
The membrane potential



Flow through a semi-permeable membrane

Consider two solutions:

A: Contains 100mM Cl− ions and 100mM Na+ ions

B: Contains 10mM Cl− ions and 10mM Na+ ions

Both are neutral.



Flow through a semi-permeable membrane

If they are only separated by a membrane permeable to Cl− but
not Na+, this will happen:

Cl− will diffuse from A to B due the concentration gradient

[Cl−]A will drop and [Cl−]B will increase

[Na+]A and [Na+]B will remain fixed (no flow)

A and B will no longer be neutral

An electrical force will attract Cl− towards A



Flow through a semi-permeable membrane

The cell membrane is semi-permeable.

The semi-permeability is provided by for example ion channels

V is called the membrane potential and is defined by Vi − Ve



The Nernst Equilibrium Potential

We now have two forces driving Cl− across the membrane:

Flow from A to B due to the concentration gradient

Flow from B to A due to the charge gradient

At some point an equilibrium is reached were the net flow is zero.
The transmembrane potential at that point is called the Nernst
Equilibrium Potential.



Nernst Equilibrium Potential via Planck’s equation

Models the ion-flux caused by an electrical field (Planck’s
equation):

J = −µ z

|z |
c∇φ

with
µ - mobility of the ions in the liquid
z/|z | - sign of the charge of the ion
c - the concentration of the ion
∇φ - the electrical field



Nernst Equilibrium Potential via Planck’s equation

Given Fick’s law of diffusion

J = −D∇c

and using Einstein’s relationship between µ and D:

µ = D
|z |F
RT

to substitute for µ in Plank’s law, we can combine the effect of
concentration gradient (Fick’s law) and the electric field (Plank’s
law):

J = −D(∇c +
zF

RT
c∇φ)

and we get Nernst-Planck equation for electro diffusion.



Nernst Equilibrium Potential via Planck’s equation

Consider equilibrium in 1D flow:

dc

dx
+

zF

RT
c
dφ

dx
= 0

1

c

dc

dx
+

zF

RT

dφ

dx
= 0

Integrating from inside (x=0) to outside (x=L) yields:

ln(c)|c(L)
c(0) = − zF

RT
(φ(L)− φ(0))

We define the transmembrane potential to be v = φi − φe The
value of the transmembrane potential at zero flux is then

Ve =
RT

zF
ln(

ce
ci

) (1)



Ionic currents across the membrane

Ionic currents across the membrane can in general be expressed by:

I = N p(V , t)I(V )

where:

I(V ) is an I − V relationship

N the number of open channels

p(V , t) the proportion of open channels

Next we will go through:

2 common versions of I(V )

How I change the membrane potential V

Different models for p(V , t)
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Linear and nonlinear I − V relationship for which both
I(Ve) = 0

Linear

I(V ) = ḡ(V − Ve)

I(Ve) = 0

where ḡ is a maximal channel conductance.

Nonlinear (Goldman-Hodgkin-Katz)

I(V ) = gV
ci − cee

−zvF
RT

1− e
−zVF
RT

I(Ve) = I(
RT

zF
ln(

ce
ci

)) = 0



Linear and nonlinear I − V relationship for which both
I(Ve) = 0

Linear

I(V ) = ḡ(V − Ve)
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Goldman-Hodgkin-Katz current equation

Nernst-Planck equation for electro diffusion:

J = −D(∇c +
zF

RT
c∇φ)

Consider 1D flow through a channel and assume ∇φ is constant in
space and that c and φ are in steady-state and varies linearly inside
the channel.

dφ

dx
=

∆φ

∆x
=
φ(L)− φ(0)

L− 0
=
φe − φi

L
= −v/L

The equation is reduced to an ordinary differential equation:

J/D = −dc

dx
− zF

RT
c(−v/L) = −dc

dx
+ kc

where k = zFv
RTL
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Goldman-Hodgkin-Katz current equation

The differential equation

J/D = −dc

dx
+ kc

is solved by setting initial conditions c(0) = ci :

e−kxc = ci +
J

D

1

k
(e−kx − 1)

We determine J by using c(L) = ce :

J = Dk
ci − c(L)e−kL

1− e−kL
= D

zFv

RTL

ci − cee
−zvF
RT

1− e
−zvF
RT

J has dimension moles per area per time, an expression for current
is given by

I = zFJ =
D

L

z2F 2

RT
v
ci − cee

−zvF
RT

1− e
−zvF
RT
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Ionic currents across the membrane alters the membrane
potential as if it was a capacitor

The membrane has properties similar to a capacitor:

Consists of two conducting medias

These are separated by an insulating material (the membrane)

The potential over a capacitor is proportional to the separated
charge (Q):

V = Q/Cm

where Cm is the capacitance of the capacitor.



The cell membrane modeled as a leaky capacitor

As any real capacitor the membrane conducts some current. The
flux of ions (Iion) will cause a change in Q and thus V .

