness given by Eq. (31) is shown in Fig. 15 as a Bode plot (magnitude |E
and phase @ plotted against frequency w) for two values of Ca;. The previous parameter set,
used for this plot, gives stiffness magnitude increasing monotonically with . A small dip has
been reported in some studies (Rossmanith et al., 1986). The model can reproduce such a dip
at low frequencies (when A in Eq. (32) is negative at low Ca,) but only with a larger value of
f1 than the one obtained earlier.

Note that the low frequency break point at w = /(1 — z) in Fig. 15 increases as z increases.
From Eq. (31) the steady state stiffness (w = 0) is

E|w=0 = Tref[zﬁo + nrefAZ(l — Z)] (36)

which falls to zero at z = 0 and z = 1 and achieves its maximum at z=%+ Po/2n..cA.

At perturbation frequencies above about = o, =33 s, the first two stiffness terms E; and
E, are negligible and the response is dominated by the crossbridge stiffness E;. The limiting
stiffness at high frequency is

3
Elyoo = ZTrcfl:,Bo +(1+a)) i"—] 37)
=1 %

and, since the first term on the right in Eq. (37) is small compared with the second term, high
frequency stiffness is proportional to the number of available crossbridge binding sites z (or,
equivalently, isometric tension T,).

3.3. High frequency stiffness during isotonic shortening

An experiment that has been performed on single skeletal muscle fibres (but not yet on
cardiac muscle) is to impose a small high frequency oscillation during isotonic shortening
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Fig. 15. Muscle stiffness predicted by the model. (a) Modulus versus frequency for two different levels of calcium
activation (Ca;=0.4 uM, 1 uM). The three upwardly directed arrows show the locations of the four breakpoint
frequencies (ao/(1 — z), a1, & and «3) corresponding to the rate constants of thin filament and crossbridge kinetics.
(b) Phase angle versus frequency for the same two activation levels. The influence of the fast crossbridge rate
constants @ and «; is seen in the second peak.

against a load T and to plot this stiffness E(T, T, w) relative to the isometric stiffness E(7,
T,, w) as a function of relative tension 7/7T,. This relationship, derived in Appendix B
(Eq. (B.5)) for the plateau of the isometric tension—length relation, is:

KT, To, 0) _ (T/To+a\’
KT,, T,, o) l14a '

(3%)

Equation (38) is plotted in Fig. 16 together with experimental data for single frog skeletal
fibres at 0°C from Julian and Sollins (1975). A notable feature of the relationship is the
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Fig. 16. Relative dynamic stiffness during isotonic shortening at tension 7, plotted against relative tension assuming
zero slope for the isometric tension—length relation. Stiffness and tension are relative to their isometric values. Solid
lines are model predictions (Eq. (38)) with @ = 1.2 (upper curve) and ¢ = 0.5 (lower curve). Points are frog single
fibre skeletal muscle at 0°C and 500 Hz (M) or 1 kHz (e) from Julian and Sollins (1975). The relative stiffness at
zero tension is 0.3 for a = 1.2 or 0.12 for a = 0.5.

non-zero stiffness at zero tension (typically 12% of isometric for cardiac muscle at 20°C
but about 30% for frog skeletal muscle at 0°C). Using @ = 0.5, the model predicts
@/(1 + a)*=0.11, in good agreement with experimental observations for cardiac muscle at
20°C. The frog skeletal muscle data at 0°C is fitted by Eq. (38) with ¢ = 1.2 as shown in
Fig. 16. It is not clear whether the zero tension stiffness (and hence the parameter ‘a’) is species
dependent and/or temperature dependent. The prediction that the relative stiffness versus
relative tension relation is independent of the perturbation frequency is also borne out
experimentally for both skeletal and cardiac muscle.

