Wave propagtion in Excitable Systems, chapter 6

» The bistable equation
> Properties of traveling wave solution

» Analytical solution (for cubic reaction term)



The bistable equation

ov 92V
E—WJF“V) (1)

Where (V) has three zeros, say at V =0, «, 1. For example:
f(V)=aV(V—-1)(a-V)

The solution will be a travelling wave.



Traveling wave

Assume a solution on the form:
V(x, t) = Ulx + ct) = U(€)
Inserting this into the bistable equation yields a 2. order ODE:
U«E£ — CUg + f(U) =0

Or equivalently a system of two 1. order ODEs:

Us =W
Wg = CW — f(U)
We seek solutions where

=0

(U, Ug) *25°(0,0), and (U, Ue) =3 (1,0).



Analytical solution in the cubic case

With
f(V)=AV(V —1)(a— V)

the solution is given as

u(e) = % [1 + tanh (2\%5”

(1-2a)

with

C =

Sl >



Rate constants as probabilities, chapter 3.6

» Alternative derivation of gate variable equations - from
probability theory

» Generalization to multi-state Markov models

> Waiting time

» Single channel experiments for estimating rate constants



Rate constants as probabilities

Consider again the following model:

a(v)
C—o0
B(v)

Probabilistic interpretation of o and f:

a:P(C— O in dt) = adt

B:P(O — Cin dt) = [dt



Rate constants as probabilities

Consider again the following model:

a(v)
C—o0
B(v)

Probabilistic interpretation of o and f:

a:P(C— O in dt) = adt

B:P(O — Cin dt) = [dt

Probability that the channel is open at time t + dt:

P(O,t+ dt) = P(C,t)- P(C — O in dt)
+ P(O,t)- P(not O — C in dt)
P(C,t) - (adt)+ P(O,t) - (1 — Bdt)



P(O,t+dt) = P(C,t) - (adt) + P(O,t) - (1 — Bdt)
=(1-P(0,t))- (adt)+ P(O, t)- (1 — pdt)
since P(C,t)+ P(O,t) =1.
Divides by dt and rearranges:

P(O,t+dt) — P(O,t)

™ =a-(1-P(0,t))—p-P(O,t)

Going to the limit:

dP(d(ia D _ 0. (1-P0,8) - 8- P(O, 1)

Which we recognize this as the usual gating equation!

db _

P —a(V)(1-p) - B(V)p



The general case with N different states

Let S =[1,..., N]. We write 5(t) = if the system is in state j at
time t, and define:

ki is the probability rate going from S =i to S = j:
kijdt = P(S(t+ dt) = j|S(t) = i)
Probability of staying S = i:
JFE

P(S(t+dt) =i[S(t)=i)=1-Y kydt =1— Kidt
J

where K; = 77 ky



Time evolution of ¢;(t)

¢j(t + dt) = ¢j(t) - P(staying in j for dt)
+ ng); P(enter j from i in dt)

i#j
! i#

= ¢;(t) - (1 — K;dt) +Z¢, )kijdt

Divide by dt and rearrange:

| s i#j
oi(t + dsi ¢i(t) _ —Kioi(t) + Y di(t)k

And in the limit:

d¢J Z kijoi(t), ki=—K;



Time evolution of ¢;(t)

d<z5
J Z kiidi(t), ki = —K;
can be expressed as a matrix-vector expression:

do(t)
T Ko(t)

Here K is called a transition matrix and multiplied with the
probability vector ¢ provides the right hand side function of a
system of ODEs.



Example with a four state Markov model
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Example with a four state Markov model
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Waiting time

How long time (T;) does the system spend in a state S; before
leaving? We define P;(t) := P(T; < t).
Note Kidt = P(leaving S; during dt)

Pi(t + dt) = P(
+ P(not occurred yet) - P(it takes place in this interval)
P,'(t) + (]. — P,'(l')) - Kidt

transition has already occurred at t)

Divides, and goes to the limit:

dP;(t)
dt

= Ki(1 - Pi(t))
Which has the solution:

P,'(t) =1-—¢ Kit



Waiting time

P;(t) is the cumulative distribution. The probability density
function is found by differentiation:

dPi(t) —K;t
i(t) = = Kje ™
pi(t) o e

The mean waiting time is the expected value of T;:

E(T;) = /OOO tpi(t)dt = K

(If K; does not depend on t)



Single channel recordings can be used to fit rates in
Markov models
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Single channel analysis

Single channel recordings contain statistical information that can
be used to estimate transition rate:

v

Ratio of experiments where channel directly inactivates

v

Distribution of the number of times the channel re-opens
before finally inactivating

v

Mean open time

Mean close time

v




1: If first (and final) transition is C — [

The channel is initially in the closed state.
As the transmembrane potential is elevated two things can happen:
P(C— 0)=A=a/(a+))
P(C—=N=¢§/(a+d)=(0—-—a+a)/(a+d)=1-A

Estimation of 1 — A: The ratio of experiments where the channel
fail to open.



2 & 3: Time spent in C and O

In the experiments where channels do open, record the time spent
in C.

The distribution is described by: P(t) =1 — exp(—«)

The average waiting time will be E(T) =1/a.

Record the duration the channel is open. The distribution is
described by: P(t) =1 —exp(—5 —7)
The average waiting time will be E(T) =1/(8 + 7).



4: Number of re-openings

Probability that the channels opens k times before inactivating:

P[N = k] = P[N = k and finally O — 1]+ P[N = k and finally C — /]
= AKBK=1(1 — B) + A¥B(1 — A)

_ (4B (1 —BAB>

Where A= a/(a+6) and B = 3/(8 + )
B can be estimated by fitting to the observed data.




