

Excitable Cells 5.1

Unlike other cells, excitable cells can be triggered to set off an action potential.

During the action potential the transmembrane potential departs from its resting potential, reaches a peak potential and returns to the resting potential after some time.

Nerve cells and cardiac cells uses the action potential as a signal to neighboring cells.

The trigger must be of a certain size, if below the threshold the cell will not "fire".

The Hodgkin-Huxley Model

Developed to study the action potential of the squid nerve cells.

Assumed three different current I_{Na} , I_{K} and I_{L} Assumed also linear current-voltage relationship:

$$C_{m} \frac{dv}{dt} = -I_{\text{ion}} + I_{app} = -g_{\text{Na}}(v - v_{\text{Na}}) - g_{\text{K}}(v - v_{\text{K}}) - g_{\text{L}}(v - v_{\text{L}}) + I_{app}$$

Can collect the current terms due to linearity:

$$C_m \frac{dv}{dt} = -g_{\text{eff}}(v - v_{\text{eq}})$$

where

$$g_{\rm eff} = g_{\rm Na} + g_{\rm K} + g_{\rm L}$$

and

$$v_{\rm eq} = \frac{g_{\rm Na} v_{\rm Na} + g_{\rm K} v_{\rm K} + g_{\rm L} v_{\rm L}}{g_{\rm eff}}$$

 $v_{\rm eq}$ is a weighted average of the individual equilibrium potentials. The weighing factors are time and voltage dependent.

A steady applied current $I_{\rm app}$ moves the membrane potential to different equilibrium.

$$C_m \frac{dv}{dt} = -g_{\text{eff}}(v - v_{\text{eq}}) + I_{\text{app}} = 0$$

Implies

$$v = v_{\rm eq} + \frac{1}{C_m g_{\rm eff}} I_{\rm app}$$

The applied current will be compensated by an ionic current going the opposite way, thus the net current will be zero.

For a sufficiently large l_{app} , v will pass the threshold potential and an action potential is triggered. The conductivities will vary greatly.

Voltage Clamp measurements

The transmembrane potential is forced by an applied current to a fixed value.

Since $I_{\text{ion}} = -I_{\text{app}}$ for a fixed v, we can measure I_{ion} as a function of time for a given level of v.

Since v is fixed the observed variations must be due to temporal variation in the conductivities.

Total membrane current for different steps, 5.1.2

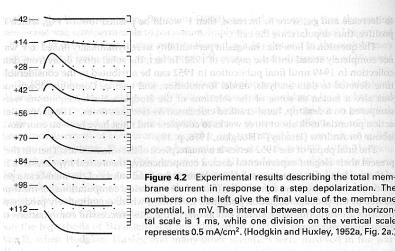


Figure 4.2 Experimental results describing the total membrane current in response to a step depolarization. The numbers on the left give the final value of the membrane potential, in mV. The interval between dots on the horizontal scale is 1 ms, while one division on the vertical scale represents 0.5 mA/cm2. (Hodgkin and Huxley, 1952a, Fig. 2a.)

From measurements to models

Initially, Hodgkin and Huxley assumed $I_{ion} = I_{Na} + I_{K}$. Two kind of experiments conducted:

- 1: Normal concentrations
- 2: $[Na]_e$ replaced by cohline \Rightarrow affects I_{Na} but not I_K .

Assumed further:

- Initially $I_K = 0$
- $I_{Na}^1/I_{Na}^2 = C$, constant
- $I_{K}^{1} = I_{K}^{2}$

Once I_{ion}^1 and I_{ion}^2 is recorded we can determine C from the first and the second assumptions.

Expressions for the currents in terms of measurable quantities can now be obtained:

$$I_{Na}^{1} = \frac{C}{C-1}(I_{ion}^{1} - I_{ion}^{2})$$

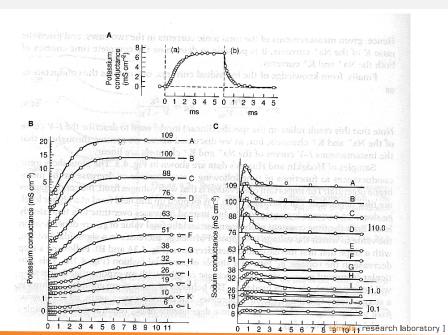
$$I_{\mathsf{K}} = \frac{1}{1 - C} (I_{\mathsf{ion}}^1 - CI_{\mathsf{ion}}^2)$$

Assuming linear current-voltage relationships we get expressions for the conductivities:

$$g_{\mathsf{Na}} = rac{I_{\mathsf{Na}}}{V - V_{\mathsf{Na}}}, \quad g_{\mathsf{K}} = rac{I_{\mathsf{K}}}{V - V_{\mathsf{K}}}$$

For each pair of voltage clamp experiment (with a given voltage step), we now have a time course for g_{Na} and g_{K} .

Potassium and Sodium conductance



Model for the Potassium conductance

Assumed
$$\frac{dg_{K}}{dt} = f(v, t)$$
.