3.4. Shortening deactivation

The duration of activation in cardiac muscle is a function of load because the calcium
release from troponin C is influenced by crossbridge tension (see Eq. (2)). For example, an
isotonic twitch (solid lines) terminates more quickly than an isometric twitch (broken lines), as
shown by the model in Fig. 17. In the isotonic phase of the twitch the tension 7 is lower than
the isometric tension 7, and the level of bound Ca quickly drops. As the muscle shortens 7,
drops and T/T, increases, thereby slowing the release of calcium. Shortening stops when T,
equals the applied load T plus the internal compressive load T,

Another example of shortening deactivation can be seen when a rapid length step is imposed
during an otherwise isometric twitch. Figure 18(a) shows the time course of bound calcium
Cay, during an isometric twitch (solid line) and a 2% length step in 2 ms (broken line). The
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Fig. 17. Isotonic twitch contractions at 20-80 kPa loads (solid lines) compared with an isometric twitch (broken
line). Notice the prediction (in agreement with experiment) of a shortened twitch at low loads (the solid line for
T = 20 kPa lies below the isometric curve) and an enhanced duration of force production at high loads (the solid
line for T = 80 kPa lies above the isometric curve).

resulting tension responses are shown in Fig. 18(b). Following the length step tension drops to
nearly zero, displacing calcium from troponin C so that the post-step isometric tension (broken
line in Fig. 18b) is always lower than for the unperturbed isometric twitch (solid line in
Fig. 18b).

Not all aspects of shortening deactivation are modelled here because we are prescribing the
time course of [Ca®™); (Eq. (1)). In a physiological cell the calcium displaced from troponin C
by the tension drop would be available for rebinding to TnC but is also rapidly removed
from the cytosol by the sarcoplasmic reticular Ca—ATPase pumps. Note that this can also
result in a longer action potential because enhanced Na/Ca exchange stimulated by the
elevated myoplasmic Ca®* gives an additional inward current during the plateau of the action
potential, which is therefore prolonged.

4. Discussion
4.1. Main conclusions

A substantial body of experimental observations on the mechanical performance of cardiac
muscle has now been published. In contrast to cardiac electrophysiology, where quantitative
models of membrane ion channels and transporters are highly developed, there have been
surprisingly few attempts to provide a comparable model for cardiac muscle mechanics. Early
empirical models of cardiac muscle mechanics were modified versions of the skeletal muscle
models of Hill (1938, 1949) which combined a contractile element obeying a hyperbolic force-
velocity relation, a passive series elastic element and a passive parallel elastic element (e.g.
Tozeren, 1985; Pinto, 1987). More biophysically motivated models, based on the Huxley (1957)
approach of strain dependent rates for crossbridge attachment and detachment, were developed
by Wong (1971, 1972), Panerai (1980) and Guccione and McCulloch (1993). All of these
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Fig. 18. Effects of shortening deactivation predicted by the model for a quick release experiment. (a) The time
course of TnC-bound Ca’" (Cay) under isometric conditions (solid line) and following a 2% shortening step
(broken line). (b) The corresponding tension responses. See text for details.

models, however, deal only with the rather limited range of experimental tests available at that
time. The more recent data, particularly from skinned fibre experiments on which the current
model is largely based, are far more comprehensive.

In this paper we have surveyed a wide range of published experimental results on cardiac
(and to a lesser extent skeletal) muscle and described a mathematical framework for
interpreting these experiments. Many seemingly unrelated results are shown to be different
manifestations of the same underlying mechanisms. The mathematical model considers (i) the
passive elasticity of cardiac tissue, (ii) Ca-binding to troponin C and its dependence on
crossbridge tension, (iii) thin filament kinetics and associated length dependence, and (iv)
crossbridge kinetics. The model is based primarily on the measured tension transients following
calcium step release experiments and length step experiments but is also shown to correctly
predict the response to isotonic loading and sinusoidal stiffness tests.
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The experimental observations described by the model are as follows:

e The passive elasticity of cardiac muscle, seen as a tensile load at extension ratios greater
than 1 (slack length) and as a compressive load at lengths below slack length (Eqs. (A.3) and
(A.4), Fig. 2).

e The dependence of TnC bound calcium on intracellular free calcium and the shift in the
binding curve with crossbridge tension (Eq. (3), Fig. 5).

e The transient rise in intracellular free calcium due to detachment of calcium from TnC
during quick release experiments (Eq. (2), Fig. 18).

e [sometric tension dependence on length and intracellular calcium concentration (Egs. (9)-
(12), Fig. 8).

e The time course of isometric tension development following step changes in intracellular
calcium (Fig. 7) and the dependence of tension redevelopment rate on bound calcium (Eq. (6),
Fig. 6).

e The dependence of shortening velocity on load and level of activation (Eq. (29), Fig. 14a).

e The length and activation independence of unloaded shortening velocity at lengths above
resting length (Eq. (30), Fig. 14b).

e The reduction of (externally) unloaded shortening velocity at lengths below resting length
due to the internal compressive elastic load (Fig. 14b).

e The frequency dependence of dynamic stiffness (magnitude and phase) and the changes in
stiffness with changes in level of activation (Eq. (31), Fig. 15).

e The load dependence and frequency independence of high frequency stiffness, measured
under isotonic conditions, relative to isometric stiffness (Eq. (38), Fig. 16).

e The shortening deactivation seen with isotonic twitch contractions (Fig. 17) and during
rapid length steps (Fig. 18).

