Modal logic

Compact companion 2

Herman Ruge Jervell
November 9, 2012

Contents

Contents i

1

Frege systems 1
1.1 Language of modal logic 1
1.2 The calculi of modal logic 1
1.3 Kripkemodels 3
1.4 Completeness 4
1.5 Finiteness oL 6

Gentzen systems 7
2.1 Strategies in and-or-trees 7
2.2 The language of modal logic 8
2.3 The basic modal system K. 9
2.4 Many worlds semantics 13
2.5 Othersystems. 14
Interpolation 19
3.1 Classical logic 19
3.2 Modallogic 23
3.3 Fixpoint theorem 25
Diagonalization 27
4.1 Cantors argument 27
4.2 Russells paradox 29
4.3 Fixed point of functions 30
44 Coding 31

4.5 The halting problem
4.6 The fix point theorem
4.7 Diagonal lemma

Provability

5.1 Expressing syntax
5.2 Calculiof syntax
5.3 Godel - Léb modal logic

Incompleteness

6.1 Godels zeroth incompleteness theorem
6.2 Godels first incompleteness theorem
6.3 Godels second incompleteness theorem
6.4 Tarskis theorem

Provability logic
7.1 Solovays first completeness theorem
7.2 Solovays second completeness teorem

Multi modal logic

8.1 Many modal operators
8.2 Temporal logic
8.3 Description logic
8.4 Epistemic logic
8.5 The Byzantine generals

Games on finite arenas
9.1 Arena
9.2 Gametrees

35
35
37
39

45
45
45
47
48

49
49
52

57
57
59
61
62
65

9.3 Choices
9.4 Infinite positional strategies

10 Decision problems

10.1 Games using input

10.2 Second order monadic theory — S28

10.3 Decidability of arithmetic
10.4 Processes

11 An essay on logic

11.1 Thinking from assumptions
11.2 The four levels of reasoning

Preface

In modal logic we treat the notion of multiple forms of truth.
In practical science we use this notion. It may be that we can
reduce statements in biology to statements of physics, but in
practice we rarely do. We work with two — hopefully interre-
lated — notions of truth. And then we come to the realm of
modal logic. Traditionally there are many sources for modal
logic:

Temporality We distinguish between what is true in past,
present or future.

Knowledge We distinguish between what just happens to be
true, and what we know as true — perhaps as given by a
formal proof.

Computations We distinguish between the intensional descrip-
tion of a computation as given by a code, and the exten-
sional description as given by an input/output relation.

Agents We may have many agents and communication be-
tween them generating different perspectives.

Modal logic gives a frame work for arguing about these dis-
tinctions. Some of the high points are

Temporality The possible world semantics as given by Stig
Kanger and Saul Kripke connects formal systems for modal
logic and geometrical assumptions about the temporal re-
lation.

vi

CONTENTS

Knowledge The Godel incompleteness theorem makes clear
the gap between what we can prove and what is true in
formal systems strong enough to simulate syntactical op-
erations. The completeness theorem of Robert Solovay
shows that a decidable modal logic can capture the usual
way of expressing incompleteness.

Computations Michael Rabin gave a decidable theory for the
behavior of finite state automata with infinite streams as
input. This is one of the most interesting decidable theo-
ries and has led to a number of ways of capturing the in-
tensional/extensional distinction. We have used the anal-
ysis of Sergei Vorobyov of determinacy of games on finite
arenas as an access to this very interesting theory.

Agents The problem of getting consensus between agents us-
ing narrow communication channels. Here we have used
the the problem of the Byzantine generals by Leslie Lam-
port as an introduction and have included the stochastic
solution by Michael Rabin using a global coin toss.

As background for the theory here we refer to the first com-
pact companion — “Logic and Computations”. But any rea-
sonable textbook in logic should do.

Frege systems

1.1 Language of modal logic

Modal logic is an extension of propositional logic using two new
unary connectives

e 0O — necessary — called box
e & — possibly — called diamond
We work with classical logic and the two new connectives
satisfy de Morgans laws
OF & —~O-F

OF & —-0-F

We shall not consider extensions to predicate logic.

1.2 The calculi of modal logic

In the usual Frege version of classical propositional logic we have
the rules modus ponens and the three axiom schemes S, K and
N:

Modus ponens: F Fand+-F -G =FG
S:FA—-(B—-C)—=>((A—=B)—=(A—=0))

1

Frege systems

K:-FA— (B— A
N:-((A—>L)—>1)—= A

The extension of the language to conjunction, disjunction
and negation is simple and is left to the reader. To get proposi-
tional modal logic we add one rule — necessitation — and some
new axioms which are often picked from the list below:

Necessitation: - F = F OF
Normal: - O(F — G) — (OF — 0OG)
T: FOF - F

B: - F — O0F

4: - OF —» OOF

5 FOF - OCF

P: -F—OF

Q: FOF — OF

R: HOOF — OF

W: +0O(0OF - F) - 0OF

M: FOCF — OOF

N: - oOF — OOF

D: FOF - OF

1.3. Kripke models

L: FO(FAOF - G)VOGADOG — F)

All the system we shall consider contains Necessitation and
Normal. They are called normal modal systems. Some of the
noteworthy systems are

Kripke: Least normal system — propositional logic + necessi-
tation + normal

T: Kripke + axiom T

K4: Kripke + axiom 4

S4: Kripke + axiom T + axiom 4
S5: Kripke + axiom T + axiom 5

Godel-Lob: Kripke + axiom W

1.3 Kripke models

A Kripke model over a language is given by

Frame: A set of points IC and a binary relation between them
=<

Truthvalues: To each point in the frame /C is assigned a truth-
value to the atomic formulas. The truth value is extended
to arbitrary formula by

Frege systems

aE-F& notal=F
aEFEFANGESaEFandalEG

aEOFsVY8-a.BEF

aEOF&3B-a.pEF

Similarly for formulas built up from other connectives.

1.4 Completeness

The usual completeness theorem in propositional logic — using
maximal consistent sets of formulas — can be generalized to
modal logic.

In propositional logic we get completeness by the following
steps

e A consistent set of formulas has a model

— Every consistent set of formulas can be extended to
a maximal consistent set

— A maximal consistent set of formulas give an assign-
ment of truth values making all formulas in the set
true

The main work is done by extending a consistent set to a
maximal consistent set. This is done by enumerating all formu-
las F; where i < w. If we then start with a consistent set I'g, we
extend it to I' = U;I'; by

1.4. Completeness

. I U{F;} ,ifitis consistent
LT Ty U{-E) , otherwise

In modal logic

e Every consistent set of formulas can be extended to a max-
imal consistent set

e We build a frame of all maximal consistent sets — the
binary relation between two sets ¢ and V is given by
{FIOF €U} CV

e A formula is true in ¢ if it is contained in it — this is con-
structed so for atomic formulas and proved by induction
over the build up of formulas in a straightforward way

e Observe that in this interpretation the axiom normal will
always be true

We get the completeness theorem for the Kripke logic — the
derivable formulas are exactly those true in all Kripke models.
The completeness is readily transferred to some of the other
systems

T: Assume the schema OF — F' is true in all maximal consis-
tent sets. Then the binary relation {F|OF € U} C V is
reflexive. The system T is complete for reflexive frames.

K4: Assume the schema OF — OOF is true in all maximal
consistent sets. Then the binary relation is transitive and
we have completeness for transitive frames.

Frege systems

S5: We get completeness for equivalence relations.

Godel-Lob: Completeness for wellfounded and transitive frames

In all these cases we have a universal frame built up by the
maximal consistent sets — and the extra axioms give geometri-
cal conditions on the frame. For example

OF — F: The frames are reflexive.

OF — OOF': The frames are transitive.

1.5 Finiteness

The set of all maximal consistent set of formulas is huge. We
can get finite versions of the above by considering maximal con-
sistent subsets of all subformulas of a formula.

Gentzen systems

2.1

Strategies in and-or-trees

We have analyzed sequents I' in propositional logic using sequent
calculus by

make a tree with sequents at the nodes

at the root we have I'

at the leaf nodes there are only literals

if all leaf nodes are axioms we have a derivation of T’

if one of the leaf nodes is not an axiom we get a falsification
of T

Let us make the situation a little more abstract

We have a finite tree with disjunctive nodes
The leaf nodes are either colored blue or red

We try to find a red colored leaf node

In modal logic we shall generalize this to

e We have a finite tree with disjunctive and conjunctive

nodes

e The leaf nodes are either colored blue or red

Gentzen systems

e We try to find a strategy such that no matter which con-
junctive branch is chosen we get to a red leaf node
2.2 The language of modal logic
e Propositional variables
e Literals

e Connectives: A vV O <

Note that we do not have quantifiers. The negation is — as
usual defined for literals — and extended to all formulas using
double negation and de Morgan laws. The modal connectives
are

Necessity: Unary connective O — called box

Possibility: Unary connective & — called diamond

Negation for modal connectives is given by

-OF = 0-F

In our development of modal systems we have ingredients

Sequents: Finite set of formulas built up from literals by the
connectives

2.3. The basic modal system K

Analyzing A V: Usual rules for propositional logic

Critical sequents: Sequents with no A or V outermost — so
they are of form A, OA,OI" where A are literals and CA
and OTI is shorthand for ¢C| ..., D and OG, ... ,0H

Elementary critical sequent: A critical sequent A, CA, O’
where I' is either empty or consists of a single formula.

Elementary critical sequent subsuming a critical sequent:
Given a critical sequent A, OA,OI'. Then the elementary
critical sequents subsuming it are all sequents A, CA,0G
where G is from T'.

From critical to elementary critical: So far in the analyz-
ing tree we have disjunctive nodes. The critical sequents
can be brought to elementary critical sequents by using

a conjunctive node and the conjuncts go to each of the
elementary critical sequents subsuming it.