Consider the change over a time interval ∆t. It follows that
∆V
∆t = 1

Cm

∆Q
∆t and in the limit we get:

dV

dt
=

1

Cm

dQ

dt

The term dQ
dt is called the capacitive current and is denoted ic .

Extracellular

Intracellular

ic



Electrical circuit model of the cell membrane

Extracellular

Intracellular

i tot

ici ion

The membrane behaves like resistor and capacitor in parallel:

itot = iion + ic

If no current escapes Itot = 0 and all ions passing the membrane,
iion accumulate and change the membrane potential according to

Cm
dV

dt
= ic = −iion



Channel gating, 3.5

Channels with a single and several identical gates

Channels with different but independent gates



Voltage gated Ion channels

Recall that ion currents across the membrane can be expressed as:

I = N p(V , t)I(V )

Here p(V , t) determines the proportion of the N channels in the
membrane that are open. This propensity function varies with time
and membrane potential.

Next we will go through different expressions for how this
propensity function can be derived for Voltage gated ion channels.
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Voltage gated channel with one gate,3.5.1

Assumes that a channel is gated by one gate that can exist in two
states, closed(C) and open(O):

C
α(v)
−→←−
β(v)

O

Applying law of mass action:

d [0]

dt
= α(V )[C ]− β(V )[O]

Dividing by the total amount of channels ([C]+[O]) yields

dp

dt
= α(V )(1− p)− β(V )p

where p is the portion of open channel ( [O]/([C]+[O])).
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Voltage gated channel with two identical and independent
gates, 3.5.2

For some channels it is more appropriate to include several gates,
which all need to be open for the channel to conduct. Example
with two gates:

S00

α

→
←
β

S10

α ↓↑ β α ↓↑ β

S01

α

→
←
β

S11

Using the law of mass action we get a system of four equation.
Will try to reduce this number to one!



Voltage gated channel with two identical and independent
gates

Combine the states S01 and S10 into S1 = S01 + S10 :

S01
dt = αS00 + βS11 − (α + β)S01

+ S10
dt = αS00 + βS11 − (α + β)S10

= S1
dt = 2αS00 + 2βS11 − (α + β)S1

Define S0 = S00 and S2 = S11, we can then write:

S0
2α→←
β

S1
α→←
2β

S2



Voltage gated channel with two identical and independent
gates

Only two independent variables since S0 + S1 + S2 = ST , constant.
Define xi = Si/ST . Claim:

x2 = n2, with
dn

dt
= α(1− n)− βn

and
p(V , t) = n2



Voltage gated channel with three gates, where two are
identical and all are independent, 3.5.3

Behavior of the Sodium conductance can not be described by a
chain of two identical gates.

Two subunits of type m and one of type h.

S00

2α
→←
β

S10

α
→←
2β

S20

γ ↓↑ δ γ ↓↑ δ γ ↓↑ δ

S01

2α
→←
β

S11

α
→←
2β

S21

Arguments similar to the one used above leads to these equations
for m and h:

dm

dt
= α(1−m)− βm, dh

dt
= γ(1− h)− δh, p(V , t) = m2h



Voltage gated channel with one gate, which can inactivate
in addition to open and close, 3.5.3

dc

dt
= −(α + δ)c + βo

do

dt
= αc − (β + γ)o

i = 1− c − o

p(V , t) = o



Carrier-Mediated Transport, 2.4

Some substances can not pass the membrane on their own, but are
helped by a carrier protein.

Types of transport:

Uniport: Transport of single substance

Symport: Transport of several substances
in same direction

Antiport: Transport of several substances
in opposite directions

With symport and antiport the carrier molecule as several binding
sites.



Uniport

Substrate S combines with a carrier protein C to form a complex P.
The protein has two conformal states.
Model:

Si + Ci

k+−→←−
k−

Pi

k
−→←−
k

Pe

k−−→←−
k+

Se + Ce

Ci

k
−→←−
k

Ce



Model for Carrier Mediated Transport, Uniport

Applying the law of mass action:

d [Si ]

dt
= k−[Pi ]− k+[Si ][Ci ]− J

d [Se ]

dt
= k−[Pe ]− k+[Se ][Ce ] + J

d [Pi ]

dt
= k[Pe ]− k[Pi ] + k+[Si ][Ci ]− k−[Pi ]

d [Pe ]

dt
= k[Pi ]− k[Pe ] + k+[Se ][Ce ]− k−[Pe ]

d [Ci ]

dt
= k[Ce ]− k[Ci ] + k−[Pi ]− k+[Si ][Ci ]

d [Ce ]

dt
= k[Ci ]− k[Ce ] + k−[Pe ]− k+[Se ][Ce ]

Here J is the influx of the glucose molecules (S).



Size of flux in equilibrium

The flow in equilibrium can be setting the derivatives to zero and
solve for J.

This yields a system of six eq. and seven unknowns.