4.2. Further development of the model

Here we briefly discuss other aspects of cell physiology which have an influence on cardiac
mechanics and which will need to be included in future developments of the model.

4.2.1. Membrane electrophysiology

One clear requirement is to couple the mechanics model presented here to the highly
developed models of cardiac cell membrane ion channels and transporters, e.g. the atrial model
of Hilgemann and Noble (1987) and the ventricular cell models of Luo and Rudy (1991, 1994).
Both electro-mechanical coupling and mechano-electrical coupling must be considered: the
calcium induced-calcium release at the T-tubule/SR diadic junctions provides the source of free
myoplasmic calcium to replace Eq. (1) (Bers, 1991) and the subsequent mechanical events
influence the conductivity of stretch activated channels (see review by Sachs, 1994).

4.2.2. Cardiac energetics

Another future development of the model will be to include a description of
chemomechanical transduction. The contractile proteins actin and myosin convert chemical
energy from the hydrolysis of ATP into mechanical work. Wannenburg et al. (1997) studied
ATP utilisation in skinned rat trabeculae, at various lengths and calcium concentrations, by
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measuring the flourescence decay of NADH. (With no mitochondria present the ATP used by
the myofilaments was regenerated by oxidation of NADH to NAD.) They found a linear
relationship between ATP consumption and isometric tension, with a slope of 15 uM ATP.s™!
(kPa)~!. Changes in sarcomere length and Ca®"* activation had no effect on the slope. Similar
results for skeletal muscle have been obtained by Brenner (1988). At a maximum tension of
100 kPa this gives a maximum rate of ATP consumption of 1.5 mM-s~' (ATP is present in
cardiac muscle at a concentration of about 7 mM, and is normally buffered by a CrP
concentration of 25 mM, see Ch’en et al., 1997, this volume). Since the density of SI myosin
heads in cardiac muscle is about 0.15 mM (He et al., 1997), the ATPase rate is about 10 s~
per myosin head, which correlates well with the speed of maximum unloaded shortening V,=6
s™! (a measure of maximum crossbridge turnover) discussed in Section 2.3. However, a simple
algebraic relationship between tension and ATP consumption may be insufficient: He et al.
(1997) report an initial ATPase rate of 6 s~' for rat trabeculae following photorelease of ATP,
followed by ATPase rates of 3 and 2 s™' for the second and third turnover of ATP,
respectively. Slower, but also time-varying, hydrolysis rates were obtained for skinned guinea
pig trabeculae by Barsotti and Ferenczi (1988). Kentish and Stienen (1994) found that force
development declined more rapidly than ATPase activity with decreasing sarcomere length in
skinned rat myofibrils. They reported a maximum ATPase rate equivalent to an ATP turnover
per myosin S1 head of 3.3 s™'. ATP consumption under non-isometric conditions has yet to be
determined.

4.2.3. Control of myofilament activation

Myocardial tissues express many different cell surface receptors which ultimately control the
inotropic and chronotropic state of the muscle. The influence of these receptors on model
parameters must be quantified. There are three major signaling pathways that involve the
membrane bound enzymes adenylate cyclase, guanylate cyclase and phospholipase C,
respectively, with the corresponding second messengers cAMP, c¢GMP and DAG
(diacylglycerol). In all three cases the second messengers activate protein kinases (PKA, PKG
and PKC, respectively) which phosphorylate specific sites on the contractile proteins,
membrane channels and pumps (see review by Ishikawa and Homcy, 1997).