2.3 The basic modal system K

The elementary critical sequents A, OA, OI" are of three kinds

Blue: A contains both a literal and its negation
Red: Not blue and T is empty

Black: Neither red nor blue — and will be analyzed further

10 Gentzen systems

The black elementary critical sequents are analyzed using
the following normal rule

A, G
A, OA,OG

Using this rule we have the following analyzing tree over
OFAOF - G) = 0OG

-F,FN-G,G

|

| O=F,0(F A =G),0G |

|

-0OF, -0(F — G),0G

OFANO(F — G) - 0G

Here we have filled the nodes containing axioms with gray
color. We have boxes around all critical elementary sequents

We have put the critical sequents in boxes and have colored
the axioms blue. There is no way we can reach a white leaf —
and the root sequence is derivable.

We can also derive the rule

FF=FOF

2.3. The basic modal system K

11

So we start with making an analyzing tree above OF. We
have a critical sequent at the root and are lead to making an
analyzing tree above F

F

The tree becomes a derivation if the tree above F' is. Let
us now go to an analyzing tree where we get a falsification.
Consider the formula OF — OOF. We get

OF —- 0O0OF

Here we have a strategy for getting to a white leaf. We
can also read off a falsification. The three critical sequents give
three worlds — and in each world the literals in the sequent are
interpreted as false. We get

e U — world from O—F,00F : no literals

e VV — world from —F,0F : F true

o W — world from F' : F false

12

Gentzen systems

The three worlds are related to each other by : U < V and
VW
In the interpretations we have

World: Here we interpret the atomic formulas
Relation: Relations between the worlds

Frame: The graph given by the worlds and the relations be-
tween them

So far we have no branching from the critical sequents. This
is so for OF — OF, OG

O-F,0OF, G

OF — OF,0G

Here we also have three worlds

e U — world from O-F,0OF, <G : no literals
e V — world from —F : F true and G false
e W — world from F : F false and G false

But the relation between the worlds are now : U < V and
U<W

2.4. Many worlds semantics

13

2.4 Many worlds semantics

The short story about the semantics of the modal logic K is that
it is the natural extension of propositional logic to analyzing tree
with both conjunctive and disjunctive nodes. So let us see how
this works out

Worlds: Falsification of a critical sequent A, OA,OI". This is
possible if the literals A does not both contain a literal
and its negation.

Relating possible worlds: The critical sequents A, OA, O
with T" not empty is analyzed by a conjunctive node —
each of this may lead to new critical sequents and there-
fore new worlds

Propagating falsifications downwards: We propagate fal-
sifications downwards from a premiss to the conclusion
of the A- and V-rules. In the rules for modal connectives
we have a conjunctive node. If we have falsifications for
all the premisses, we get a falsification for the conclusion.

Propagating falsifications upwards: From a falsification of
the conclusion of an A- or an V-rule, one of the premisses
can be falsified. In the rules for modal connectives we get
falsifications for all the premisses.

Given a sequent © we get

Worlds and relations: From the critical sequents and the con-
junctive nodes

14

Gentzen systems

Falsification: Given by the red leaf nodes and the critical se-
quents involved in a strategy for reaching a red leaf start-
ing from the root

A strategy gives a way to get from the root to a blue leaf node
— for each disjunctive node one of the alternatives is chosen,
for each conjunctive nodes all alternatives are considered.

The semantics for the modal connectives are

e OF true in world W : F true in all worlds U related to W

o OF true in world W . F true in some world U related to
w

The leaf nodes have no nodes above them. So in a world
from a leaf node all formulas ¢D are false.

Now it is straightforward to transform the proof of complete-
ness for propositional logic to a proof of the completeness of the
modal logic K. The falsifications are finite worlds organized in
a finite tree. It is an exercise to show that the modal logic K is
complete for possible world semantics where the worlds are re-
lated as in a direct graph, but for the completeness we only need
those worlds which can be organized as finite trees. We analyze
falsifiability in K using trees with conjunctive and disjunctive
nodes. We can then show that the complexity is PSPACE. In
fact it is complete PSPACE.

2.5 Other systems

Some other rules for analyzing sequents are

2.5. Other systems 15

o . I''D, oD
Reflexivity T.oD
... OAAG
Trans1t1v1ty m
OAVA,-OG, G

Well founded A OA.OG

These rules correspond to extra assumptions about the rela-
tions between the worlds. Let us describe the modal systems.

T: We add the reflexivity rule to the system K. As before we
get analyzing trees, but must now be careful how the rule
is applied to ensure termination.

K4: Use the transitivity rule.
S4: Use the reflexivity and the transitivity rule.

GL: Use the well founded rule.

Note that the transitivity rule is a generalization of the nor-
mal rule. We get a larger sequent when we use the transitivity
rule to analyze an elementary critical sequent. Adding the nor-
mal rule does not bring anything new — we do not get new
axioms in the leaf nodes. In the same way the well founded rule
is a generalization of both the transitivity rule and the normal
rule.

16

Gentzen systems

We now had to look closer at the rules and the completeness
theorems to find which frames these systems are complete for.
We get:

K: Arbitrary frames — finite trees
T: Reflexive frames — finite reflexive trees
K4: Transitive frames — finite transitive trees

S4: Reflexive and transitive frames — finite reflexive, transitive
frames

GL: Well founded frames — finite well founded trees

These are left as exercises. Note that in S4 we do not get
trees but only finite frames. This is exemplified by the McKinsey
formula OCF — GOF. We have the following analysis

—F, O0-F,0-F, OOF,OF }—{ F,O0-F,0-F,00F,OF

] ©O-F,0-F,0OF,0F ‘

OO-F, o0F

OCF — OOF

2.5. Other systems

17

Instead of dublicating critical sequents in new nodes we have
related them to previous critical sequents. But then we destroy
the tree structure.

We do not need the lower critical sequent to get a falsifica-
tion. We only need two related worlds — one where we falsify
—F and another where we falsify F'.

We have also the modal system S5. Semantically it can be
described as the system which is complete for frames which are
symmetric, reflexive and transitive — we have en equivalence
relation between the worlds. Syntactically it is easy to define a
calculus for it. Here is a sketch

Sequents: Finite sets of formulas in modal logic. In our calcu-
lus this will correspond to worlds where we want to falsify
the formulas in the sequent

Generalized sequents: Finite set of sequents separated by
the sign |. The generalized sequents give all the worlds
we want in the falsification.

Analysis of A: From I', F A G|© we branch off to I', F|© and
I,G|©

Analysis of V: From I', F VG|© to T, F, G|©
Analysis of O: From I'; 0F|0O to I'|©|F
Analysis of ¢: From I', OF|0© to I', OF, F|©

Propagation of ¢: From I', OF|A|O to T, OF|A, OF|©

18

Gentzen systems

Axioms: A generalized sequent is an axiom if one of its se-
quents are

The proof of completeness is straightforward and is left as
an exercise. The logically important point is that we analyze
formulas in S5 using only disjunctive nodes. The syntactic cal-
culus is NP and not PSPACE as the other calculi are. There
we need both conjunctive and disjunctive nodes.

Interpolation

3.1 Classical logic

For almost all rules in sequent calculus the symbols can be
traced — from the conclusion to the premisses or from the pre-
misses to the conclusion. The interpolation theorem uses this
property. Let us start with a sequent

r,A

We have divided it up into two parts — and to emphasize
this division we write it as

ToA

Definition 3.1 Assume - T'0 A. A formula F is a separating
formula of the sequent relative to the partition into I' and A if

o FI'F
e HA —F

o F s built up from T, L and symbols occurring in both T'
and A — in particular the free variables of F are free in
both T' and A

T is said to be the negative part of the partition and A is the
positive part for the separating formula F.

19

20

Interpolation

Theorem 3.2 (Interpolation) For any partition of a deriv-
able sequent =T o A, we can find a separating formula for it.

We are going to show that the separating formulas propagate
through the proofs starting with the axioms and going through
the cut free rules from the premisses to the conclusion. We shall
look at individual rules. Observe that for all the rules — except
cut — a partition of the conclusion induces in a natural way
partitions of the premisses. Take as an example the rule

IF T,G
T,FAG

Assume we have a partition of the conclusion into Ao E, F'A
G. Then the two premisses are partitioned into A o E, F and
Ao E,G. If we partition the conclusion into A, F A G o E, then
the premisses are partitioned into A, F o E and A,Go E.

Definition 3.3 A rule is separable if for any partition of the
conclusion and for any separating formulas of the induced parti-
tions of the premisses, we can construct a separating formula of
the conclusion. An azxiom is separable if we can find a separating
formula for any partition.

We assume that there are no function symbols in our lan-
guage. And then we show that the axioms and the cut free rules
are separable and for the propagation of the separating formulas
we have the following table

3.1. Classical logic 21

rule | negative part | positive part
AN \Y A

<t <

-/ -/3

There are many cases to consider, but they are all simple.
We take some typical cases below. The remaining cases are
similar to one of the cases we have written down.

Axiom which is split by the partition Assume that we have
FT,L o =L,A. Then we can use =L as separating formula.

Axiom which is not split by the partition Assume that we
have FT',t =t o A. We can use L as separating formula.

A-rule in the negative part We have a partition - ', F' A
G o A and assume there are separating formulas I and J of the
premisses with

FT, R T A, ST
-T,G,J A, T

Then by ordinary rules we get

FT,FAG,IVJ A (V)

and I V J is a separating formula of the conclusion.
V-rule or V-rule in the negative part We can use the sep-
arating formula of the premiss as a separating formula of the

22

Interpolation

conclusion. In the V-rule it is essential that the separating for-
mula does not contain more free variables than are common to
both parts.

d-rule in the negative part This is slightly complicated and
we must use the assumption that we do not have function sym-
bols. Then all terms are variables. Assume that we have a
partition of the premisse - I', F't o A and there are separating
formula I with

FT,Ft, 1 AT

Here we must be careful with the free variable ¢. If ¢ does not
occur in I we can use [as a separating formula of the conclusion.
The same if ¢t occurs both in I', 3z Fx and A. The case when ¢
occurs in I (as It) and in A but not in T', 3z Fz remains. Then
we use that t is a variable and get

FT,JzFa,Vyly F A, =Vyly

=-rule which is separated by the two parts Assume we have
partition F I',—~s = ¢ o Rt, A with separating formula It. If ¢
does occur in Rs, A, then we can use It as separating formula
of the conclusion. Else we have

FT,—s =t It - A, Rt,~It

By =-rule - I", =s = t, Is. Since ¢ does not occur in A and
is a free variable since there are no function symbols we can
substitute s for ¢ and get - A, Rs,—Is

=-rule which is one of the parts The separating formula of
the premisse can also be used in the conclusion.

