
Mathematical models of chemical reactions



The Law of Mass Action

Chemical A and B react to produce chemical C:

A + B
k−→ C

The rate constant k determines the rate of the reaction. It can be
interpreted as the probability that a collision between the reactants
produces the end results.
If we model the probability of a collision with the product [A] [B]
we get the law of mass action:

d [C ]

dt
= k[A][B]



A two way reaction

The reverse reaction may also take place:

A + B
k+−→←−
k−

C

The production rate is then:

d [C ]

dt
= k+[A][B]− k−[C ]

At equilibrium when d [C ]/dt = 0 we have:

k−[C ] = k+[A][B] (1)



If A + B
k−→ C is the only reaction involving A and C then

d [A]/dt = −d [C ]/dt

so that
[A] + [C ] = A0 (2)

Substituting (2) into (1) yields:

[C ] = A0
[B]

Keq + [B]

where Keq = k−/k+.
Notice that

[B] = Keq =⇒ [C ] = A0/2

and
[B]→∞ =⇒ [C ]→ A0



Gibbs free energy

Molecules have different chemical potential energy, quantified by
Gibbs free energy

G = G 0 + RT ln(c)

where c is the concentration of the molecule, T is the
temperature, R the gas constant.
G 0 is the energy at c = 1M, called the standard free energy.



Gibbs free energy

Can be used to compare two states:

A −→ B

Change in free energy after this reaction:

∆G = GB − GA

= (G 0
B + RT ln(B))− (G 0

A + RT ln(A))

= (G 0
B − G 0

A) + (RT ln(B)− RT ln(A))

= ∆G 0 + RT ln(B/A)

If ∆G < 0, i.e. there is less free energy after the reaction, then B
is the preferred stated.



Gibbs free energy at equilibrium

At equilibrium neither states are favoured and ∆G = 0:

∆G = ∆G 0 + RT ln(B/A) = 0

Given G 0, the concentrations at equilibrium must satisfy:

ln(Beq/Aeq) = −∆G 0/RT

or
Beq

Aeq
= e−∆G0/RT



Gibbs free energy and rate constants

The reaction

A
k+−→←−
k−

B

is governed by
d [A]

dt
= k−[B]− k+[A]

and at equilibrium d [A]
dt = 0, so

k−[B]− k+[A] = 0, or ,A/B = k−/k+ = Keq

Comparing with the Gibbs free energy we find:

Keq = e∆G0/RT

Note:
∆G 0 < 0 =⇒ Keq < 1 =⇒ Beq > Aeq



Gibbs free energy with several reactants

The reaction
αA + βB −→ γC + δD

has the following change in free energy:

∆G = γGC + δGD − αGA − βGB

= γG 0
C + δG 0

D − αG 0
A − βG 0

B

+ γRT ln([C ]) + δRT ln([D])− αRT ln([A])− βRT ln([B])

= ∆G 0 + RT ln(
[C ]γ [D]δ

[A]α[B]β
)

At equilibrium with ∆G = 0:

∆G 0 = RT ln(
[A]αeq[B]βeq

[C ]γeq[D]δeq
)



Detailed balance

Consider the cyclic reaction:

In equilibrium all states must have the same energy:

GA = GB = GC

All transitions must be in equilibrium:

k1[B] = k−1[A], k2[A] = k−2[C ], k3[C ] = k−3[B]

Which yields:

k1[B] · k2[A] · k3[C ] = k−1[A] · k−2[C ] · k−3[B]



Detailed balance

cont.
k1[B] · k2[A] · k3[C ] = k−1[A] · k−2[C ] · k−3[B]

so
k1k2k3 = k−1k−2k−3

This last condition is independent of the actual concentrations and
must hold in general. Thus only 5 free parameters in the reaction.