p-adrenoreceptor stimulation of adenylate cyclase via G-proteins increases the cAMP-
mediated phosphorylation of Tnl and TnC by PKA, causing a reduction in the Ca®"*-binding
properties of TnC (although Blinks, 1993, suggests that the Ca-desensitisation may be achieved
by reducing the positive feedback resulting from crossbridge attachment, rather than altering
the Ca’* affinity of TnC). p-adrenergic stimulation can be mimicked in skinned fibre
preparations by controlling the concentration of PKA. de Tombe and ter Keurs (1991a), de
Tombe and Stienen (1995) and Janssen and de Tombe (1997) have shown that PKA has no
effect on either isometric tension or the velocity of unloaded shortening (V) at sarcomere
lengths above slack length (i.e. away from the influence of internal elastic loads). Exposing
skinned rat trabeculae to 3 pg/ml of PKA caused a significant increase in the [Ca"]; required
for half maximal steady state tension development (Cso) but both 7, and V, were unaffected.
This indicates that a, 4, and a; are independent of PKA but that Csy.r and possibly y are
PKA dependent.
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Stimulation of ventricular muscarinic receptors by acetylcholine (or the synthetic agonist
carbachol) inhibits adenylate cyclase and therefore has a Ca-sensitising effect.
Phosphodiesterase inhibitors, which inhibit cAMP breakdown, provide another means of
enhancing Ca-desensitisation. Other consequences of f-adrenoreceptor stimulation are
phosphorylation of phospholamdan to accelerate the uptake of intracellular calcium into the
SR by Ca-ATPase pumps and an increased rate of release of Ca>" by the ryanodine receptor
release sites in the junctional SR. f-agonists are the endogenous catecholamines epinephrine
and norepinephrine and the synthetic isoproterenol. The best known pf-antagonist is
propranolol.

a-adrenoreceptor stimulation of phospholipase C via G-proteins stimulates the production of
diacylglycerol (DAG) and inositol trisphosphate (IP;). Both contribute to the activation of
PKC, leading to regulation of many cardiac proteins, including troponin T, the SR Ca’*
pump, the Na"/H™ exchanger and the L-type Ca®" channel (Solaro, 1993; Pi et al., 1997).
Stimulation of guanylate cyclase catalyses the production of cGMP which has been shown to
stimulate dephosphorylation of Tnl by PKG and therefore increase Ca-sensitivity. By raising
[Ca®™}; IP; also activates other Ca®*-dependent enzymes (Lakatta, 1996).

C-protein, associated with the thick filament, is thought to modify the range of movement of
crossbridges and thereby have a role in the probability of crossbridge binding, especially at
submaximally activating free Ca’". Cardiac muscle C-protein is phosphorylated in vitro by
PKA and in vivo by adrenergic stimulation (Solaro, 1993; Hofmann and Lange, 1994; Gautel
et al., 1995).

Cardiac muscle also contains substantial concentrations of ‘natural modulators’ of
contractility, many of which affect the Ca-sensitivity of skinned fibres, e.g. N-acetyl anserine,
N-acetyl carnosine, N-acetyl histidine and taurine (Miller et al., 1993).

4.2.4. Myosin isoforms

Accommodating the species dependence of different myosin isoforms and their potential for
phosphorylation will require further model development. Cardiac myosin consists of two heavy
chains (MHC) and two pairs of light chains (MLC). The LC-2 isoform is mainly expressed in
the normal human heart (Morano, 1993; Morano et al., 1995). MLC can be reversibly
phosphorylated and is therefore labelled MPLC (MPLC phosphorylation initiates contraction
in smooth muscle). The in vivo MPLC phosphorylation level cannot be changed by «- or f-
adrenergic stimulation and remains unchanged during diastole and systole in the mammalian
heart. Phosphorylation of MPLC increases the force of cardiac contraction but not shortening
velocity. Cardiac muscle can express two different myosin heavy chain genes, « and . The
ATPase rate of the ao combination, or V, isoform, is twice that of the S combination, or V;
isoform (Pope et al., 1980). Adult rats express the V, form whereas adult ferret, guinea-pig and
rabbit express the V; form. The maximum shortening velocity V, of human atrial fibres is
twice as high as the V,, of human ventricular fibres, suggesting that the rate limiting step which
determines ¥V, is modulated by myosin isoenzymes.