3.2. Modal logic

23

The remaining cases Similar to one of the cases above.

The case where we have function symbols in the language
must be treated separately. There are various ways to do it,
but we leave that for the reader to explore. We have included
here a treatment of predicate logic. This is done for having a
more complete treatment of interpolation, but we only need to
consider the propositional logic within this book.

3.2 Modal logic

Consider now propositional modal logic. There we have two new
operators O and & and new rules for them. To get interpolation
theorem for modal logic we must look closer at the new rules.

Consider first the basic modal logic K. We must show that
the following extra rule is separable

T,D 4 T
A, OT, 0D ™9 A or

There are two cases for partition of the conclusion.
0D belongs to the negative part: So we have partition

A17 OF17 0D o A27<>F2

This partition gives the following partition of the premiss

Fl,DOFQ

24

Interpolation

We assume we have an interpolating formula I for the pre-
miss

FTy,D,I and F Ty~

and O7 is an interpolating formula for the conclusion: (ob-
serve =0T = O-1)

F Ay, 0T, 0D, 0T and F Ag, OTy, 0T

0D belongs to the positive part: Similar to the above.
The interpolating formula is now OI.

Theorem 3.4 The interpolation theorem holds for the modal
logics K, K4, S4, GL.

This follows as soon as we prove that the new rules are sep-
arable. Let us do it for GL. There we have the rule

oI,T,-0D, D
oT,0D

So assume that we have a partition of the conclusion in
OT'1,0D and <¢I';. We assume further that we have an in-
terpolating formula I with

Fory, 'y, -0D,D, I FOTy, Ty, =1
But then we get

FoTy,0I,0D F OTy, ~OI

3.3. Fixpoint theorem

25

and <T is an interpolating formula. If we partition the con-
clusion so that 0D comes in the other part, then O will be the
interpolating formula.

3.3 Fixpoint theorem

We now want to prove the fixpoint theorem within GL. To
simplify our exposition we introduce

CF =0FAF

So [F' is true in a world if it is true there and in all later
worlds. We say that G is modalized in F(G) if all occurrences
of G in F(G) occurs within the scope of a modal operator.

Lemma 3.5 Assume the atomic formula G is modalized in F(G)
and let G’ be a new atomic formula. Then

FO(F(G) « G)AB(F(IG) « G) = (G G)

Proof. Suppose we have given a transitive, conversely well-
founded frame where F(G) <> G and F(G') <> G’ are true in
all points. We want to prove by induction over the worlds that
G <+ G’ are always true starting with the topmost worlds. In
a topmost world any formula OH is true and any formula ¢H
is false. So since G and G’ are modalized we must have the
same truth value for F(G) and F(G’) and hence for G and G'.
Consider now a world w lower down in the frame and assume G
and G’ have the same truthvalue in the worlds above. But then

26

Interpolation

F(G) and F(G') have the same truthvalue in w since the only
reference to the truthvalues of G and G’ are from worlds above
w. Hence G and G’ have the same truthvalue in w. m

Theorem 3.6 (Fixpoint) Suppose the atom G is modalized in
F(G) .Then there is a formula H in the language of F and no
G with F O(F(G) + G) = (G + H)

Proof. By the lemma we have

FO(F(G) « G)ABFG) « G) = (G—G)

By the interpolation theorem there is H in the language of
F with no G such that

FH(F(G) + G) = (G— H)
FHFGE) <+ G)— (H—=G)

which gives the theorem. =

Diagonalization

There are a number of tricky arguments which go back to Can-
tors diagonal argument. In this chapter we give the argument
— but more important take the argument as a way to create
arguments which may look strange at first.

4.1 Cantors argument

Georg Cantor proved in 1873 that the real numbers are un-
countable. His proof then used topological properties of the
real numbers. Later he came up with the well known diagonal
argument. We consider the real numbers between 0 and 1 writ-
ten in decimal notation and assume they are countable. We can
then write them down as

a; = 0.aYa}a?alatalalalaalalalt . ..

where each aé- is a decimal. We can write them down as an
infinite matrix

27

28

Diagonalization

1 4 6 7 8
Qg Qg Qg Qg Qg Qg Qg Qg Qg

Here we have indicated the diagonal as a red line. From the
diagonal we construct a new number

d = 0.dpd1dadsdy . . .

where each decimal of d is different from the diagonal

elie)

4.2. Russells paradox

29

3 ifal#3
d; = 1
If the matrix contains all real numbers between 0 and 1, then
the d must be one of them and looking where the row with d
intersects the diagonal we get a contradiction.

The ingredients in Cantors argument are

e Construct the matrix
e Transform the diagonal so that it looks like a row

e Consider the place where the row intersects the diagonal
— this is called the critical point

There are two main outcomes of the argument

e There is no row corresponding to the transformed diago-
nal. There are too few rows, and this is shown by looking
at the critical point.

e There is a row corresponding to the transformed diagonal.
The critical point will be a fixed point.

4.2 Russells paradox

We construct the matrix with sets along the axis and where
row x intersects column y we put the truth value of x € y.
As transformation we use negation —. The diagonal defines the
Russell set R given by the truth values of -z € x. We get a

30

Diagonalization

contradiction if we assume there is a row corresponding to R.
The problem comes at the critical point. There we would have

ReRSRER

which is impossible.

4.3 Fixed point of functions
We consider functions with one argument. They are the point on

the axis. The matrix is constructed by composing the functions.
The diagonal is

AfAx.f(f(x))

Assume now that we have a transformation ® of such func-
tions with one argument. The transformed diagonal is

Af-@(ff)

Assume now that the transformed diagonal correspond to
the function g. Then at the critical point we get

®(g99) = g9

and gg is the fixed point of ®. We can write it as

A @(f1)Af-2(fF))

4.4. Coding

31

4.4 Coding

We use codes in a datastructure to represent syntax and logical
calculi over the datastructure to do syntactical transformation.
We have found the following to be most useful

e As datastructure we use binary trees B. They are given
by
— Constant — nil : B — the empty tree
— Binary constructor — cons : Bx B — B
— Binary predicate — <: B x B — Boole — z con-
structed before y
e Syntax — can be expressed with a Ag-formula

e Basic calculus — sufficient to prove all true Ag-sentences

e Extended calculus — includes also induction over Ag-
formulas

Often the datastructure is the unary numbers. But then we
had to include more functions to make the coding work.

It is important that we distinguish between the code of an
object and the object itself. The following notations will be used

e {p}(z) — pis a programcode for a function, x is the input
and {p}(x) is the result of applying the program p to z

e [A] — the code for the formula A

32

Diagonalization

With the programcode we have some new notations
e {p}(z) t+ — {p}(z) does not terminate

{p}(z) | — {p}(x) terminates

{p} total — it terminates for all inputs

{p} partial — may or may not terminate

{p} = {q} — terminate for exactly the same inputs and
there have the same value

4.5 The halting problem

We build a matrix of programcodes and inputs — both given as
binary trees. On row z and column y we put {z}(y). If we could
decide whether {z}(y) terminates, then transform the diagonal
by switching termination and non-termination. There is a row
corresponding to the transformed diagonal and at the critical
point we get a contradiction. We conclude that the halting
problem is not decidable.

4.6 The fix point theorem

This is the coded version of the argument above of fix point of
functions. So assume we have a total function h. The matrix is
given by partial functions {z} and {y} where at the intersection
we have the composition of them. This can be written as {xoy}.
Now to the details of the diagonal construction

4.7. Diagonal lemma

33

the diagonal is d — it takes as argument a code and pro-
duces a code and is itself a code

the transformed diagonal h(d) corresponds to row {g}

e the critical point gives the fix point — {h(gog)} = {gog}

the fix point — {go g} = {h(d)oh(d)} =Z {(Az.h(zox))o
(Az.h(zox))}

4.7 Diagonal lemma

We now consider formulas with free variable x over the language
of our datastructure. A formula Az and a formula (or sentence)
B gives the sentence A[B] — substitute the code of B for the
free variable z in Az. This form of composition can be used in
a diagonal argument.

Given a formula Fx with free variable x. There is then a
sentence B with B <+ F[B].

Matrix: We are in the language of binary trees. To row y and
column z we get the binary tree sub(y, z) — the result of
considering y as a code for a formula Y& with free variable
x and then substitute z for x.

Diagonal: \y.sub(y,y)

Transformed diagonal: A(sub(z,z)) — corresponds to a row

34

Diagonalization

Critical point: Gives the sentence B

All the coding / uncoding needed here are purely syntactical
and can be done as Ag-formulas.

Provability

5.1 Expressing syntax

In provability we try to express truth by using syntactical con-
structions. We start with axioms as something obviously true
and use syntactical rules to get from old truths to new truths.
This is an old idea — dating back to Aristotle and to Euclid.
To make it precise we must decide how to represent syntax. We
propose the following

Language: We have the language of binary trees B with
e nil: 5
e cons: BxB—B
e <: B x B — Boole
Syntactical construction: Something that can be described

by a Ag-formula in B. This is a formula which only con-
tains bounded quantifiers.

Calculus: Above the datastructure B there are three proposals
for calculi

Basic calculus: We add to predicate logic with equality
all true Ag-sentences

Skolem calculus: In addition — induction over ¥;-formulas

Peano-calculus: In addition — induction over all formu-
las

35

36

Provability

The pioneer here was Thoralf Skolem with his 1923-paper
“Begriindung der elementaren Arithmetik durch die rekurri-
erende Denkweise ohne Anwendung scheinbarer Verénderlichen
mit unendlichem Ausdehnungsbereich.” He had read Russell
and Whiteheads Principia Mathematicae and was irritated by
their founding of simple arithmetical truths. Instead of founding
everything on (higher order) logic he introduced — in modern
terminology — the following

e The datastructure of unary numbers

e Primitive recursive definitions as a programming language
over the datastructure

e A programming logic over the datastructure showing cor-
rectness of simple truths

If we add primitive recursive functions to the language it is
sufficient to consider induction over quantifier free formulas —
and induction over ¥;-formulas is derivable. With not enough
functions in the language it is better to start with induction
over Yi-formulas. In any case it seems to be the thing that is
needed in this chapter.

