
Modeling cardiac propagation
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Cardiac propagation.

The bidomain concept.

Derivation of the bidomain model from assumptions on the
cell membrane and basic electromagnetic relations.

A model for the surrounding body.

Reduction to a monodomain model.

– p. 2



Cardiac propagation

Cardiac cells has two properties and corresponding function

Excitable → Propagates the AP

Contractive → Pumps blood

Furthermore, the arrival of an AP triggers contraction. Cell to cell
coupling. Two types:

Tight junctions: Transfer mechanical energy

Gap junctions: Inter cellular channels where ions can flow
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The conduction system
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Cardiac propagation

Electrical signal initiated in the sinoatrial node (SA node).

The action potential propagates the atria, which are
insulated from the ventricles by a septum of non-excitable
cells.

The signal is conducted to the ventricles through the
atrioventricular node (AV-node), located at the base of the
atria.

Conduction through the AV-node is fairly slow, but from
there the action potential enters the so-called bundle of HIS,
made up of fast-conducting Purkinje fibers.
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The Purkinje fibers spread in a tree-like branching, ending
on the endocardiac surface of the ventricles.

Muscle cells are stimulated at the end of the Purkinje fibers,
and the action potential spreads through the muscle tissue.

The electrical propagation in the heart is both
one-dimensional (along the purkinje fibers) and
three-dimensional (in the muscle tissue).
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Modelling propagation in heart tissue

Because of the large number of cells, it is impossible to
model the tissue by modeling each individual cell.

The cells are connected, and the heart may be seen as
consisting of two continuous spaces, the intracellular and
the extracellular domain.

The geometries of the two domains are too complex to be
represented accurately.
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The bidomain concept

Instead of accurately modeling the geometry of the two
domains, they are assumed to be overlapping, both filling
the complete volume of the heart muscle.

Hence, every point in the myocardium lies in both the
intracellular and the extracellular domain.
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Basic equations

Maxwells equations states that

∇× E + Ḃ = 0

where E and B are the strength of the electrical and magnetic
field, respectively. Since Ḃ denotes the time derivative of the
magnetic field, if the fields are stationary we have.

∇× E = 0
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The quasi-static condition

Although the electrical and magnetic fields resulting from cardiac
activity are not stationary, the variations are fairly slow. We may
therefore assume that the fields are stationary, an assumption
called the “quasi-static condition”. As above, we have

∇× E = 0,

which means that the field E may be written as

E = −∇u

for some potential function u.
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Current

In a conducting body, the electrical current is given by

J = ME,

where M is the conductivity of the medium. With the definition of
E given above, the current is given by

J = −M∇u .
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Following the bidomain concept introduced above, we
introduce two electrical potentials:

Intracellular potential ui

Extracellular potential ue

Since every point in the heart muscle lies in both the
extracellular and intracellular domain, both ui and ue are
defined in every point.
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The currents in the two domains are given by

Ji = −Mi∇ui,

Je = −Me∇ue,

and if we assume no accumulation of charge, the total current
entering a small volume must equal the total current leaving the
volume. This gives

∫
∂V

(Ji + Je) · nds = 0

Since the volume V is arbitrarily chosen, this may be written as

∇ · (Ji + Je) = 0
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Inserting the expressions for the currents, we get

∇ · (−Mi∇ui) + ∇ · (−Me∇ue) = 0

(This equation states that all current leaving one domain must
enter the other domain.)
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The two domains are separated by the cell membrane.
Hence, all current going from one domain to the other must
cross the cell membrane. We have

−∇ · (−Mi∇ui) = ∇ · (−Me∇ue) = Im
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We have previously modeled the membrane current Im as the
sum of a capacitive current and an ionic current. However, that
current was measured per membrane area, while we are now
interested in the current per volume. The current per volume is
achieved by multiplying with a scale factor χ, which is the ratio of
cell membrane surface to cell volume.

Im = χ(Cm

∂V

∂t
+ I

ion
),

where V is the transmembrane potential.
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To summarize, we now have two relations for the unknown
potentials ui and ue:

∇ · (Mi∇ui) = χCm

∂V

∂t
+ χI

ion

and
∇ · (Mi∇ui) + ∇ · (Me∇ue) = 0

We see that we have three unknown potentials ui, ue and V , and
only two equations. But V is defined as the difference between
the intracellular end the extracellular potential, and this may be
used to eliminate one of the unknowns.
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We have V = ui − ue, or ui = ue + V . Inserting this into the two
equations, we get

∇ · (Mi∇(V + ue)) = χCm

∂V

∂t
+ χI

ion

∇ · (Mi∇(V + ue)) + ∇ · (Me∇ue) = 0
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These equations may be rewritten as

∇ · (Mi∇V ) + ∇ · (Mi∇ue) = χCm

∂V

∂t
+ χI

ion

∇ · (Mi∇V ) + ∇ · ((Mi + Me)∇ue) = 0

This is the standard formulation of the bidomain model.
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Potential in the surrounding body

The tissue surrounding the heart is mostly non-excitable,
meaning that the cells do not actively change their electric
properties.