4.2.5. Calcium sensitising cardiac drugs
Most calcium-related drug action on cardiac cells modulates [Ca?"]; by influencing the
release and uptake of calcium, e.g. Bay K-8644 acts as a Ca®" channel agonist by favouring
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prolonged opening of the L-type Ca?* channels; caffeine and ryanodine enhance the release
of Ca®* from the SR via the ryanodine receptor; the SR Ca’"-ATPase pump is inhibited
by thapsigargin and cyclopiazonic acid. However, recent research has focussed on another
broad class of inotropic calcium mechanism which is more directly related to mechanics:
Ca-sensitivity modulation. Brenner (1993) proposes three classes of Ca-sensitivity modulation:
a class I sensitiser increases Ca’*-binding to TnC (e.g. affects the parameter y in Eq. (2)); a
class II(a) sensitiser gives increased Ca’™ responsiveness by modulation of thin filament
kinetics (e.g. affects oy in Eq. (4)); while a class II(b) sensitiser affects crossbridge kinetics (e.g.
affects «; in Eq. (19)). Examples of class II sensitizers are pimobendan, sulmazole and EMD
53998 (Blinks, 1993). Ca®" sensitivity of the myofilaments can range over about 0.5 pCa units
(Solaro, 1993).

Appendix A. The contribution of passive tension during active contraction

For incompressible materials the components of the 2nd Piola—Kirchhoff stress tensor
referred to material coordinates and measured per unit area of the undeformed material, are
given by

1
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where W is an elastic strain energy function and p is the hydrostatic pressure (Hunter and
Smaill, 1989). To accommodate the microstructural observations and biaxial test results we
have proposed a strain energy function, called the pole-zero law (Hunter et al., 1992), of the
form
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where:

® eyn are the components of the Green strain tensor referred to material coordinates aligned
with the structurally defined axes of the tissue (the efqn numerator terms are necessary to
ensure non-zero stiffness at zero strain).

® a,...a¢ are parameters expressing the limiting strain for a particular type of deformation
(i.e. the strain energy becomes very large as e;; approaches a;, etc.) and a;>e(;, a>>e;,
as > €33, Aq > €12, A5 > €33, g > €3].

® by...bg are parameters expressing the curvature of the uniaxial stress—strain curves (partly
a reflection of the distribution of unextended fibre lengths as more collagen fibres are
recruited).

® k,...k¢ are parameters giving the relative contribution of each strain energy term and k,,
ko, k5 are defined to be zero if e)), e;; or es3, respectively, are negative.
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Using a separate pole for each microstructurally defined axis accommodates the different
strain limiting behaviour seen along each axis. This strain energy function can be considered as
the first part of a polynomial expansion in the pole-zero terms (i.e. terms of the form
W(e) = ke*/(a— e)®). A higher order expansion including cross-product terms may be justified
by further experimental testing, particularly of shear behaviour. As it stands there are 18 free
parameters in Eq. (A.2) but some of these parameters must be strongly correlated because
some tensile and shearing deformations are likely to involve the same underlying collagen
microstructure. These parameter correlations are provided by a biophysical model of muscle
elasticity in which the strain energy arises from the stretching of several families of collagen
fibres, whose distributions are based on observations of tissue microstructure (Hunter et al.,
1996b).

The uniaxial tension—length relation is derived here first for tension (4, >1) and then for
compression (4; <1). We consider a cylindrical segment of muscle under the assumption that
the material properties in the plane orthogonal to the axis are isotropic (i.e. the muscle is
transversely isotropic). Then A,=A3;=1//4; (to maintain the incompressibility constraint
/1]}.2/13 = 1) giVCS

1 ., | R 1/1
e) -—5(}&1—1) and 322—833—5(12—1)—5(1—1—1).
For axial tension (4, > 1) the strain energy function, Eq. (A.2), reduces to

2
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since e>; and e;; are negative and therefore W contains no other contribution from fibre
stretch.

From Eq. (A.1), T2 =9W/deyy —p = 0 gives p = 0W/de,;=0 and the axial 2nd Piola-
Kirchhoff stress is

2
- _—=2£V—=k1[ 2ey) 4 ble“b+l]’
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or simplifying,

kien bieg
= [2+ ] A3
(a) —en)” (a1 —en) (A.3)

The data in Fig. 2 from Kentish et al. (1986) are fitted with k£, =0.2 kPa, ¢, =0.22 and 4,=1.0.
Eq. (A.3) with these parameters is shown as the solid line (for 2 = 4,>1) in Fig. 2 with the
pole at e, =a; when A; = /1 + 2a,=1.2.