There is a criticism against the datastructure of unary num-
bers. It is a poor datastructure to express syntax. In fact we
have

e natural numbers with + is decidable (Presburger, Skolem)

e natural numbers with x is decidable (Skolem)

5.2. Calculi of syntax 37

We must use natural numbers with both 4+ and X to get
Godels incompleteness, and then the coding needs the extra
trick of Godels g-function and the Chinese remainder theorem.
Using the datastructure of binary trees avoids all these extra
problems — and we know already from Lisp and other program-
ming languages that this datastructure works well to simulate
syntactical constructions.

5.2 Calculi of syntax

The datastructure of binary trees B gives a reasonable language
for syntactical constructions. We have the following simple def-

initions:

Ty
Ve < y.Fx
Jr < y.Fx
Ve 2 y.Fz
Jr L y.Fx
z =hd(y)

x = tl(y)
z < hd(y)

x < tl(y)
x =< hd(y)

z = tl(y)
z = hd*(y)
z = tI(y)

: Ju < y.Fv <y.(y = cons(u v)
: Ju < y.3v < y.(y = cons(u,

r<yVvVr=y
Ve(r <y — Fx)
Jx(x <y A Fx)
FyAVz <y.Fx
Fyvdr<y.Fx
Jz < y.y = cons(z, 2)
3z < y.y = cons(z, x)

I}\ UL

v

xz=hd(y) Ve < hd(y)
x=tl(y) Ve <tl(y)
r2YyAVz 2y(z <z =z <hd(z))
r2YyAVz 2ylr <z =z 2 tl(z))

38

Provability

Observe how far we come with constructions using bounded
quantifiers. In particular we are able to define hd* and t1* in
this way — and using this we get finite sequences of information,
finite proofs, finite runs and so on using only bounded quanti-
fiers. This is not possible in the datastructure of unary numbers
without extra functions.

For the calculi we start with predicate calculus with equality
and then add axioms for the datastructure B. There are three
main levels

Basic calculus: Add all true Ag-sentences
Skolem calculus: In addition — induction over all 3;-formulas

Peano calculus: In addition — induction over all formulas
Why these levels?

e A Ap-sentence is built up from literals using connectives
and bounded quantifiers. The truth-value is calculated
using a finite AND-OR tree above it.

e Induction is supposed to reflect the build up of the datas-
tructure. Using induction involving unbounded V-quantifiers
we have already assumed some knowledge of the totality of
the datastructure. This seems to be a deeper assumption
than the one for ¥;-formulas.

As something intermediate between the basic calculus and
the Skolem calculus we often use the Robinson axioms:

5.3. Godel - Lob modal logic

39

R1: —nil = (z - y)

R2: (z-y)=(u,v) 2 x=uAy="0
R3: z =nilV Ju,v.z = (u-v)

R4: —z < nil

R5: 2 < (u-v) e z=uVez<uVe=ovVze<v

It is an exercise to show that they are intermediate — we
can derive all true Ag-sentences for them, and they can all be
derived in Skolem calculus. This is left to the reader.

5.3 Godel - Lob modal logic

We are in a system strong enough to express syntax and prov-
ing syntactical transformation. We have a coding of syntax —
formulas and proofs. Let F' be a formula. Then OF means that
there is a code of a proof of F. We shall look further into the
requirements of the code by looking at the properties of OF. In
fact we shall prove

GL 1 FF=+0OF
GL 2 FOFAOWF -G —0OG
GL 3 FOF — 0OOF

GL 4 FO@OF - F) —»0OF

40

Provability

Necessitation — GL 1

Assume F F'. Then the coding is such that we can translate this
step for step into a proof of - OF. And we have

FF =FOF

Normality — GL 2

If we have proofs of F' — G and F, then we can transform this
into a proof of G by using modus ponens. This transformation
is done without analyzing the details of the two proofs. This
gives the derivation of

FOF — G) = (OF — 0OG)

There are other notions of proofs where GL 2 is far from
obvious

e it is a direct proof of F'

e it is the shortest possible proof of F’

Fair coding

So far the coding is just new names for the syntactical elements.
We want the coding to be such that

Fair coding of equality: Va,y.(x =y — Oz = y)

Fair coding of inequality: Vz,y.(x # y — Oz # y)

5.3. Godel - Lob modal logic 41

These are reasonable extra conditions on the coding.

Y1-completeness

Theorem 5.1 (X; completeness) Assume that the theory con-
tains X1-induction and we have a fair coding of equality and
inequality. Then for all X1 formulas G

FG— OG

Here G may contain free variables.

Proof. The proof is first by induction over the build up of
Ay formulas. Then we show that the principle still holds if we
have 3-quantifiers outermost.

Literals: The fair coding of equality and of inequality gives
the principle for = y and for x # y. It also gives the principle
for v = (u-z) and © # (u- z). Just substitute (u - z) for y.
For z < y we use ¥; induction over y. In the induction start
y = nil we have - -~z < nil and trivially the principle. Assume
the principle true for y and z. We then get it for (y-z) by using:

r<(y-z)oz=yVr<yVe=zVze<z

Now to -z < y. Again we use Xi-induction over y. For the
induction start y = nil we note

F O-2 < nil

In the induction step we again use the equivalence above.

42

Provability

Conjunction: Assume - F — OF and - G — OG. But
from GLO we have - O(F — (G — F AG)) and using GL1 and
propositional logic we get - FAG — OF AG.

Disjunction: Here we use GLO with - O(F — FV G)
and - O(G — F V G).

Bounded quantifiers: We use 3;-induction over y to
prove

Fdr < y.Gr — Odz < y.Gx

Note that the formula 3z < y.Gz is Ay and hence that the
whole formula is 3.
In the same way we prove by induction

FVe <y.Gr — OVe < y.Gr

We conclude that the principle is true for all Ay formulas.
Now we note that it can be extended with 3-quantifiers in front.

Existential quantifier: We assume - Foz — OFz for
arbitrary . Furthermore by GLO + O(Fz — Jy.Fy). Then
F Fr — 0O3dy.Fy and + Jy. F'y — Jy.Fy.

]

So the principle is true for all 3; formulas. In particular
it is true for the Xy formula OF and we get for theories with
31-induction

GL2: - 0OF —» OOF

L6bs rule — H0OS — S = S

5.3. Godel - Lob modal logic

43

Here we use GLO, GL1 and GL2 and in addition the fix
point theorem. From the fix point theorem there is an I with
F I+ (O — S). We then have

FI— (O —S)

FOI — (007 — 0S)
FOI—0O4s

FOS — S, assumption
FOl— S

I

FOI

F .S, conclusion

Lo6bs axiom — GL3

We abbreviate B = 0(0OF — F),C =0F and D =B — C.
Then

+OD — (OB — OC)

FB— (O0C —)

F B — OB , since B starts with O
FOD— (B—C)

FOD— D

F D , by Lobs rule

And we are done. Note that we had to use X;-induction to
prove GL2 and this was again used in the proof of GL3.

Deriving GL2 from the rest

44

Provability

O
FO

O0OFAF)— (OFAF))— OOFAF) by GL3
OF A F) — OOF by GLO and GL1

FO(OF A F) — OF by GLO and GL1

FO(O(OF AF)— (OF AF)) — OOF by logic

FF— (O(OFAF)— (OF AF)) by logic

FOF - O(0(0FAF)— (OFAF)) by GLO and GL1
F OF — OOF by logic

Py

Godel interpreted provability as a modal operator — OF
means that F' is provable. This makes perfectly good sense —
also for complex modal formulas — if our logic system contains
enough to handle syntactical construction. We shall prove that
with this interpretation the valid formulas of the Godel-Lob logic
are true.

Incompleteness

6.1 Godels zeroth incompleteness theorem

The theory of binary trees cannot treat the true sentences in a
reasonable way. We have

e The language of binary trees is rich enough to express
syntax with Ag-formulas and rich enough to express prov-
ability and computability with 3;-sentences.

e The simplest calculus on it makes all true X;-sentences
provable.

e There is no calculus on it making all true II;-sentences
provable.

If there were a calculus for all true II;-sentences, then we
would get a decision procedure for the halting problem.

6.2 Godels first incompleteness theorem

In the theory of binary trees we we have under quite general
assumptions

e all true Ag-sentences are provable
e only true sentences are provable

e provability is only partially computable

45

46

Incompleteness

we conclude that there must be a true II;-sentence which is
not provable. Here we shall show a way to get around the second
assumption, and let the incompleteness be a more syntactical
matter. Godel considered two notions

e A theory is consistent if t/ L.

e A theory is w-consistent if there are no Fx with - Jz.Fz
and F —Fp for all p

If a theory is w-consistent, then there are no F' with - F’ and
F —F. Instead of w-consistency it may be more perspicuous to
use the following consequence

Lemma 6.1 If the theory is w-consistent and provability is 31,
then it is 1-consistent — that is

FOF =FF

Proof. For assume F OF or - 3p.PROOF(p, [F]). By w-
consistency there must be ¢ with - PROOF (¢, [F]). But this
is a Ag sentence and hence true. Therefore - F. m

Theorem 6.2 (First incompleteness) Assume we have a the-
ory in the language of pairs where all true Ay sentences are
provable. Let G be a sentence such that

FG <+ -O0G

If the theory is consistent, then t/ G. If it is in addition
1-consistent, then t/ =G

6.3. Godels second incompleteness theorem

47

Proof.

Assume that the theory is consistent. Assume - G.
Then F OG by GLO and from the definition of G we get F -G
contradicting consistency.