Ended up with introducing a second variable:

$$g_{K} = \overline{g}_{K} n^{4}$$
, with $\frac{dn}{dt} = \alpha(v)(1-n) - \beta(v)n$

and \overline{g} is the maximum conductance. Forth power was chosen to get the correct shape of the solution.

The solution of

$$\tau_n \frac{dn}{dt} = n_{\infty} - n$$

with constant coefficients is

$$n(t) = n_{\infty} + (n(0) - n_{\infty})e^{-t/\tau_n}$$

If we assume that $n_{\infty}(0) = 0$ a step from from 0 to ν yields:

$$n(t) = n_{\infty}(v) + (n_{\infty}(0) - n_{\infty}(v))e^{-t/\tau_{n}(v)}$$

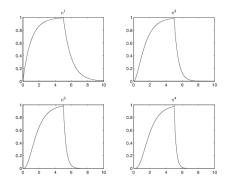
= $n_{\infty}(v)(1 - e^{-t/\tau_{n}(v)})$

A step in the other direction gives:

$$n(t) = n_{\infty}(0) + (n_{\infty}(v) - n_{\infty}(0))e^{-t/\tau_{n}(0)}$$

= $n_{\infty}(v)e^{-t/\tau_{n}(0)}$

Gating variable raised to different powers



Sodium conductance model

H&H realized that two different sub units were at work. Ended up with

$$g_{Na} = \overline{g}_{Na} m^3 h$$

Values for $m_{\tau}, m_{\infty}, h_{\tau}$ and h_{∞} obtained by fitting the solution to plots of $g_{\rm Na}$.

The Hodgkin-Huxley model

Introduces a third current, not time dependent:

$$C_m \frac{dv}{dt} = -\overline{g}_K n^4 (v - v_K) - \overline{g}_{Na} m^3 h(v - v_{Na}) - \overline{g}_L (v - v_L)$$

with

$$\frac{dg}{dt} = \alpha_g(v)(1-g) - \beta_g(v)g, \quad g = m, h, n$$

Model based on voltage clamp measurement. How will it behave under normal conditions?

The model will predict the action potential.

Analysis of the Hodgkin-Huxley model

Qualitative analysis, 5.1.3

Would like to reduce the number of state variables to simplify analysis.

One way is to treat the slowest variables as constants. Of the three gating variables m has the fastest dynamics. (Controls the activation of the Na-current).

Reduced model:

$$C_m \frac{dv}{dt} = -\overline{g}_{K} n_0^4 (v - v_{K}) - \overline{g}_{Na} m^3 h_0 (v - v_{Na}) - \overline{g}_{L} (v - v_{L})$$

Equilibria in the reduced HH-model

The nullclines $\frac{dv}{dt} = 0$ and $\frac{dm}{dt} = 0$ form curves in the (v, m)-plane. Their intersections are the equilibria.

Initially three steady states v_r , v_s and v_e . v_r and v_e are stable and v_s unstable.

As n_0 and h_0 changes, the $\frac{dv}{dt}=0$ line will shift. v_e will decrease, coincide with v_s and disappear.

 v_r will become the only stable equilibrium.

Phase plot for the fast sub-system

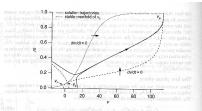


Figure 4.10 The Hodgkin-Huxley fast phase-plane, showing the nullclines dv/dt=0 and dm/dt=0 (with $h_0=0.596,\ n_0=0.3176$), two sample trajectories and the stable manifold of the saddle point v_a .

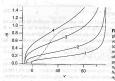


Figure 4.11 The Hodgkin-Huxley fast phase-plane as a function of the slow variables, showing the m nullcline (dashed) and the movement of the v nullcline (solid and the disappearance nullcline (solid and the disappearance parameter values are 10.5 \times 0.5 \times 0.5

Alternative reduction:

- m is very fast, almost in equilibrium: $m = m_{\infty}(v)$
- h + n almost constant: h = 0.8 n

We then have

$$C_m \frac{dv}{dt} = -\overline{g}_{\mathsf{K}} n^4 (v - v_{\mathsf{K}}) - \overline{g}_{\mathsf{Na}} m_{\infty}^3(v) \underbrace{(0.8 - n)(v - v_{\mathsf{Na}})}_{\mathsf{Na}} - \overline{g}_{\mathsf{L}}(v - v_{\mathsf{L}})$$

Equilibria found by looking at the crossing of the nullclines $\frac{dv}{dt} = 0$ and $\frac{dn}{dt} = 0$ in the (v, n)-plane.