The body surrounding the heart may hence be modeled as
a passive conductor.
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Extracardiac potential uo

Introducing the extracardiac potential uo, and using the
arguments presented above, we derive the equation

∇ · (Mo∇uo) = 0,

where Mo is the (averaged) conductivity of the tissue.
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Boundary conditions

To complete the mathematical model, we need boundary
conditions for V and ue on the heart surface, and for uo on
the surface of the heart and the surface of the body.

It is natural to assume that the body is insulated from its
surroundings, implying that no current leaves the body.

This gives the condition

n · (Mo∇uo) = 0

on the body surface.
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At the heart surface, the normal component of the current in
the heart must be equal to the normal component of the
current in the surrounding body

n · (Ji + Je) = n · Jo,

where n is the outward unit normal of the surface of the
heart.

Inserting expressions for Ji, Je, and Jo in terms of ue, v, and
uo gives

n · (Mi∇v + (Mi + Me)∇ue) = n · (Mo∇uo). (1)
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This condition is not sufficient. We need to make additional
assumptions about the coupling between the heart and the
body.

Several choices of boundary conditions exist for this
coupling.

A common assumption is that the intracellular domain is
insulated from the tissue surrounding the heart, while the
extracellular domain connects directly to the surrounding
tissue.

This implies that at the heart surface the extracellular
potential must equal the extracardiac potential

ue = uo (2)
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The assumption that the intracellular domain is completely
insulated implies that the normal component of the
intracellular potential must be zero on the heart surface

n · Ji = 0.

Writing this in terms of ue and v gives

n · (Mi∇v + Mi∇ue) = 0, (3)

We insert this expression into (1) to get

n · (Me∇ue) = n · (Mo∇uo). (4)

The 3 boundary conditions at the heart surface are (2), (3),
(4).
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The complete model

∂s

∂t
= F (v, s) x ∈ H

χCm
∂V

∂t
+ χI

ion
(V, s) = ∇ · (Mi∇V ) + ∇ · (Mi∇ue) x ∈ H

∇ · ((Mi + Me)∇ue) = −∇ · (Mi∇V ) x ∈ H

ue = uo x ∈ ∂H

n · (Mi∇v + Mi∇ue) = 0 x ∈ ∂H

n · (Me∇ue) = n · (Mo∇uo) x ∈ ∂H

∇ · (Mo∇uo) = 0 x ∈ T

n · (Mo∇uo) = 0 x ∈ ∂T
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Reduction to a monodomain model

The bidomain model is a very complex system of equations.

Many (most) simulations are based on a simpler
monodomain equation.

The derivation of the monodomain model is based on the
assumption of equal anisotropy ratios:

Me = λMi

– p. 28



With this simplification, the bidomain equations may be written as

χCm

∂v

∂t
+ χI

ion
(v, s) = ∇ · (Mi∇v) + ∇ · (Mi∇ue)

∇ · (Mi(1 + λ)∇ue) = −∇ · (Mi∇v)
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The second equation gives

∇ · (Mi∇ue) = −
1

1 + λ
∇ · (Mi∇v),

and if we insert this into the first equation we get

χCm

∂v

∂t
+ χI

ion
(v, s) = ∇ · (Mi∇v) −

1

1 + λ
∇ · (Mi∇v)
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Finally, we get

χCm

∂v

∂t
+ χI

ion
(v, s) =

λ

1 + λ
∇ · (Mi∇v)

A problem with the monodomain model is that it can not be
coupled directly to a surrounding body. Reproduction of ECG
signals hence require additional computations.
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Conclusions

Because of the excitability of cardiac cells, a simple
volume-conductor model is not sufficient for modeling the
heart muscle.

By conceptually dividing the tissue into extracellular and
intracellular domains, we are able to construct a
mathematical model which describes signal propagation in
the excitable tissue.

By making a (non-physiological) assumption, the complex
model may be reduced to a simpler monodomain model.
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