Assume that the theory is 1-consistent. Assume - —-G.
Then F OG and from the above by 1-consistency - G. This
contradicts the consistency of the theory. m

Under the weak assumptions above we get a sentence G such
that neither it nor its negation —G is provable. So the theory is
not complete.

The assumption used before about the theory being partially
computable is here reflected in the assumption that OF is a ¥
formula.

6.3 Godels second incompleteness theorem
We now use the stronger assumption GL2 of provability.

Theorem 6.3 (Second incompleteness) Let G be the sen-
tence used in the first incompleteness theorem. Then

FG<«-OL

Proof. We have - G — —OG. Then use - L — G and
GLO and GL1 to get - 01 — OG. Hence - G — =01 which
is half of the equivalence.

Conversely by GL2 we have - OG — OOG and hence
OG — O-G. Then + OG — O(G A -G) and - OG — OL and
F =G — 0L which is the other half of the equivalence. m

48

Incompleteness

Both incompleteness theorems use that provability is 3.
The first incompleteness theorem requires that all true Ag sen-
tences are provable, while the second incompleteness theorem
requires 37 induction in the theory — to get GL2 — and that
the coding represents equality and inequality in a fair way.

The second incompleteness theorem shows that it makes
sense to talk about the Godel sentence of a theory — and that
this sentence is equivalent to —~0O1. The actual theories enters
only through the representation of 0.

6.4 Tarskis theorem

Assume that we have a formalized notion of truth one within
our theory. That is there is a predicate TR such that for all
sentences S

- TR([S]) ¢+ S

The point is that the S on the left hand side occurs as the
coded representation of it. We can then use the fix point theo-
rem to get a sentence T with

F-TR([T]) < T
and we have an immediate contradiction.

Theorem 6.4 (Tarski) There is no formalized theory of truth
in a theory where we can prove the fix point theorem.

Provability logic
7.1 Solovays first completeness theorem

In this section we shall show — following work of Robert Solovay
— that G'L tells the whole story about provability in elementary
theories with 31-induction.

We want to simulate trees and interpretations over a tree in
an elementary theory. So assume that we have a representation
of the tree given by a downmost node 0 and the accessibility
relation < and downmost world 0. For notational simplicity
we use natural numbers and usual less than relation on them.
Define a primitive recursive (or using 3; induction) climbing
function h by

h(0) = 0
j , where j = h(z)
h(zx+1) = and x proves 3y > x - h(y) > j
h(z) , otherwise

So it describes a man climbing up the frame, and he can only
climb up a step if he can prove that he will not stay there. (Or,
it could be a refugee who is allowed to enter a country only if he
can prove that he will go to a more favorable country.) We then
define predicates S; expressing that the climber will ultimately
end up with world 4

S;=FaVy >z -h(y) =1

49

50

Provability logic

We can then prove

F S, — 05, for i =0
F.S; = —0-8; for j > i
l—ﬁ(Si/\Sj) fori#j
FV, -8,

F SOV, S foris0

Only the last requires some work. We can derive within the
theory using ¢ > 0 and the formalized X¥;-completeness

S; = Ja - h(a) =

Ja-h(a) =i— ;v S;

O3a - h(a) =i — O(S; \/\/JH i)

Jda - h(a) =i — O3a - h(a) =i using Xj-completeness
S; — 0O(S; vV \/ S;)S; — 0O(=S;)

S; —» 0OV

j>z
]>—1

We are now ready to simulate any finite, transitive frame
in arithmetic. So assume such a frame is given and let S; be
the corresponding sentences. There is also defined a provability
operator. To any formula F' in GL we define a formula F* in
arithmetic by

e if P is an atomic formula, then P* = \/{S;|P is true in i}
o (PAQ)* =P*AQ* (PVQ)* =P*VQ*

e (OP)*=0P*

7.1. Solovays first completeness theorem 51

We say that P* interprets P. This is justified by

Lemma 7.1
iEP =FS, — P*
ZI#P =FS; > P*

Proof. We prove this by induction over the formula P.
Observe that it is true for atomic formula and it is preserved by
Boolean combinations. We are left to prove it for formula 0OQ
assuming it true for). So assume first ¢ = 0Q. Then

Viri-jEQ
Vj=iFS; = Q*
FV;i S — Q@
0O Vj>i Sj — OQ*
F S, — 0Q*
And assume i = OQ. Then
i jEQ
35 =i F S5 = -Q*

3j > i -0-8; = -~0Q*
FS; — -0Q*

Theorem 7.2 (Solovays first completeness theorem) F¢gp,
A& Vxkg A*

Proof. We have already proved the implication =. To the
other way assume /gy A. There exists then a finite, transitive,

52

Provability logic

conversely wellfounded frame with downmost element 1 and 1 [~
A. Tack on a new element 0 in the frame below 1 and let the
interpretations in 0 be arbitrary. We have

S — A*
F—-0-5; — -0A4*
F Sy — —-0-5;
FSqg — —-O0A*

But Sy is true (even if it is not provable). Therefore OA* is
false and hence /s A*. ®

We have used ¥;-induction. The same arguments goes through
for any stronger system.

7.2 Solovays second completeness teorem

In the proof of Solovays first completeness theorem we wandered
between provability and truth. This is going to be done even
more so in the Solovays second completeness theorem. First we
introduce a new logical system GLS — Godel Lob Solovay

e all valid G L-sentences
e 0A - A

e modus ponens

Note that we do not have the necessitation rule (- A =+
OA) in GLS. Let F be any formula. We are going to use the
formula

7.2. Solovays second completeness teorem 53

/\{DA — A|OA is a subformula of F} — F

This is written shortly as A(ODA — A) — F.

Theorem 7.3 (Solovays second completeness theorem) The
following are equivalent

1. GLE AN(OA— A) = F
2. GLS+F

3. Vx F* true

Proof. Here it is straightforward to prove 1 = 2 and 2 = 3.
So assume GL I/ A(ODA — A) — F. Then there is finite,
transitive, conversely wellfounded frame with downmost element
1 giving a countermodel for it. Tack on a new node 0 below 1
and now we assume that 0 has exactly the same literals true as
1. Then 1 &£ F and 1 = A(OA — A). Let the sentences S;
be defined by the climbing function as in the proof of the first
completeness theorem. We first show for subformulas of F’

1):B =F Sy — B*
1}£ B =+ Sy — —B*

We use induction over B. If B is atomic, then B* is a dis-
junction of S;s. Assume 1 = B. Then by construction of 0 we
have 0 = B and Sy is a disjunct of B*. So F Sy — B*. Now
assume 1 = B. By construction of 0 we have 0 £ B and Sj is
not a disjunct of B*. So - Sy — —B*. The properties are easily

54

Provability logic

extended through Boolean combinations. It remains to prove it
for OC given the properties for C.

Assume 1 = OC. Then Vj > 1-j = C and by properties
proved in the first completeness theorem we have Vj > 1-
S; — C*. We now use that 1 = OC — C to conclude - S — C.
This gives - Sl\/\/jH S; — C*. We now use - SpV 51 \/\/j>1 S;
to conclude - C* and - OC* and + Sy — OC™.

Assume 1 = OC. Then 35 > 1+ S; - -C* and 3j > 1+
—|E|—\Sj — -0C*. But - Sy — —-0O-S;. This gives - Sy —
-0C™*.

This proves the properties. Now to the conclusion of the
proof of the completeness theorem. We have assumed that 1 =
F. But then F Sy — —A*. But Sy is true. Hence A* is false. m

Let us give some simple applications. Assume we want to
find a sentence S which is true but not provable in arithmetic.
We then try to falsify =5, 0S5 in GL and get the following falsi-
fication tree

So we have two worlds — an upper with S false and a lower
with S true. Observe now that in the lower one we have 0A — A
true for any subformula OA of the sequent. There is only one
OF and we have OF — F true in the lower world. Now tack on
a new world 0 below and we then have an interpretation for S.

7.2. Solovays second completeness teorem

55

We can interpret it as =S5. So in arithmetic we have —.S5 true,
but not provable.

What is the complexity of the interpreted sentences? We
observe that for a topmost node j we can write S; = Jz-h(z) = j
since we cannot climb further, and we get S; a 3;-sentence. For
a node ¢ lower down we can write

Si=3w-hx)=in \ ~Fy-h(y) =k
k>1

and we get S; a Boolean combination of 3;-sentences.

In our example we have a true ITi-sentence which is not
provable.

Let us now try to find a sentence S such that neither S nor
—S is provable. We are then led to the following falsification
tree

As before observe that in the lower world we have OA — A
true for all subformulas OA of the sequent. Tack on a new node
below and as before we have an interpretation for S — and a
formula which is neither provable nor its negation is provable.
This is a variant of the Rosser construction.

It is surprising that the incompleteness phenomena can be
expressed with the decidable modal logic GL. On the other hand

56

Provability logic

it gives a limitation on our analysis so far. The second incom-
pleteness theorem tells us that we cannot prove -O.L. The sys-
tem enters in our understanding of O, but this understanding is
not expressed in the language of GL.

Multi modal logic

8.1 Many modal operators

A modal operator O is normal if it satisfies the rules for system
K — that is necessitation rule and the normal axiom. We may
have many normal operators at the same time. The theory —
in the Gentzen or the Frege version goes through as before. We
write the modal operators and their transition relations as

i) (@) [G B
The transitions —i>, i>7 ﬁ>7 L have the (1,4, k,1)-confluence

property if the following diagram is commutative (that is to
every A, B,C there is a D such that ...):

Theorem 8.1 To the geometric property (i,7,k,1)-confluence
corresponds the axiom

(@OUIF — [F(OF
Proof.

o7

58

Multi modal logic

=: Suppose that we have (i, j, k,)-confluence. Suppose fur-
ther that for some point A

Al @F
There is then B with A — B and B = [j]F. Let C be
such that A - C. Using confluence we get D with D |
F. Furthermore C' |= (I)F. Since C was arbitrary, then A |=
(K] F.