Enzyme Kinetics

Characteristics of enzymes:

Made of proteins

Acts as catalysts for biochemical reactions

Speeds up reactions by a factor > 107

Highly specific

Often part of a complex regulation system



Reaction model of enzymatic reaction

S + E
k1−→←−
k−1

C
k2−→ P + E

with

S: Substrate

E: Enzyme

C: Complex

P: Product



Mathematical model of enzymatic reaction

Applying the law of mass action to each compound yields:

d [S ]

dt
= k−1[C ]− k1[S ][E ] + JS

d [E ]

dt
= (k−1 + k2)[C ]− k1[S ][E ]

d [C ]

dt
= k1[S ][E ]− (k2 + k−1)[C ]

d [P]

dt
= k2[C ]− JP

Here we also supply the substrate at rate JS and the product is
removed at rate JP .



Equilibrium

Note that In equilibrium

d [S ]/dt = d [E ]/dt = d [C ]/dt = d [P]/dt = 0

it follows that that JS = JP .
Production rate:

J = JP = k2[C ]



In equilibrium we have
d [E ]

dt
= 0

that is
(k−1 + k2)[C ] = k1[S ][E ]

Since the amount of enzyme is constant we have

[E ] = E0 − [C ]

This yields

[C ] =
E0[S ]

Km + [S ]

with Km = k−1+k2

k1
and E0 is the total enzyme concentration.

Production rate: d [P]
dt = k2[C ] = Vmax

[S]
Km+[S] , where Vmax = k2E0.



Cooperativity, 1.4.4

S + E
k1−→←−
k−1

C1
k2−→ E + P

S + C1

k3−→←−
k−3

C2
k4−→ C1 + P

with

S: Substrate

E: Enzyme

C1: Complex with one S

C1: Complex with two S

P: Product



Mathematical model of cooperativ reaction

Applying the law of mass action to each compound yields:

ds

dt
= −k1se + k−1c1 − k3sc1 + k−3c2

dc1

dt
= k1se − (k−1 + k2)c1 − k3sc1 + (k4 + k−3)c2

dc2

dt
= k3sc1 − (k4 + k−3)c2



Equilibrium

Set dc1
dt = dc2

dt = 0, and use e0 = e + c1 + c2,

c1 =
K2e0s

K1K2 + K2s + s2

c2 =
e0s

2

K1K2 + K2s + s2

where K1 = k−1+k2

k1
, K2 = k4+k−3

k3

Reaction speed:

V = k2c1 + k4c2 =
(k2K2 + k4s)e0s

K1K2 + K2s + s2



Case 1: No cooperation

The binding sites operate independently, with the same rates k+

and k−. k1, k−3 and k4 are associated with events that can
happen in two ways, thus:

k1 = 2k3 = 2k+

k−3 = 2k−1 = 2k−

k4 = 2k2

So:

K1 =
k−1 + k2

k1
=

k− + k2

2k+
= K/2

K2 =
k−3 + k4

k3
=

2k− + 2k2

k+
= 2K

where

K =
k− + k2

k+



Which gives this reaction speed:

V =
(k2K2 + k4s)e0s

K1K2 + K2s + s2

=
(2k2K + 2k2s)e0s

K 2 + 2Ks + s2

=
2k2(K + s)e0s

(K + s)2
=

2k2e0s

(K + s)

Note that this is the same as the reaction speed for twice the
amount of an enzyme with a single binding site.



Case 2: Strong cooperation

The first binding is unlikely, but the next is highly likely, i.e. k1 is
small, and k3 is large. We go to the limit:

k1 → 0, k3 →∞, k1k3 = const

so
K2 → 0,K1 →∞,K1K2 = const

In this case the reaction speed becomes:

V =
k4e0s

2

K 2
m + s2

= Vmax
s2

K 2
m + s2

with K 2
m = K1K2, and Vmax = k4e0



The Hill equation

In general with n binding sites, the reaction rate in the limit will be:

V = Vmax
sn

Kn
m + sn

This model is often used when the intermediate steps are
unknown, but cooperativity suspected. The parameters Vmax,Km

and n are usually determined experimentally.