The amount of protein is conserved so we have:

[Ci ] + [Ce ] + [Pi ] + [Pe ] = C0

Solving for J in equilibrium then gives:

J =
1

2
kKC0

[Se ]− [Si ]

([Si ] + K + Kd)([Se ] + K + Kd)− K 2
d

with K = k−/k+ and Kd = k/k+.



Size of flux in equilibrium

J =
1

2
kKC0

[Se ]− [Si ]

([Si ] + K + Kd)([Se ] + K + Kd)− K 2
d

Factors affecting the flux:

The amount of Carrier molecules C0

The rate constants

Substrate gradient



Model for symport

Two different substances S and T are transported in the same
direction. The carrier C has m binding sites for S and n for T :

mSi + nTi + Ci

k+−→←−
k−

Pi

kp−→←−
k−p

Pe

k−−→←−
k+

mSe + nTe + Ce

Ci

k
−→←−
k

Ce



Need to model mathematically the process

mS + nT + C
k+−→←−
k−

P

Consider the simpler reaction

A + B + C
k+−→←−
k−

ABC

If we assume that the reaction takes place in two steps

A + B
k1−→←−
k−1

AB

AB + C
k+−→←−
k−

ABC



cont.

A + B
k1−→←−
k−1

AB

AB + C
k+−→←−
k−

ABC

If the intermediate step is fast, we can assume it to be in
equilibrium:

d [AB]

dt
= k1[A][B]− k−1[AB] = 0⇒ [AB] = k1/k−1[A][B]

For the total reaction:

d [ABC ]

dt
= k+[AB][C ]− k−[ABC ] = k+

k1

k−1
[A][B][C ]− k−[ABC ]



Flux for symport

With repeated use of similar arguments

d [P]

dt
= k+[S ]m[T ]n[C ]− k−[P]

The symport model will be identical to the uniport model by
substituting [S ] with [S ]m[T ]n.
Flux:

J =
1

2
KdKk+C0

[Se ]m[Te ]n − [Si ]
m[Ti ]

n

([Si ]m[Ti ]n + K + Kd)([Se ]m[Te ]n + K + Kd)− K 2
d



Antiport

In antiport the two substances travel in opposite direction
(exchangers).
Model:

mSi + nTe + Ci

k+−→←−
k−

Pi

kp−→←−
k−p

Pe

k−−→←−
k+

mSe + nTi + Ce

Mathematically almost the same flux, but with subscript of T
toggled:

J =
1

2
KdKk+C0

[Se ]m[Ti ]
n − [Si ]

m[Te ]n

([Si ]m[Te ]n + K + Kd)([Se ]m[Ti ]n + K + Kd)− K 2
d



Sodium-Calcium exchange, 2.4.3

The sodium calcium exchanger is a membrane protein

It uses the energy stored in the sodium gradient to do work on
calcium ions.

Transports one calcium ion out of the cell (against the Calcium
gradient)
In exchange for letting three sodium ions in (along the Sodium
gradient)

It is electrogenic, i.e. each exchange changes the charge
balance over the membrane.

Net influx: 3× Na+ − 1× Ca2+ = +e



Sodium-Calcium exchange



dx1

dt
= k−1n

3
i x2 + k4y1 − (k1ci + k−4)x1

dx2

dt
= k−2y2 + k1cix1 − (k2 + k−1n

3
i )x2

dy1

dt
= k−4x1 + k3n

3
ey2 − (k4 + k−3ce)y1

1 = x1 + x2 + y1 + y2

Flux in steady state:

J =
k1k2k3k4(cin

3
e − K1K2K3K4cen

3
i )

16 positive terms



An electrogenic exchanger

Li → Le

∆G = GLe − GLi

= (G 0
Le + RT ln([Le ]) + zFVe)− (G 0

Li
+ RT ln([Li ]) + zFVi )

= RT ln

(
[Le ]

[Li ]

)
− zFV

Here we have used that G 0
Le

= G 0
Li

and V = Vi − Ve .
At equilibrium

K =
[Li ]eq
[Le ]eq

= exp

(
−zFV
RT

)



Back to the NCX case

3Na+
e + Ca2+

i −→ 3Na+
i + Ca2+

e

Change in chemical potential:

∆G = RT ln

(
n3
i ce
n3
eci

)
+ FV

At equilibrium we have ∆G = 0 thus:

n3
i ,eqce,eq

n3
e,eqci ,eq

= exp

(
−FV

RT

)
Detailed balance require that the product of the rates in each
direction is equal:

k1ci ,eq · k2 · k3n
3
e,eq · k4 = k−1n

3
i ,eq · k−4 · k−3ce,eq · k−2



Defining Kj = k−j/kj this becomes

K1K2K3K4 =
ci ,eq
ce,eq

n3
e,eq

n3
i ,eq

Inserting into previous expression:

K1K2K3K4 = exp

(
FV

RT

)
The current expression then becomes:

J =
k1k2k3k4(cin

3
e − e

FV
RT cen

3
i )

16 positive terms