<: Suppose the axiom is true and we have the situation

The axiom is true for all interpretations. Let F be true
in exactly those universes which are j-visible from B. Then
B |= [j]F and A | (i)[j]F. Using the axiom we get A = [k](I)F
and C = (I)F. So there is a universe D -l-visible from C with
F true — and we get

/\
%/

8.2. Temporal logic

59

]

In ordinary modal logic we have as normal operators the
usual one and also the identity operator. Let us give some ap-
plications of confluence there.

OF — OF: We let j and [be the usual transition, and ¢ and k
be identity. Then confluence says that from A we can find
D with A — D. This property is called seriality — we
can always see new elements.

OF — F: Let ¢, k and [be identity, while j is the usual transi-
tion. Confluence gives reflexivity.

F — OCF: Let ¢ and j be identity, while k and [are the usual
transition. Confluence gives symmetry.

OOF — OF: We let 4, 7 and k be the usual transition, while
[is identity. The axiom is called negative introspection
— especially in the contrapositive form O—F — OO—F.
Confluence is often called Euclidean property.

8.2 Temporal logic

It is an old tradition to connect necessity with what is always
true — no matter what the future bring. Here we can look at
two temporal modalities — [—] and [+] — connected with past
and future. The following is a straightforward description of a
minimal temporal logic Ky:

e We have two temporal modalities [—] and [+]

60 Multi modal logic

e [—] and [+] satisfy

— they are normal modalities

— they are transitive — they satisfy

[—1F = [H[-]F

[HEF = [+][+F

— they are inverse to each other — they satisfy
x F — [=](+)F
x F— [+](—)F

*
*

A more expressive temporal logic has two operators
Since: FSG means “F is true since G is true”

bEFSG<e3da<b(aEFAVe(a<c<b—ckEQ))

Until: FUG means “F is true until G is true”

aEFUG & Tb=a.(bEGAYe(a<c<b—cEF))

With the two new operators S and U we can define

(+)F & TUF
F

[+]F & —=(TU-F)
(-\F & FST
[-]F < —(=FST)

8.3.

Description logic

61

8.3

Description logic

The multi modal logic can be seen as a basic description logic.
Let us say that we have a particular model of the multi modal

logic.

Then we view

Domain: The set of all universes

Attributes: The propositional variables which may or may not

be true in a particular universe

Roles: The transitions between the universes

Over the domain we then have attributes as unary predicates
and roles as binary predicates. Of course we could use fragments
of first order logic instead of multi modal logic. The advantages
of having the connections to multi modal logic is as follows

First order logic with binary predicates is undecidable
Multi modal logic is decidable

To get a decidable calculus we must have restrictions on
the binary predicates.

The reasonable and natural restrictions are not so easy to
find in first order logic but may be easier in multi modal
logic

The further development of description logic takes multi
modal logic as a start, but then develops properties of es-
pecially the roles which helps expressivity of the language
without hindering efficiency of the calculus

62

Multi modal logic

8.4 Epistemic logic

We have a multi modal logic where [{]F is interpreted as “agent
1 knows F”. We need two extra axioms for the knowledge oper-
ators

Positive introspection: [{|F — [i][i|F
Negative introspection: —[i|F' — [i|-[i]]F

Positive introspection is the same as our axiom 4 giving tran-
sitivity. We treat here some important examples of how we can
use epistemic logic to describe situations.

Muddy children

e N children — each with its own epistemic operator

e 1 father who observes that at least one child has a muddy
forehead

e each child can find out by observation which other children
are muddy but not itself

e by asking the other children, each child is able to find
out by reasoning and using the responses from the other
children whether it is muddy or not

There is a protocol in N rounds where each child can find
out whether it is muddy or not.

8.4. Epistemic logic

63

Round 1: Only a child which is the only muddy one, can and
will answer. Then we have the answer for each of the
children.

Round 2: The children now knows that at least 2 children are
muddy. If one of them sees only one other with mud on
the forehead, she and also the muddy one can conclude
that they are the only muddy children. Then we have the
answer for each of the children.

Round 3: The children now know that there are at least 3
muddy children. And then the round and further rounds
go on.

Round N: The protocol may last until this round. Now the
children will know that they are all muddy.

Common knowledge

To solve the muddy childrens problem we need iteration of the
epistemic operators. We must not only know what we know
and what other know, but also what other know about what we
know and so on. Note the following distinctions

Shared knowledge: “Felles kunnskap” — what everybody knows

F(G) /\[i]G

64 Multi modal logic

Common knowledge: “Allmenn kunnskap” — what every-
body knows that every body knows and so on

AG) & AN+ N\l e

Implicit knowledge: Logical consequences of what every agent
know

Z(G) < G is a consequence of all [i{|H

Coordinated attack

Two troops — one on each of two neighbouring hills — are ready
to attack the enemy on the plains below. We assume

e cach troop must attack at the same time — then they win
else they lose

e to coordinate the attack there is an agent running from
one hill to the other

e the communication using the agent is unreliable — the
agent may be lost or be caught by the enemy

We can show that there is no protocol which makes the com-
munication absolutely reliable. To get it we need some common
knowledge between the two troops.

8.5.

The Byzantine generals

65

8.5

The Byzantine generals

We have N generals and among them there are 7" traitors
and the rest are honest

Each general may decide to attack or not

The generals can communicate reliably on a person-to-
person basis — the communication is synchronous, we
know when an expected message will arrive

At the start each general has a preference whether to at-
tack or not

We want to find a protocol where in each round the gener-
als communicate with each other about their preferences
for attack — all generals follows the protocol, they answer
when they should and the round closes when it should.

There are no assumptions about truth and consistency in
the reports by the traitors

After a given a number of rounds the generals decide such
that

— all honest generals decide on the same action

— if the honest generals have the same preference at the
start of the rounds, then they also end up with the
same preference

66

Multi modal logic

So the traitors may lie and tell different thing to different
people. They try to cheat as best as they can. There is such a
protocol if and only if N > 3T. So if there are not too many
traitors we can get common knowledge among the honest gen-
erals. We shall give the main ideas behind this, but leave to the
reader to get a detailed protocol. We treat the two main cases

e 1 traitor and 2 honest generals

e T traitors and more than 27 + 1 honest generals

1 traitor and 2 honest generals

G/@\@

All communications go along the edges. Assume) is the
traitor. The traitor behaves in a schizophrenic way — to () he
says that he is going to “attack”, but to € he is saying that he is
going to “not attack”. There is no way that the honest generals
can find out whether he or one of the other is the traitor.

The three generals are

1 traitor and 3 honest generals

The protocol is using two things

8.5. The Byzantine generals

67

Majority choice: To find a preference for a general we ask
many questions about it and use the majority rule to find
what we think he prefers.

Common knowledge: For each general we not only asks di-
rectly his preference, but also what the other generals
knows about his preference, and so on.

Now we have the four generals and their communications

&——O

O——®

Say that the traitor is). Each general can then find out
the preferences of the honest generals, but the information about
the traitor is unreliable. The problem is that we do not know
who is honest and who is the traitor. More precisely we have
the following cases among the honest generals and the received
messages

3a + 0r: Received either 4a + Or or 3a + 1r
2a + 1r: Received either 3a + 1r or 2a + 2r
la + 2r: Received either 2a + 2r or la + 3r

Oa + 3r: Received either 1a + 3r or Oa + 4r

68

Multi modal logic

Most cases can be decided by a majority vote. The problem
comes when an honest general receives 2a+2r. Should he attack
or retreat? Here we must use information about what the other
generals convey indirectly.

Message tree

Each general receives messages about what the others generals
are preferring. Say the generals are named 1 2 3 4. We organize
the messages to each general in a message tree of the following
form

~—
W ——
O ——
W —
o —— w
o

LW —
—_—

_—wW

4
|
1

DN — N
wW—1nN
N — W
——w
=N

wW—
N ——

1 1
s

S
o ——
wWw—=
s
A+ o ——

Each of the generals build such a tree. Each node have three

information pieces

Node: Each node is given by a sequence of numbers. The down-
most rightmost node is denoted by 04321. If we have N
generals, the message tree for each general has N! many
branches. Each branch starts with 0 and then use a per-
mutation of 1 2 ... N.

8.5. The Byzantine generals

69

Input: The message tree for each general is decorated by what
the general hear about the preferences from the other gen-
erals. So for example node 0241 has as input what the
general hears that general 1 says that general 4 says that
general 2 has. The root node 0 is not given an input

Output: This is calculated from the inputs by a majority rule
— starting from the leaf nodes and going upwards. The
leaf nodes have output=input. Then for a node we look at
the outputs from the sons and take the majority. If there
is an even split we take as input retreat.

A general gets his calculated preference by

e Get the message tree for the general with nodes and input
e (Calculate the output of the nodes in the message tree

e The output of the root is the preference for the general

In the calculation we used a default action if there was no
majority at a node. It is essential that we have the same default
throughout the calculation, but it does not matter whether it is
attack or retreat.

The problem with this protocol is the computational com-
plexity. The message tree may be enormous and it is not feasible
to find the preferences in this way.

70

Multi modal logic

Using a global coin

By relaxing on some of the conditions and introducing a new
device — a global coin — we can make a much better algorithm.
The global coin is seen by all generals. After each round we toss
the coin giving head or tail. Assume we have T traitors and
2T + 1 honest generals. Each general remembers two pieces of
information in each round

Preference: His preferred action — attack or retreat

Tally: The number of generals saying they have the same pref-
erence

Then for each honest general in each round there are two
cases:

Tally > 2T + 1: Keep the preference to the next round.

Tally < 2T: Look at the global coin and get a preference for
the next round — if head then prefer attack, else prefer
retreat

We observe that in each round:

e Each honest general with tally > 27 + 1 have the same
preference. Else there would be at least 17"+ 1 honest
generals preferring attack and T + 1 preferring retreat.
Because of the traitors the tally may be less in the next
round.

8.5. The Byzantine generals

71

e There is a 50 % chance that the global coin will also show
this preference and then in the next round all honest gen-
erals will have the same preference.

The protocol decides on the number of rounds N and when
we stop there is only a 2= chance that we have not a good
decision for the Byzantine generals. In each round we need
M (M — 1) messages for M generals.