For axial compression (4; <1) the strain energy function, Eq. (A.2), reduces to

2
W=2ky—2
(a2 —exn)™
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since ey, and e3; are assumed equal and now e, is negative so there is no contribution from
the axial term.
From Eq. (A.1), T?2=8W/dey—p = 0 gives
_ ow _ 2krern [ brexn ]
P=%en (a — en)” (a2 —en) ]

and the axial 2nd Piola—Kirchhoff stress is

_ —2kex [ brexn ]
(a2 — en)™ (a2 —en) [

where ey =1(1/4,-1).

This relation (for A = 1;<1), with parameter values k,=0.06 kPa; a,=041; b,=2.5
determined from biaxial loading experiments (Smaill and Hunter, 1991), is shown as a solid
line in Fig. 2. Note that the pole at e;;=a, occurs when

T = —p (A.4)

171 1
— — —_—— — = = .55.
€22 3 (/1[ 1) a or /11 I+ 2a2 0

Appendix B. Dynamic stiffness calculations

B.1. Isometric stiffness

The response of the model to small sinusoidal length perturbations is analysed here.
Consider a perturbation of A of magnitude A4 and frequency w about a mean length of 4 = 1:

A=1+A% e, (B.1)
where (i=+/—1). To find the corresponding solution to the model equations let

2=z 4+Az-e (B.2)

T=T"+AT ¢, (where T" =z Trp) (B.3)
and

Cap = Cap” + ACay - 6 (B.4)

where z*, T~ and Cay, are the means about which these quantities oscillate with magnitudes Az,
AT and ACa,, respectively. The magnitudes are considered as complex numbers in order to
accommodate phase shifts relative to the imposed length sinusoid. To find the relationships
between Az, AT, ACa, and AA, we consider TnC binding kinetics, thin filament kinetics and
crossbridge kinetics in turn, since each of these processes has direct or indirect length
dependence.
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B.1.1. Troponin C binding kinetics

Equation (2) for TnC—Ca** binding is

dCab

T
dr = pocal(cabmax Cab) P ( - _‘—)Cab (BS)

77T,

The effect of a length perturbation on this equation occurs via both the tension 7 and the
isometric tension 7, given by Eq. (9). Substituting Eqs. (B.1) and (B.2) into Eq. (9) gives

To = Trer(1 + Bo(A — 1)) - z = Trer(1 + BpAA - eiw’)(z* +Az- e"”’)

or, omitting terms involving the product of small perturbations,

A )
Torz Tref +:z Tref<ﬂ0A/1 + Z) e’ (B.6)

Combining Egs. (B.3) and (B.6), using the binomial theorem 1/1 + A =1—A + O(A)* =~
1 — A for A < | and omitting the quadratically small product terms,

T AT Az
1+( = ﬂoA}) (B.7)
T "

Substituting Eqgs. (B.4) and (B.7) into Eq. (B.5) gives

*

Cab Cai

— B.8
Capmax  Cai+p,/po(1 = 1/y) (B.8)
for the zeroth order (mean) term and
1 AT
i - ACap = —p,yCa; - ACayp — p, (l - ;) - ACay +%Cab (F AZ ﬂOA/l) (B.9)
Z

for the perturbation term (neglecting quadratically small terms). Rearranging Eq. (B.9) gives

ACa, _p1/y(AT/T™ — Az/z" — BoAL)
Cay" poCai +p|(1 —1/7) +iw

: (B.10)

which reveals how ACa,, depends on the perturbation magnitudes of 7, z and 4 via a complex
impedance which acts as a low-pass filter with a break frequency which varies with Ca;.

B.1.2. Thin filament kinetics

Equation (4) for thin filament kinetics is

%=ao[(€ab> (1—*)~z] (B.11)
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where the length perturbation dependence of n and Cso, from Egs. (11) and (12) with Eq. (B.1),
is

n= nref(l + ﬁ]A,{ . efwt)’ PC50 — pCSOref(l + ﬁzA/‘[ . eiwt)
and therefore
Csp = 1087PC50 = Cigper - 107PC0erA & g0 o (1 — In10 - pCprerfrAde™?).

