# Research / Scientific Methods in Computer Science

Vera Goebel & Thomas Plagemann

Department of Informatics,

University of Oslo

#### Useful resources & readings:

- http://www.mrtc.mdh.se/publications/0446.pdf
- http://www.cs.iastate.edu/~honavar/research-methods-workshop.html

## What is Science?



# Sciences – Objects - Methods

| SCIENCE                | OBJECTS                                                                             | DOMINATING METHOD                              |
|------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|
|                        | Simple                                                                              | Reductionism (analysis)                        |
| Logic &<br>Mathematics | Abstract objects:<br>propositions, numbers,                                         | Deduction                                      |
| Natural Sciences       | Natural objects: physical bodies, fields and interactions, living organisms         | Hypothetico-deductive method                   |
| Social Sciences        | Social objects:<br>human individuals, groups,<br>society,                           | Hypothetico-deductive method<br>+ Hermeneutics |
| Humanities             | Cultural objects: human ideas,<br>actions and relationships,<br>language, artefacts | Hermeneutics                                   |
|                        | Complex                                                                             | Holism (synthesis)                             |

#### The Scientific Method

- 1. Pose the question in the context of existing knowledge (theory & observations).
  - new question that old theories are capable of answering (usually the case), or
  - question that calls for formulation of a new theory.
- 2. Formulate a hypothesis as a tentative answer.
- 3. Deduce consequences and make predictions.
- 4. Test the hypothesis in a specific experiment/theory field.
  - The new hypothesis must prove to fit in the existing world-view.
  - In case the hypothesis leads to contradictions and demands a radical change in the existing theoretical background, it has to be tested particularly carefully.
  - The new hypothesis has to prove fruitful and offer considerable advantages, in order to replace the existing scientific paradigm.
- Rule: loop 2-3-4 is repeated with modifications of the hypothesis until the agreement is obtained, which leads to 5. If major discrepancies are found the process must start from the beginning, 1.
- 5. When consistency is obtained the hypothesis becomes a theory and provides a coherent set of propositions that define a new class of phenomena or a new theoretical concept.

  The results have to be published.
- Theory at that stage is subject of process of "natural selection" among competing theories (6). A theory is then becoming a framework within which observations/theoretical facts are explained and predictions are made. The process can start from the beginning, but the state 1 has changed to include the new theory/improvements of old theory.

# Diagram: Scientific Method



# Science – Research - Technology

|                     | Science                 | Technology                      |
|---------------------|-------------------------|---------------------------------|
| Object              | unchangeable            | changeable                      |
| Principle of motion | inside                  | outside                         |
| End                 | knowing the general     | knowing the concrete            |
| Activity            | theoria: end in itself  | poiesis: end in som ething else |
| Method              | abstraction             | modeling concrete<br>(complex)  |
| Process             | conceptualizing         | optimizing                      |
| Innovation form     | discovery               | invention                       |
| Type of result      | law -like<br>statements | rule-like statements            |
| Time perspective    | long-term               | short-term                      |

# Relations: Science, Technology, ...



# What is Computer Science?

Discipline of Computing: Informatics?

- Computer Science
- Computer Engineering
- Software Engineering
- Information Systems

#### **Definitions:**

- 1. The discipline of Computing is the systematic study of algorithmic processes that describe and transform information: their theory, analysis, design, efficiency, implementation, and application.
- 2. Computer Science is the study of phenomena related to computers, Newell, Perlis and Simon, 1967.
- 3. Computer Science is the study of information structures, Wegner, 1968, Curriculum 68.
- 4. Computer Science is the study and management of complexity, Dijkstra, 1969.
- 5. Computer Science is the mechanization of abstraction, Aho and Ullman 1992.
- 6. Computer Science is a field of study that is concerned with theoretical and applied disciplines in the development and use of computers for information storage and processing, mathematics, logic, science, and many other areas.

## Scientific Methods of Computer Science

- Modeling
- Theoretical Computer Science
- Experimental Computer Science
- Computer Simulation

# Modeling - 1



| "Real World"               | Model                   |
|----------------------------|-------------------------|
| Program                    | Compiler theory         |
| Artificial Neural Networks | Experiments testing ANN |
| Computer hardware          | Simulation              |

## Modeling - 2

- How to model?
  - What to take into account /neglect? -> features
- Is the model appropriate?
  - Purpose, resolution, level of abstraction
- Aspects of features / behavior?
- Difference to reality?
- Validation? Are the results valid?
- Special constraints

#### Theoretical CS

- Logic and Mathematics
  - Objects (axioms)
  - Operations (rules)
- Conceptualization, modeling, and analysis: data models, algorithms, complexity
  - Data model: values of data objects and operations
- Different levels of abstraction
- Efficiency
- Methodologies: iteration, recursion, induction

# **Experimental CS**

- Information processes: formulate phenomena, explanations, testing
- Experiments: theory testing, exploration
  - Theoretical predictions <-> Reality
  - Edsger Dijkstra: "... an experiment can only show the presence of bugs (flows) in a theory, not their absence."

# Computer Simulation - 1

Computional Science



# Computer Simulation - 2

- Investigations beyond current experimental capabilities
- Study phenomena that cannot be replicated in laboratories
- Guided by theory and experimental results (feedback loop)
- Simulate phenomena and processes

## Thesis Proposal (multiple iterations, 10-15 pages)

#### 6 essential questions that must be answered:

- 1. What is the problem? (Literature!)
  - 2 possibilities:
  - new problem -> find a solution
  - known problem & existing solutions -> find a better solution
- 2. What has been done (by others) already to solve this problem? (Literature!)
- 3. What is missing? What is not good in other approaches/solutions? (Literature!)
- 4. What are you planning to do?
- 5. What will be the result(s) in the end?
- 6. Rough idea (description) of the way to the end finished PhD thesis (to reach the goal, i.e. solve the problem) includes time plan:
  - what has already been achieved
  - what has still to be done