Games on finite arenas

9.1 Arena

We play 2-persons game on finite arenas and ask for winning
strategies. The two players are called Vbelard and Jloise. There
is a finite and an infinite variant of the game. First the infinite
parity game (IPG)

e The arena is built on a finite directed graph G and from
each node there is at least one arrow out

e The nodes are partitioned into two sets — V& and V3

e dloise chooses the arrow out for nodes V3 — and Vbelard
chooses the arrow out for nodes V4

e Each node is assigned a natural number — called a level
e There is a starting node

e A run in a game is an infinite path through the nodes —
starting with the starting node and following the arrows
chosen by the two players.

e Jloise wins a run if the maximal level met infinitely often
is even

e Vbelard wins a run if the maximal level met infinitely often
is odd

73

74

Games on finite arenas

This is called the infinite parity game — IPG. There is also
a finite parity game — FPG where the run lasts until we get
to a loop (one node is visited twice). In FPG we look at the
maximal level within the loop. If the level is even Jloise wins,
if it is odd Vbelard wins. We shall first develop a theory for the
finite parity game and then show that it is generalized to the
infinite parity game.

9.2 Game trees

Given a finite arena A. Above each node u € A we build a game
tree — G,, — over u.

e The nodes in the game tree are nodes from the arena —
and we have V-branchings and 3-branchings.

e For wins in the FPG we look in each branch for the first
place where a node is repeated. If the arena has N nodes,
then we only have to look at the game tree up to height
N +1.

e For wins in the IPG we had to look at each branch —
find the maximal level of the nodes which are repeated
infinitely often. The branches are infinite.

In FPG we can decide whether Jloise or Vbelard has a win
starting from node u. The arena is divided into four parts

9.2. Game trees

75

W3 Wy

V3

W

There are two partitions of the nodes

Who moves: We partitioned the nodes into V3 and V&4

‘Who wins: The nodes where dloise wins — W3. The nodes
where Vbelard wins — Wy.

Over each point u in the arena we can construct a finite
game tree G,. The game trees have V- and 3-branchings. The
downmost branching determines whether we are in V4 or V3.
We need to look at all the branches to decide whether we are in
Wy or W3 — here we need a PSPACE calculation.

The key to get a further analysis is to look at connections
between points connected with edges. We have

Lemma 9.1 For an 3-node u

76 Games on finite arenas

ueWs = dv—uveWs
ueWy <« Yv~—uveWy

and for an 3-node u with a single edge from it we also get
the converse

ueWs < Fv~—uvelWs
ueWy = Yv~—uveWWy

Similarly for an V-node.
Consider a point u with game tree G, and a successor v to

u connected with edge e and with game tree G,,. The two game
trees are intertwined. We picture this as

&

)

®--- q

u

We reach the top in the game tree when we get to a loop
in the branch. To get to the loop in the game tree over v we
may have to extend the branches a little higher up to get to the

9.3. Choices

77

loop. This happens if the branch in the game over u ends with
u. The loops in the branches of G, which starts with edge e to
v corresponds to the loops in the branches in G,,.

Now to the proof of the lemma. Assume u € V3N W3. Then
there must be an edge e : u — v such that the branches in G,
starting with edge e shows that u is 3-winning. These branches
correspond to branches in G, showing that v is 3-winning.

For the converse argument we get this only when the edge e
is the only edge starting from w.

The finite games are determined — either they are 3-winning
or they are V-winning. We get w € W3 < w € Wy. From this
we get

u€eWy s ug W< -Jv~—uveWs
S Vo —uv & W3 Vo —uveWy

And similarly for the rest of the lemma.

9.3 Choices

Given an arena some of the nodes may have choices — others
have a single arrow leading out. The choices give rise to branch-
ings in the game trees. In general the game tree is an AND-OR
tree.

Choice node: A node with at least two edges going out
J-choice: A choice in the arena from an 3-node

V-choice: A choice in the arena from an V-node

78

Games on finite arenas

Subarena: Arena with the same number of nodes but fewer
choices — some arrows are deleted.

J-positional strategy: Subarena where we have removed all
J-choices and kept all V-choices.

V-positional strategy: Similar.

We now want to reduce the number of choices in an arena
while keeping the four parts of the arena intact.

Theorem 9.2 Given a finite arena A. We can find an 3-
positional strategy A3 and an V-positional strategy without chang-
ing the winning nodes for any of the strategies.

e The positional strategies A7 and A" can be considered
as strategies for the players — A7 for Jloise and AY for
Vbelard.

e If dloise has a win from node u, then she has a strategy
where her moves depends only on the node she is in. The
game tree over u € W3 contains only V-branchings.

e In general the game trees are AND-OR trees, but with the
positional strategies they are AND-trees. This means that
all nodes in the game tree over the node u € V3N W3 can
be assumed to be 3-wins.

The proof is by induction over the number of choices. The
induction is used to prove that the subarenas have the desirable
properties, but the construction of the subarenas is straightfor-
ward. To get rid of the J-choices we do the following in order

9.3. Choices

79

e We get rid of the 3-choices in V3 N W3 for each node u €
V3N W3 do: There must be an edge e : v ~— u such that all
branches following e through v are 3-winning. Keep this
edge and remove all the other edges from u.

e We now observe that there are no edges from Wy to Wy

e Remove the remaining J-choices from the arena in any
way to get an arena without 3-choices.

We have a similar construction to get rid of the V-choices.
In the proof below we prove by induction that we can do this
pruning without changing the winning or the losing nodes of the
arena.

Induction start

With no choices in arena A we obviously have the theorem.

Induction step — remove choices in V3N W3

e Assume we have a choice in © € V3N W3 and we have edge
e : u — v where all branches from u which follows e to v
are 3-winning.

e Remove the other edges from u to get subarenas A* with
fewer choices. In A* we have an 3-win from w.

e By induction we get subarenas A2 and A" of A* which
are positional strategies for A*.

80

Games on finite arenas

e In the change from A to A* we remove some I-choices
and keep all V-choices. So we have Wy C Wy and we
must prove that we have equality. Assume we have x €
Wy N W3. Then Vbelard can force a path from z to wu.
This means that v € W and we have a contradiction.

Induction step — remove choices in Vg N Wy

Similar to the above.

Induction step — No edges between W35 and Wy

We assume that we have removed the choices in V3 N W3 and
Vo N Wy. Suppose that we have an edge e from v € Wy to
u € W3. Then

e There must be a choice in v — another edge d starting
from v. Else we would have v € W3. Since we have
removed the choices in Vg N Wy we must have v € V3.

e Let A* be the subarena where we have removed the edge
e. There are fewer 3-choices and Wy C WJ. By induction
we get positional strategies A7 and AY of A*.

e Vbelard can force a win from v even if Jloise starts by
choosing edge e to node u. But then Vbelard can force a
path from u and back to v. This path is within A* and can
be continued within A* and gives an V-win. This means
that u € Wy.

9.4. Infinite positional strategies

81

e On the other hand starting from w Jloise can force a win
as long as she uses edge e. So she can force a path to
v. In v she can choose edge d instead and will get a win
in A since v € W3. But this win is contained within the
subarena A* and we get u € W3 and a contradiction.

We have a similar contradiction if there are edge going the
other way — from W3 to Wy.

Induction step — Removing extra edges

We assume that we have already done the pruning above. There
still may be extra choices. It does not matter which we prune.
After the pruning if we start within W3 the whole game will be
within it, and similarly if we start within Wy.

9.4 Infinite positional strategies

The positional strategies above are the key to connecting the
finite games with the infinite game. Say that we have removed
all 3-choices. Then a branch in the game tree will only contain
V-branchings. This means that it is up to Vbelard to choose
when he meets a loop whether to enter the loop or continue
without entering it. So if Vbelard wants to meet a special node
in a loop he can choose the run so that this loop is the first he
enters.

Within a finite arena we get positional strategies for FPG.
Interestingly every positional strategy for FPG is also a posi-
tional strategy for IPG — and conversely.

82

Games on finite arenas

From FPG to IPG: Assume we have an 3-positional strategy

which loses in IPG. Then there is a branch in the game tree
where the maximum level of an infinitely repeated node
— say u — is odd. In the game tree we can find another
branch where the node u is the first repeated node. The
positional strategy loses also in FPG.

From IPG to FPG: Assume we have an 3-positional strategy

which loses in FPG. There is an 3-losing loop in a branch
in the game tree. Then Vbelard can force to stay within
that loop forever and the strategy is also losing in IPG.

So we have the following PSPACE procedure to find winning
nodes in the infinite parity game

Given an IPG

Using the FPG we partition the nodes into winning nodes
for Jloise and Vbelard.

Given a winning node in FPG for dJloise, we can find a
positional strategy for her.

This strategy is also a winning strategy for IPG.

The arguments generalizes to other winning conditions
than the parity property of loops used here.

Decision problems

10.1 Games using input

In the games above we had only interaction from the two play-
ers. We extend the games to have input and various forms of
indeterminacy

e there is a finite input alphabet A

e as input we have the full binary tree decorated with sym-
bols from A

e the two players have different uses of the input
e at the start we begin with the symbol at the root
e dloise reads a symbol from the alphabet — symbol reader

e Vbelard chooses whether the next symbol is in the tree to
the left or to the right — path finder

e the arrows out from V3 are each decorated with a symbol
from the alphabet — and dloise must choose an arrow
with the symbol she reads

e at the same time as Vbelard chooses an arrow he chooses
also the direction — left or right — where Jloise shall read
her next symbol

e Jloise or Vbelard can guess an indeterminacy

83

84

Decision problems

We get the game without input if the input alphabet consists
of only one symbol. We can also extend the game to a game with
more than one input by letting Jloise read more symbols and let
Vbelard have more choices of directions. This is straightforward
and can be defined in many equivalent ways.

Using the constructions from the games with finite arenas
we can decide which player has a winning strategy for the finite
or the infinite parity game.

