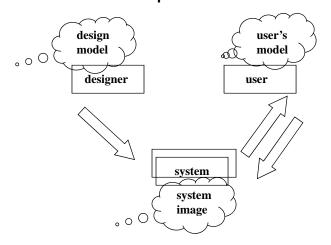
It probably won a prize

- Aim
 - To be able to analyse and compare the designer and the user models of devices

Technological aspects of Donald Norman: The Design of Everyday Things by Jens Kaasbøll

1


Qualities of devices

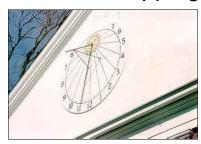
- Aesthetic
 - Pleasing to look at and sense in general
- Technologic
 - Adhering to accepted principles of good technical solutions
 - Simple manufacturing
- Learnability
 - Promotes quick learning Steikeovn
- Usability
 - Causing desirable effects <u>Hvitløkspresse</u>
- Durability
 - Tolerates long term intended use
- Robustness
 - Tolerates improper use
- Safety
 - Not causing undesireable effects Bilradio

3

Conceptual models

When simple things need instruction, it is a certain sign of poor design

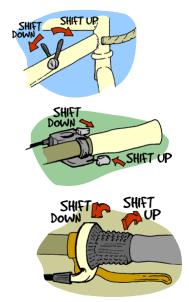
- Visibility
 - The shape of the device signals its proper use
 - What about blind people?
- Mapping
 - Immediately understandable relation between symbols and operation Kokeplater
 - Iconic symbols
 - Visual similarity
 - Conventional symbols
 - · Learned system of representation
 - · Arbitrary letters and shapes
- Feedback
 - The device signals the result of the operation


5

Mappings should be unambiguous

6

Mappings (clockwise)



Bicycle gears

Changing gears

Design model 1950

Slower rotation – Larger cogwheel – pulling the wire (hard)

Faster rotation – Smaller cogwheel – pushing the wire (easy)

Design model 1990

Slower bicycle speed – smaller gear number

Faster bicycle speed – higher gear number

Slower rotation – Larger cogwheel – pulling the wire (hard)

Rear wheel $7 \rightarrow 1$

Crank pedals $1 \rightarrow 3$

Faster rotation – Smaller cogwheel – pushing the wire (easy)

Rear wheel $1 \rightarrow 7$

Crank pedals $3 \rightarrow 1$

a

User model

- Slower bicycle speed Left hand up Right hand down (hard)
- Faster bicycle speed
 Left hand down (hard)
 Right hand up

How the designers might believe that users see

or

11

Material

- What is the gadget made of?
- What is the
 - Aesthetic
 - Learnability
 - Usability
 - Durability
 - Robustness
 - Safety

of this material?

- Wood
 - Pine
 - Teak
 - ...
- Metal - Iron
 - Silver
- Ceramics
 - Porcelain
 - Stoneware
 - **Plastics**
 - Bakelite
 - PolyVinylCloride
- Rubber

12

What are the consequences of the choice of

	Material	Structure	Mechanics
Aesthetic			
Learnability			
Usability			
Durability			
Robustness			
Safety			

13

Preventing the user from making mistakes

- Lockin
 - Keeping a process going
 - Preventing prematurely closure
- Lockout
 - Prevents an event from occurring

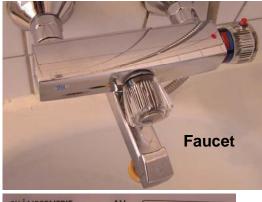
Interlock Forcing a sequence

- Open cover
- Unscrew lid
- Insert nozzle in tank opening
- Hang up nozzle
- Insert lid
- Close cover
- Start engine and drive away

No interlock

- Open cover
- Unscrew lid
- Put tank lid on car roof
- Insert nozzle in tank opening
- Hang up nozzle
- Close cover
- 15
- Start engine and drive away

How does an ATM guard against user errors?


Controlling temperature

- Designer and user models
- Mappings
 - Type of symbols
- Lockins lockouts
- Interlock

17

Washing machine

18