Thus, with Eq. (B.4),

ES
_Cﬁ = Cab [1 + (A—(ja—;i + In10- pCS{)refﬁZA)“) . ei(u ’]
Cso  Csorer

Cab

and raising this expression to the power # = n.¢+ 4 using

xherthy et (1 +lnx-A) and (148" x1+8 nme (A K]

gives
C n C %\ Href ACa
(ﬁ) ~ (S [1+nref(AAa+ :)-e’w’} (B.12)
Cso Csorer Cay
where
Ca *
A= BiIn="—+f,1n 10 - pCsprer- (B.13)
Csoref

Substituting Egs. (B.2) and (B.12) into Eq. (B.11) gives

. j Cab* " Acab imt * iwt * int
oAz - ' = o 1+ nees| AAL + = ) eI —2z —Az-e¥)—(z + Az )

C5()ref Cab
from which
¥ - C %\ Hrel *
Fo (G or (22} =2 (B.14)
(Cab )'lrer + (CSOref)ﬂref CS()ref I-z

and

Az AAL+ ACay/Cay "

—% = Href % : s

1/(z" = D) +iw/a

by equating the zeroth order terms and first order perturbation terms, respectively.

Equation (B.15) reveals the low pass filtering characteristics of the equation for thin filament
kinetics, Eq. (B.11).

(B.15)
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Eliminating ACay, from Egs. (B.10) and (B.15) gives
Az (AB— )AL+ (AT/T™)

& 1+ BD (B.16)
where
B=y2Ca+y-1+Lio (B.17)
P1 P
and
D= ! +z / (B.18)
= Z 1 % Rref. .
B.1.3. Crossbridge kinetics
The equations governing crossbridge kinetics are
T="T,- 1 + “Q ZAkJ e~ j(7) dr. (B.19)
o0
Substituting Eq. (B.1) into Eq. (B.19) and neglecting quadratically small terms gives
T To[l + (1 + a)Q), (B.20)
where
0 =AA- ZAk e, (B.21)

o + iw

Substituting Eqs. (B.3), (B.6) and (B.21) into Eq. (B.20) and equating the perturbation terms
yields

Az

AT ] A +—. (B.22)

3
1w

— = +(1+a A
e

+ iw

B.1.4. Dynamic stiffness

Finally, substituting Eq. (B.16) into Eq. (B.22) and rearranging gives the desired stiffness
relation:

E= if_z Tref[ﬁo+A+<1+—)(l+a)ZAk ] (B.23)

ar + iw

where 4, B and D are given by Eqgs. (B.13), (B.17) and (B.18), respectively.
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B.2. High frequency stiffness during isotonic shortening

To determine the predicted dynamic stiffness during a constant velocity (V) shortening, let
A=do—=V-t+AL-e (i=+-1)

where A4 and w are the amplitude and frequency of the applied length perturbation and we
assume that w is sufficiently high that only crossbridge kinetics need to be considered. As
shown above, both TnC—Ca®" binding kinetics and thin filament kinetics act as lowpass filters
and do not make significant contributions to stiffness above about 100 s'. Substituting
A= —V + iwAAi-€“" into the right hand side of Eq. (18), extracting the corresponding tension
perturbation from the left hand side (using a Taylor series expansion, see Bergel and Hunter,
1979) and putting

Aj, = A1-e®" and Ai" = AT- ei(wt+¢)
gives AT'= E-A, where E(T, T, ) is the dynamic stiffness:

T dT, To(T/To+ a)* 23:A io
: k

E(T, To, 0) =74 1+a %+ io

(B.24)
k=1
Note thatif T= T,and A =1, 1 / T,-dT,/dA = By and Eq. (B.24) reduces to Eq. (B.23) with
1/D—>0 at high w.
If dT,/dA = 0 (corresponding to the plateau of the skeletal muscle isometric tension
relation), Eq. (B.24) becomes

To(T/To +a) < iw
KT, T,, w) = T 1txa ;Ak wtiw (B.25)

The stiffness of the isometric muscle (T = T,) is then

3 .
iw
E(Ty ,To, ©) = To(1+a) - ;Ak i (B.26)
and the relative stiffness, obtained by dividing Eq. (B.25) by Eq. (B.26) is
KT, To,0) (T/To+a\
E(T09 To’ (,U) - ( 1 + a ) (B27)

Note that this is independent of frequency, as observed experimentally, and yields the plot,
shown in Fig. 16, of relative stiffness versus relative tension in good agreement with experiment
on frog single fibre skeletal muscle.
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