10.2 Second order monadic theory — S2S

As universe we have the binary numbers

e Two unary functions

— xz+— 20

—x—xl
On this universe we have second order monadic logic.

e first order quantification over numbers
e second order quantification over monadic predicates
e s =t — equality between numbers

e Xs — the number s satisfies X

Within the logic we may define

10.2. Second order monadic theory — S2S

85

€ :—Jy(y0=eVyl =¢) — empty number
a<b :VX(XaAnVy(Xy— Xy0A Xyl) — Xb)— precedes
C(X) VzVy(Xzhz<y— Xy) — chain

IC(X) : C(X)AVy.3z.(Cyrny <z — Cz) — infinite chain
FCOX): C(X)AN—-VyIz.(Cyny < z— Cz) — finite chain
F(X) YyNZ(XyANZyAC(Z)— FC(Z)) — finite set

S2S describes IPG

Given an IPG we can use S2S to describe it in such a way that
a win in IPG correspond to validity of a sentence in S2S. This
is done as follows

Finite run: Binary number

Infinite run: Infinite chain of binary numbers, or a branch in
the full binary tree

States: Monadic predicate with argument a binary number

Arena: A finite number of monadic predicates connected to
each other with transitions described by sentences in S2S.

And so on. We leave the actual description to the reader.

IPG decides validity in S2S

Conversely we can use games to simulate second order logic.
The second order monadic logic is built up using

86

Decision problems

e s— s0

e s+ sl

We simplify things by getting rid of the first order construc-
tions by using

e SING(X) — X is a singleton
e X CY — subset
e X CyY — subset after moving one to the left

e X C; Y — subset after moving one to the right

We use IPG with inputs. Given a formula F(X,...,Z) in
S2S we define an IPG where we have inputs corresponding to
the free variables X, ..., Z and a win if the formula is true. This
is done by the build up of formulas:

Atomic formulas: Trivial
Conjunction: Use pairs of arenas
Negation: Change 3-nodes to V-nodes and conversely

Quantifier: We treat second order 3-quantifier using indeter-
minacy

10.3. Decidability of arithmetic

87

Note the construction for the second order quantifier. The
free variables are treated as inputs in the game. In logic we can
hide a variable using a quantifier. In the game we can hide it
treating it as an extra indeterminacy.

The result is an IPG with a win exactly when the sentence
in S28S is valid.

10.3 Decidability of arithmetic

As a datastructure the unary numbers have some deficiencies.
When Skolem introduced it in 1923 he had to include the primi-
tive recursive functions to have expressive power. Godel in 1930
used addition and multiplication. To express syntax within such
a framework he had to use extra number theoretic arguments —
he used the Chinese remainder theorem. Even then syntax could
only be expressed with 1-statements and not Ag-statements as
we do within the datastructure of binary trees. In this section
we consider some of these phenomena.

Arithmetic with addition is decidable
As language we have

e Constants — 01

e Ternary relation —z +y =z

We can then express with predicate logic successor, less than
and much more. Presburger and Skolem proved that we can

88

Decision problems

decide the truth values of sentences in predicate logic over this
language. Given a formula F(z,y,...,2) in the language we
build an automaton A with inputs for each free variable in F'
such that F(k,l,...,m) is true if and only if the automaton
accepts the inputs corresponding to k, 1, ..., m.

Numbers: Binary numbers read from right to left
x4+ y = z: Basic automaton for adding binary numbers
A and V: Intersection and union of automata

—: Using subset construction to get a deterministic automaton
and then take complement

V and 3: Using conjunctive and disjunctive indeterminacy

The binary numbers are not unique — we may have a num-
ber of 0’s on the left. We make them unique by having infinite
streams as input by adding on extra 0’s. The result is an au-
tomaton that can decide the truth values of sentences in our
language.

Arithmetic with multiplication is decidable

Skolem published a paper on this after having learned about
Presburgers publication. We make some changes in the above
argument

e The automata takes finite trees as input

10.3. Decidability of arithmetic

89

e Numbers are represented using prime number represen-
tation with binary numbers as exponents to the prime
numbers

e Multiplication is reduced to addition of binary numbers
— to each prime number we add the exponents to them

We get the decidability of arithmetic with only multiplica-
tion.

Arithmetic with addition and multiplication may
need extra quantifier

But we can still not represent syntax. We get into problems
where we represent properties like “being a tail element” which
we treated above in the setting of pairs. For Godel the way
around was to use the Chinese remainder theorem.

Let us start with a representation of all pairs (z, y) of natural
numbers with < 3 and y < 5. Since there are 15 such pairs we
need at least 15 distict numbers to represent them. It turns out
that the numbers from 0 to 14 suffice. This can be seen from
the table on the next page. As an example we let the number 8
represent the pair (2,3). From number theory we know that it
is essential that the numbers 3 and 5 are relatively prime. This
observation generalizes to arbitrary long sequences.

90

Decision problems

Number | Remainder modulo 3 Remainder modulo 5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4
Theorem 10.1 (Chinese remainder theorem) Suppose that
we have numbers dy, . ..,d,_1 which are relatively prime. For a
number x let r; be the remainder of x modulo d;. We then let x
code the finite sequence (rq,...,rn—1). Then the coding function

{1,y 1)

from numbers < dg X -+ X dp_1 to sequences in dg X -+ X dp_1
is bijective (i.e. 1-1 and onto).

Proof. Let us first show that the function is 1-1. Assume we
have two numbers x < y < dg X - -+ X d,,_1 with the same code

10.3. Decidability of arithmetic

91

(roy...,7n—1). But then all d; will divide the difference y — .
Since the d; are relatively prime then the product dg X - -+ xd,_1
will also divide y — 2. But 0 <y —x < dy X --- X d,—1 which
shows that 0 = y — « and hence x = y.

So the coding function is 1-1. But both the domain and the
range of the function are finite and contain the same number of
elements. Therefore the coding function is also onto. =

We can therefore code long sequences of numbers if we have
long lists of relatively prime numbers. We now use

Theorem 10.2 Let n > 0 and d = n! = the factorial of n.
Then the numbers 1 +d,1 4+ 2d,...,1+ (n+ 1)d are relatively
prime.

Proof. Consider 1 +id and 1+ jd with 1 <i<j<n+1.
Let p be a prime number dividing both numbers. Then p > n
and p divides the difference (j—i)d. Since p is a prime > n, then
p cannot divide d = n!. Hence p divides j —i. But 0 < j—i<mn
and hence i =j. m

This gives us the famous S-function of Godel.

B(c,d, i) = the remainder of ¢ modulo 1+ (i + 1)d
Theorem 10.3 Let ag,...,a,_1 be a sequence of natural num-

bers. Then there are ¢ and d such that for alli=0,1,...,n—1
we have

5(63 d77’) = a;

92

Decision problems

So we get a X;-formula representing that something is code
for a sequence. We need the extra quantifier to get large enough
numbers to feed into the S-function. We used factorials in get-
ting large enough numbers and hence went beyond the addition
and multiplication used in the language. These large numbers
are hidden by the extra 3-quantifiers.

But for the language of pairs it is much simpler.

10.4 Processes

Using the methods of games with a finite arena we can de-
cide properties of processes. We think of a process as running
through a finite number of states depending on input from the
user or from the environment. We assume that we have only a
finite number of states — and thereby exclude cases where the
states may contain an arbitrary element of an infinite datastruc-
ture. We can then use appropriate assignments of levels to the
states to decide

Reachability: Using the finite game we can find out whether
a certain state is reached or not.

Liveness: Using the infinite game we can decide whether we
can from any state reach a given starting state — whether
we can always boot the process.

An essay on logic

11.1 Thinking from assumptions

In logic we think from assumptions. An extreme case is when
the assumptions are simply wrong — as in proofs by contradic-
tion. Say we want to prove that there are infinitely many prime
numbers. This is done as follows

e Assume there are just a finite number of prime numbers
— Po,P1s--- Pk

e Multiply the prime numbers together and add 1 to get —
P=po-p1--pp+1

e The number P has a prime number factorization, but none
of the prime numbers pg, p1, ..., pr divides P

e Contradiction and the assumption is wrong.

This thinking from assumptions is the key to understanding
logic — and other formal disciplines. We use it all the time.
Note some of the typical assumptions

e something is finite
e something is computable
e something is valid

e something is decidable

93

94

An essay on logic

None of these assumptions are decidable. The point is to
show that from for example assuming something is finite, we get
to know that something else is finite. The assumptions about
finiteness propagates through the argument in some way. As lo-
gicians we investigate how we can make such assumptions prop-
agate. We are sort of like magicians — they do not produce the
rabbits from nothing, but they introduce them from the begin-
ning and let them propagate in — for the audience — a hidden
way through the performance.

11.2 The four levels of reasoning
Following Frege we have four levels where our reasoning is done

Physical level: This is the level where we have white, black
and grey smudges on the paper which indicates signs and
symbols. There could also be auditory signals and smells
and touches.

Syntactical level: We have interpreted the physical signals as
letters and numbers. We have passed from the physical to-
kens to the syntactical types. Now we can decide whether
something occurs twice.

Semantical level: The syntax is given an interpretation — we
know for example the truth conditions.

Pragmatic level: We use the semantic signs to act within our
world. We use semantic sentences to judge / to question
/ to embarass and so on.

11.2. The four levels of reasoning

95

There may or may not be a barrier between these levels.
We do not know and for the development of logic we do not
care. But we act as if there where such a barrier. So let us say
something about the three barriers

Syntactic barrier: Animals seem to be able to bridge this bar-
rier, humans do it all the time and machines are pretty
good in doing it. But we develop and choose environments
where this barrier can be bridged, or where we can assume
that it is. This is an important effect of the civilization
process.

Semantic barrier: There are a number of discussions whether
this is a real barrier or not. We can think of the com-
puter as syntax machines, and then we have the discus-
sions about strong or weak Al as discussions about the ex-
istence of such a barrier. But for practical purposes it is.
We make computers perform semantic work by observing
that the semantics of the input is propagated through the
computation and ends as a semantic of the output. This
is what we do with electronic calculators and all kind of
computers — at least so far.

Pragmatic barrier: Even if we understand a sentence there
are a number of actions it can be used to. How to do
things with words is a big topic and there are no reason
that we should dismiss it as an unimportant thing and
that it is only something we can do automatically and do
not need to reason about.