Phase plot for the fast-slow reduced system

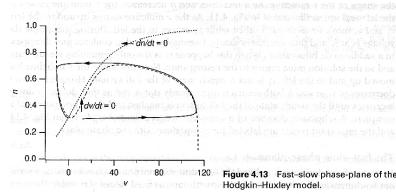
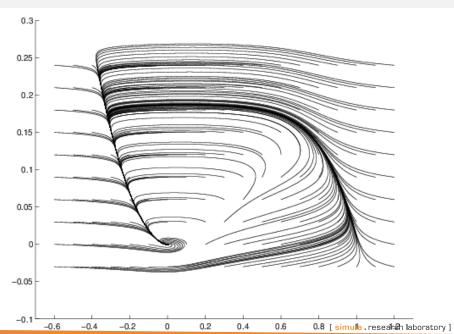


Figure 4.13 Fast-slow phase-plane of the Hodgkin-Huxley model.

Properties of the phase plot

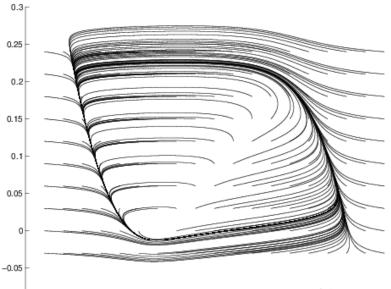
- $\frac{dv}{dt} = 0$ cubic form, with two stable and one unstable branch
- $\frac{dn}{dt} = 0$ sigmoid form
- One crossing with default parameters
- Trajectories horizontal due faster dynamic of v
- Starting points to the left of the unstable branch converges to equilibrium without crossing the unstable branch
- Starting points to the right of the unstable branch crosses this branch, reaches the rightmost branch, follows this branch and the trajectory continues to rise until $\frac{dn}{dt} = 0$ is crossed. The trajectory finally reaches the leftmost branch and follows it to the equilibrium points.

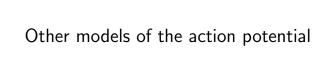
Simulations with different initial conditions



Modified model

The point (0,0) is no longer a stable equilibrium.





The FitzHugh-Nagumo model, 5.2

Purpose:

Keep the qualitative behavior of the Hodgkin-Huxley system, but in a simplified form. Derivation based on a an electrical circuit model.

On dimensionless form:

$$\begin{array}{rcl} \epsilon \frac{dv}{dt} & = & f(v) - w - w_0 \\ \frac{dw}{dt} & = & v - \gamma w - v_0 \end{array}$$

The variable w is called the recovery variable.

Typically f is chosen to be "cubic", i.e. with three zeros, $f(0) = f(\alpha) = f(1)$ and $0 < \alpha < 1$. Some choices:

$$f(v) = Av(v - \alpha)(1 - v)$$

$$f(v) = \begin{cases} -v, & v < \alpha \\ 1 - v, & v > \alpha \end{cases}$$

$$f(v) = \begin{cases} -v, & v < \alpha/2 \\ v - \alpha, & \alpha/2 < v < (1 + \alpha)/2 \\ 1 - v, & v > (1 + \alpha)/2 \end{cases}$$

Cardiac cells

Excitable like neurons, display great variability

- SA node cells: Pace maker cells, controls the heart rate, self depolarizing
- AV node cells: Transmit signal from atria to ventricles with a delay
- Purkinje cells: Very high conductivity, propagate signal from AV out to the ventricles.
- Myocardial cells: Muscle cells (can contract)

These cells have different action potentials.

The HH-model was based on neurons. Other models necessary for cardiac cells.

The Beeler-Reuter model

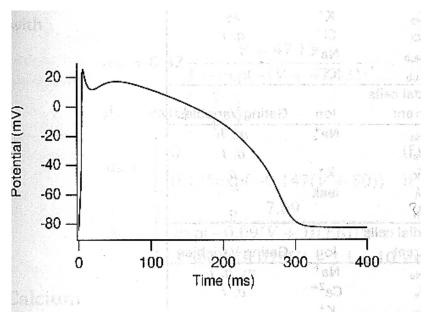
A model for ventricular cells, includes three currents, six gates and one ionic concentration.

$$-C_m \frac{dV}{dt} = I_{Na}(V, m, h, j) + I_{K}(V, x) + I_{S}(V, f, g, [Ca]_i)$$

Here m, h, j, x, f, g are gating variables and $[Ca]_i$ is the intra cellular Calcium concentration

The action potential is much longer then for HH. Early repolarization (notch).

Action potential produced by the Beeler-Reuter model



Currents of the Beeler-Reuter model

Sodium current:

Third gating variable included to model the slow recovery (long refractory period). The model also include an ungated "leakage" current:

$$I_{\mathsf{Na}} = (4m^3hj + 0.003)(V - 50)$$

Potassium:

One singled gated (with x) and one ungated component:

$$I_{\mathsf{K}} = f(v) + xg(v)$$

Calcium:

To gates, d activates, f inactivates:

$$I_{\mathsf{S}} = 0.09 \mathit{fg}(V - V_{\mathsf{Ca}})$$

In addition the $[Ca]_i$ is updated:

$$\frac{dc}{dt} = 0.07(1-c) - I_{\mathsf{S}}$$

where $c = 10^7 [Ca]_i$